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Introduction

When a pathogen is isolated in a microbiology laboratory,
the time taken for subsequent culture for identification and
susceptibility testing may delay the administration of the
most appropriate treatment. For routine clinical purposes,
the ideal method for bacterial identification and antibiotic
susceptibility testing would have minimum sample pre-
paration, would analyse samples directly (i.e. would 
not require reagents), and would be rapid, automated, 
and relatively inexpensive.1 Most of these requirements 
are met by spectroscopic solutions, the commonest such 
approach being pyrolysis mass spectrometry (PyMS). 
PyMS can identify an organism to species level in 2 min, 
but to date the conventional methods for analysing 
PyMS data have been insufficiently powerful to allow 
antibiotic susceptibility data to be extracted from the 
spectra.

PyMS first involves pyrolysis, the thermal degradation of
complex material in an inert atmosphere or a vacuum. This
causes molecules to cleave at their weakest points to
produce smaller, volatile fragments called ‘pyrolysate’. A
mass spectrometer can then be used to separate the com-
ponents of the pyrolysate on the basis of their mass-to-
charge ratio (m/z) to produce a pyrolysis mass spectrum,
which can then be used as a ‘biochemical profile’ or finger-

print of the complex material analysed. This method is
sufficiently sensitive to detect changes at the level of the
genome,2 and within microbiology PyMS has largely been
used as a taxonomic aid in the identification and discrimi-
nation of different micro-organisms.3,4 It is now considered
to be a valuable system for the rapid epidemiological typing
of clinically significant pathogens.5

There has been a dramatic increase in the incidence of
nosocomial infections caused by strains of Staphylococcus
aureus that are resistant to multiple antibiotics, usually
because of transfer (acquisition) of resistance genes.6

Methicillin-resistant strains of S. aureus (MRSA) were first
isolated in 1961 following the introduction of this -lactam
for the treatment of staphylococcal infections.7 Their resist-
ance results from the presence of a novel additional peni-
cillin binding protein (PBP) PBP 2 .8,9 PBP 2 is encoded by
the mecA gene, which is part of the chromosomal DNA
mec sequence, a 30 to 40 kb piece of DNA the origin of
which is unknown.10

The aim of this study was to use PyMS to examine 
a collection of 37 methicillin-susceptible (MSSA) and
methicillin-resistant (MRSA) S. aureus strains. Cluster
analysis and artificial neural networks were used to deter-
mine whether pyrolysis mass spectra could be used to
discriminate these strains on the basis of their methicillin
susceptibility.
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Materials and methods

Organisms and cultivation

Twenty-two MSSA and 15 MRSA were used in this study.
These cultures were chosen to represent a diverse range of
strains. Moreover, they possessed a wide range of resist-
ance to other antibiotics (data not shown). The National
Collection of Type Cultures set of 22 propagating strains
for phage typing were used as examples of MSSA.11 Three
recent clinical isolates of MRSA (H34, E9/95/94, and
E18/103/94) were supplied by Bronglais General Hospital
along with a national standard MRSA (NCTC 10042),
whilst the remainder were supplied by Dr Judith Richard-
son (Laboratory of Hospital Infection, Central Public
Health Laboratory, London, UK). Details of the strain
designations, phage group, and resistance or susceptibility
to methicillin are given in the Table.

Strains were cultured on Mueller–Hinton agar (Oxoid-
Unipath Ltd, Basingstoke, UK) plus 2% NaCl, which
favours the expression of PBP 2 ,8,9 and incubated aerobic-
ally for 16 h. The bacteria were carefully removed from the
agar surface with a plastic loop and suspended in physio-
logical saline (0.9% NaCl) to approximately 20 mg/mL.
The samples were then ready for analysis by PyMS.

Pyrolysis mass spectrometry (PyMS)

Five microlitres of the above samples was evenly applied to
iron–nickel foils to give a thin uniform surface coating.
Prior to pyrolysis the samples were oven dried at 50°C for
30 min. Each sample was analysed in triplicate. The pyro-
lysis mass spectrometer used was a Horizon Instruments
PYMS-200X (Horizon Instruments Ltd, Ghyll Industrial
Estate, Heathfield, East Sussex, UK).12,13 The sample tube
carrying the foil was heated, prior to pyrolysis, at 100°C for
5 s. Curie-point pyrolysis was at 530°C for 3 s, with a tem-
perature rise time of 0.5 s. The data from PyMS were
collected over the m/z range 51 to 200 and may be dis-
played as quantitative pyrolysis mass spectra (e.g. as in
Figure 1). The abscissa represents the m/z ratio whilst the
ordinate contains information on the ion count for any
particular m/z value between 51 and 200. Data were
normalized as a percentage of total ion count to remove the
most direct influence of sample size per se.

Multivariate cluster analysis

Canonical variates analysis (CVA) (also referred to as ‘dis-
criminant function analysis’ (DFA)) is a multivariate
statistical technique that separates objects (samples) into
groups or classes by minimizing the within-group variance
and maximizing the between-group variance.14,15

Before CVA was employed, principal components
analysis (PCA) was used to reduce the dimensionality of
the data and only those principal components (PCs) whose
eigenvalues accounted for more than 0.1% of the total

variance were used. When the first few PCs represent a
large proportion of the total variance, it is likely that
further axes generated will result from random noise in the
data; these PCs can be ignored without reducing the
amount of useful information representing the data, since
each PC is now independent of (uncorrelated with) any
other PC.15,16,17 CVA then separated the objects (samples)
into groups on the basis of the retained PCs and the a priori
knowledge of the appropriate number of groupings;14,18,19

the a priori groups here are the known triplicate pyrolysis
mass spectra and so do not bias the analysis in any way. The
objective of CVA is to maximize the ratio of the between-
group to within-group variance; therefore a plot of the first
two canonical variates (CVs) displays the best two-dimen-
sional representation of the group separation. To effect
CVA the normalized data were processed with the GEN-
STAT package20 run under Microsoft DOS 6.22 on an
IBM-compatible PC.

Next, a percentage similarity matrix was constructed by
transforming the Mahalanobis distance15 between a priori
groups in canonical variates analysis with the Gower
similarity coefficient SG.21 Finally, hierarchical cluster
analysis was employed to produce a dendrogram, using
average linkage clustering.22

Creation of training and test data sets for artificial
neural network analyses

It is well known that if the number of weights in a neural
network is significantly higher than the number of
exemplars in the training set then overfitting can more
easily occur.23,24 Therefore, to obey the parsimony princi-
ple, as described by Seasholtz & Kowalski,23 the next stage
was to reduce the number of inputs to the ANNs. PCA is an
excellent dimensionality reduction technique,17 and the
first five PC scores from the averaged normalized triplicate
pyrolysis mass spectra were used as the input data (these
accounted for 90.4% of the total variance). The first five
PCs were used because when too few PCs are used, not
enough information is present, and when more PCs are
employed, the later PCs are likely to contribute only noise
to the model, thus increasing the probability of chance
correlations between input and output data.

In addition, it is important that the training data en-
compass the full range under study24,25,26 since, although
supervised methods are excellent at being able to inter-
polate, they are likely to give poor estimates outside their
‘realm of knowledge’, i.e. they cannot extrapolate suf-
ficiently well. Since the 37 strains of S. aureus encompassed
a diverse range of epidemiologically distinct strains it was
imperative that the training set of MSSA and MRSA
represented multidimensional space sufficiently well to
allow interpolation.

‘Duplex’ is a method for choosing an optimal split
between training and test data sets;27 an extension to this
methodology called ‘Multiplex’ has been developed in-
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house (Jones, A. et al., personal communication). Briefly,
this method starts by placing the two most separated
samples into the training set. It then places the next two most
separated remaining samples into the test set. This is per-
formed iteratively until all samples have been split. This
ensures that the training set range covers the test set range,

and that both sets are representative. The first five PC scores
from the pyrolysis mass spectra were sorted using Multiplex
so that the training and test data were split in the ratio 3:1.
Data may be split on both the X matrix (PC scores) and the
Y matrix (bacterial type); so as not to bias the partitioning
process, data were split on the X matrix only.

29

Table. Identity of the S. aureus used in the test set and training set as judged by
artificial neural networks

S. aureus Phage group Typeb MLPs
Set strain of straina estimatec

Training PS 47 I III S 0.00
PS 54 III S 0.04
PS 84 III S 0.01
PS 71 II S 0.00
PS 55 II S 0.00
PS 95 95 S 0.00
PS 3C II S 0.00
PS 52 I S 0.00
PS 29 I S 0.00
PS 80 I S 0.00
PS 83A III S 0.00
PS 85 III S 0.00
PS 77 III S 0.04
PS 75 III S 0.03
PS 53 III S 0.01
PS 42E III S 0.06

Test PS 81 I S 0.00
PS 6 III S 0.00
PS 52A/79 I S 0.00
PS 3A II S 0.00
PS 96 V S 0.00
PS 94 V S 0.00

Training CRF 631 PS I R 1.00
CRF 634 PS III R 0.98
ST 84 6255 III R 0.95
ST 85 1774 NT R 0.97
CRF 627 PS III R 1.00
CRF 621 PS NT R 0.97
ST 84 6144 NT R 1.00
ST 84 6983 – R 1.00
CRF 619 PS III R 1.00
H34 NT R 0.97
E18/103/94 III R 0.95

Test CRF 633 PS III R 0.99
ST 85 3566 NT R 1.00
E9/95/94 NT R 0.94
NCTC 10442 III R 0.99

a NT, not typeable; – , no data available.
b Methicillin susceptibility.
cThe MSSA strains were coded as 0 and MRSA as 1 at the output node. The values shown are the average
of ten neural network runs; the standard deviations for these values were all 0.02. The MLPs typically
took 1.3 103 ( 4 101) epochs to train.
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Artificial neural networks (ANNs)

All ANN analyses were carried out with a user-friendly,
neural network simulation program, NeuFrame version
1,1,0,0 (Neural Computer Sciences, Lulworth Business
Centre, Nutwood Way, Totton, Southampton, UK), which
runs under Microsoft Windows NT on an IBM-compatible
PC. In-depth descriptions of the modus operandi of this
type of multilayer perception (MLP) analysis are given
elsewhere.12,28,29,30

For training the ANNs, each of the inputs consisted of
the first five PC scores from the averaged normalized
triplicate pyrolysis mass spectra. These were derived from
the data as split above using the multiplex program (details
are given in the Table) and each was paired with one of the
desired outputs. These were binary encoded such that the
MSSA strains were coded as 0 and MRSA coded as 1 at 
the output node. These training pairs collectively made 
up the training set. The structure of the ANN used in this
study was fully connected and consisted of three layers: five
input nodes, one output node, and one ‘hidden’ layer
containing three nodes (i.e. a 5–3–1 architecture). Before

training commenced, the values applied to the output
nodes were normalized between 0 and 1. The scaling
regime used for the input layer was to scale each node such
that the lowest PC was set to 0 and the highest to 1. For the
present purposes these ANNs were trained to a root mean
squared (RMS) error of 0.025, which typically took 1.3 
103 epochs to train ( 4 101 epochs). An ‘epoch’ is a
complete calculation in the network, when all of the
training data have been presented to the ANN once. This
process was conducted ten times to observe whether
training was reproducible and also to use the ‘committee’
approach for prediction,24 averaging the outputs from the
ten 5–3–1 ANNs.

Results and discussion

Typical normalized PyMS spectra for methicillin-
susceptible S. aureus strain PS 54 and methicillin-resistant
S. aureus strain E9/95/94 are shown in Figure 1. Although
there was very little qualitative difference between these
spectra, small complex quantitative differences between
the spectra were observed. Such spectra cannot be inter-
preted by the naked eye and illustrate the need to employ
multivariate statistical techniques for the analysis of PyMS
data.

After collection of the pyrolysis mass spectra, each of the
37 strains, each represented by three replicate spectra, was
coded to give 37 individual groups (see Table) and analysed
by CVA. The resulting ordination plot is shown in Figure 2,
where the first three CVs are shown, which account for
respectively 48.2, 21.5, and 11.8% (80.5% total) of the total
variance. The coding in this plot is simply for whether the
strain is MSSA (indicated by a ‘S’) or MRSA (‘R’), and
shows that CVA cannot be used to cluster these bacteria
according to whether they are resistant or susceptible to
methicillin—because two distinct groups were not formed.

An alternative way of viewing the relationship between
these 37 S. aureus strains is to perform hierarchical cluster
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Figure 1. Normalized pyrolysis mass spectra of (a) methicillin-
susceptible S. aureus strain PS 54 and (b) methicillin-resistant 
S. aureus strain E9/95/94.

Figure 2. Pseudo-3D canonical variates analysis plot based on
PyMS data analysed by GENSTAT, showing the relationship
between the 37 S. aureus strains. The first 17 PCs were used as
the inputs for the CVA algorithm and accounted for 99.4% of
the variance. ‘S’ refers to MSSA and ‘R’ to MRSA.
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analysis (HCA). The dendrogram produced from HCA is
shown in Figure 3, where it can be seen that at 85% relative
similarity the bacteria were grouped into five clusters.
Cluster 1 is a heterogeneous group of 11 MSSA and nine
MRSA; 15 of 20 strains were group III. Cluster 2 consisted
of five MSSA, three of phage group I and two of group II,
along with a single untypeable MRSA. Cluster 3 contained
six strains, five MSSA and one MRSA of phage group I;
both propagating strains of phage group V were in this
cluster. Cluster 4 contained three strains of MRSA, one of
group III and two that were untypeable, and PS 81. Cluster
5 contained only MRSA NCTC 10442. These results indic-
ate that the major difference between the PyMS spectra of

the 37 strains was due to their phage type, and that they did
not cluster according to their methicillin susceptibility.

In other experiments, CVA was used to analyse all 37
strains, where all the MSSA were coded as a single group
and all the MRSA as another group. The first canonical
variate displayed 100% of the total variation, because two
groups can be separated in one dimension. It is possible to
depict this as a histogram in which the abscissa represents
the canonical variate distance and the ordinate contains
information on the number of samples that appear in that
area (Figure 4). It is obvious from this histogram that
MRSA and MSSA were not separated and there was a
great deal of group overlap; moreover, for two groups of
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Figure 3. Dendrogram representing the relationships between the 37 S. aureus strains based on PyMS data analysed by GENSTAT.
The first 17 PCs (accounting for 99.4% of the total variance) were used for CVA before construction of the similarity matrix and
dendrogram. ‘Ø’ refers to the phage group of the strain. ‘S’ refers to MSSA and ‘R’ to MRSA.
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pyrolysis mass spectra to be significantly discrete, the 
CVA group means must be separated by more than 3.84
canonical variate units, which represents the 95% con-
fidence limit constructed round each mean by the 2 distri-
bution on one degree of freedom.15 For the separation of
MRSA from MSSA this distance was only 1.57 units. Using
this linear method of analysis it was therefore impossible to
separate these two classes on the basis of their pyrolysis
mass spectra.

The above methods of multivariate analysis, which
separate spectra by linear transformation of the data, could
not yield any reliable information on the resistance or
sensitivity of S. aureus to methicillin. The next stage was
therefore to examine the ability of artificial neural
networks (ANNs), a supervised method that can uncover
non-linear relationships between the two classes of
bacteria and which is greatly superior to clustering tech-
niques in classification problems of this type.31,32

As detailed above, the 37 strains encompassed a diverse
range of epidemiologically distinct strains and it was 
thus imperative that the training set for the ANNs should
represent the PyMS multidimensional data space suffi-
ciently well to allow interpolation, and that the range of the
test set was enclosed by the training set. Therefore, the pro-
gram Multiplex was used to split the data equally into
training and test sets.

ANNs were trained with the first five PC scores from the
averaged normalized triplicate pyrolysis mass spectrum
from the training set; the 16 MSSA were coded 0 at the out-
put node and the 11 MRSA were coded 1. The 5–3–1 ANNs
were trained using the standard back-propagation algo-
rithm, and the effectiveness of training was expressed in
terms of the RMS error between the actual and the desired

outputs; training was stopped after the RMS error had
reached 0.025. Training was effected ten times, using ran-
domized, small initial values for the starting weights; the
ten learning curves were seen to superimpose (data not
shown) and it was clear that, despite the randomized start-
ing connection weights, training was executed (i.e. the
error surface in weight space was negotiated) in a repro-
ducible manner. Moreover, these ANNs typically took 1.3

103 epochs to train to an RMS error of 0.025 within a
spread of only 4 101 epochs.

When training had ceased (as determined by the
attainment of an RMS error of 0.025 averaged over the
training set), the ten neural networks were interrogated
(challenged) with the normalized ion intensities of the
pyrolysis mass spectra from both data sets. Not sur-
prisingly, the network’s estimate of the resistance or sus-
ceptibility to methicillin of the training set was the same as
those known in all ten trainings (see Table). The results of
the ANN’s final analyses of the unknown test set is also
shown in the Table. This table is the average of the ANN’s
predictions for each of the replicates of the 37 strains; small
standard deviations were calculated (the largest was only
0.017), indicating that training was indeed reproducible.
Rather than using a simple crisp identification criterion (if
the output is 0.5 then the strain is a MRSA; if the output
is 0.5 then the strain is a MSSA), a correct identification
was made as follows: for MRSA the output must be 0.8
and for MSSA it must be 0.2. This procedure allows a
more rigid classification to be used, since if any output is
close to 0.5 ( 0.3) the ANN would be ‘undecided’ about
the identification, and hence unable to discriminate that
bacterial sample sufficiently well.

It is evident from the Table that the ANN had assessed
correctly each S. aureus strain from the unseen test set, as
MRSA or MSSA. All four MRSA strains scored 0.93,
and all six MSSA scored 0.01. These results show that
there were neither false negatives nor false positives.

It is likely that these ANNs were able to generalize well
(i.e. to assess correctly the methicillin susceptibility of these
staphylococci) because the training set contained a wide
assortment of S. aureus that were representative of the
problem domain. Indeed, in other runs (data not shown)
the training and test sets were chosen randomly, and
typically three out of ten strains in the test sets were classed
incorrectly. It was likely that in these instances the training
sets contained blind spots and there were gaps in the prob-
lem domain which led to incorrect identifications. Since a
wide assortment of genotypically, and hence phenotypic-
ally, diverse staphylococci were studied, the ANNs had
learnt to extract the (bio)chemical information buried 
in the mass spectra which conveyed whether the S. 
aureus strains were susceptible or resistant to methicillin,
irrespective of the epidemiology of the strains under study.
It is likely that this phenetic information is from the PBP 2
protein encoded by the mecA gene; however, currently it is
impossible to extract this knowledge from ANNs.
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Figure 4. Histogram of canonical variate 1 based on PyMS data
analysed by GENSTAT, coded so that all the MSSA strains ( )
were coded as a single group and all the MRSA ( ) as another
group. In this histogram the abscissa represents the canonical
variate distance for CV1 and the ordinate contains information
on the number of samples that appear in that area.
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In addition, ANNs are a well known means of un-
covering complex, non-linear relationships in multivariate
data, whilst still being able to map the linearities.24,30 It is
likely that part of the reason why CVA and HCA failed to
discriminate the MRSA from the MSSA is because they
rely on linear (orthogonal) transformations of the raw
multivariate data; they cannot provide the truly best
analytical discriminations, and thus achieved only limited
success. In order to investigate this point further, another
linear multivariate statistical model, partial least squares
(PLS), was implemented as outlined by Martens & Næs,33

with the same training and test sets as used above. How-
ever, PLS could identify only one of the four MRSA strains
and five of the six MSSA in the same test set when using
PCs as inputs, and the identifications were difficult to in-
terpret since they were less quantized (i.e. very few of the
predictions were very near 0 or 1). This would suggest that
the non-linearity of the system is important, as is the use of
a supervised method per se, in determining the ability to
discriminate MRSA from MSSA from their pyrolysis mass
spectra. However, while it is well known that ANNs are an
excellent means of classifying groups of objects, as we have
demonstrated here, it is also well known that it is very diffi-
cult to assess the information used by an ANN in producing
its internal model.

In conclusion, PyMS with cluster analysis showed that
the major difference between the 37 S. aureus strains
studied resulted from the phage group and not from their
resistance or susceptibility to methicillin. However, ANNs
could be trained to assess whether an unknown strain 
were resistant to methicillin, and there were neither 
false negatives nor false positives. ANNs have proved
advantageous in the analysis of PyMS data, and these
mathematical techniques based on artificial intelligence
have now been adopted by an increasing number of
workers for the identification of bacteria from their PyMS
spectra.1 PyMS is a physico-chemical method that
measures the bond strengths of molecules and gives
quantitative information about the total biochemical com-
position of a sample. Therefore PyMS signatures may
change depending on which media the bacteria are cultiv-
ated on and, to remove any effects of variable phenotype,
all strains under study are usually incubated under identical
conditions. However, we have shown that the PyMS
spectra of Carnobacterium spp. were unaffected by widely
different culture ages grown at 30°C for 24, 48 and 72 h,34

which implies that changes in phenotype may not always be
as significant as was thought previously. In addition,
although PyMS, like other analytical tools, suffers from
long-term reproducibility problems which limit its use to
the typing of short-term outbreaks where all micro-organ-
isms are analysed in a single batch,3 other associative
ANNs can be used as signal-processing elements to effect
the transformation of data acquired on one day to those
acquired on a different date.35,36 As the problems of long-
term reproducibility are overcome, PyMS may move closer

to application in clinical laboratories for rapid identifica-
tion and antibiotic susceptibility testing of bacteria and
fungi. We conclude that the application of artificial neural
network methods can be used to extend the role of PyMS
analyses to more subtle physiological differences between
strains of the same species of bacteria and, in this case, for
rapid and accurate methicillin susceptibility testing of S.
aureus.
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