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Abstract 

The combination of pyrolysis mass spectrometry (PyMS) and artificial neural networks (ANNs) can be used to quantify 
levels of penicillins in strains of Penicillium chrysogenum and ampicillin in spiked samples of Escherichia coli. Four P. 
chrysogenum strains (NRRL 1951, Wis Q176, Pl, and P2) were grown in submerged culture to produce penicillins, and 
fermentation samples were taken aseptically and subjected to PyMS. To deconvolute the pyrolysis mass spectra so as to 
obtain quantitative information on the titre of penicillins, fully-interconnected feedforward artificial neural networks (ANNs) 
were studied; the weights were modified using the standard back-propagation algorithm, and the nodes used a sigmoidal 
squashing function. In addition the multivariate linear regression techniques of partial least squares regression (PLS), 
principal components regression (PCR) and multiple linear regression (MLR) were applied. The ANNs could be trained to 
give excellent estimates for the penicillin titre, not only from the spectra that had been used to train the ANN but more 
importantly from previously unseen pyrolysis mass spectra. All the linear regression methods failed to give accurate 
predictions, because of the very variable biological backgrounds (the four different strains) in which penicillin was produced 
and also of the inability of models using linear regression accurately to map non-linearities. Comparisons of squashing 
functions on the output nodes of identical 150-8-l neural networks revealed that networks employing linear functions gave 
more accurate estimates of ampicillin in E. coli near the edges of the concentration range than did those using sigmoidal 
functions. It was also shown that these neural networks could be successfully used to extrapolate beyond the concentration 
range on which they had been trained. PyMS with the multivariate clustering technique of principal components analysis was 
able to differentiate between four strains of P. chrysogenum studied, and was also able to detect phenotypic differences at 
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five, seven, nine or 11 days growth. A crude sampling procedure consisting of homogenised agar plugs proved applicable for 
rapid analysis of a large number of samples. 

Keywords: Mass spectrometry; Artificial neural networks; Fermentor broths; Regression analysis; Chemometrics; Biotechnology; Pyrolysis 
mass spectrometry 

1. Introduction 

Within medicine and biotechnology there is a 
continuing need to find new pharmaceuticals, and 
hence for the development of rapid and efficient 
methods for the screening of large numbers of mi- 
crobial cultures for the production of biologically 
active metabolites (e.g., see [l-9]). Such metabolites 
can provide new structural templates for drug design 
and development through chemical synthesis. 
Screening for such metabolites usually involves the 
modulation of a particular biochemical step impli- 
cated in a particular disease process. Very often 
metabolites showing activity during screening are 
produced only in very small amounts by the organ- 
ism, and therefore increasing the titre of the metabo- 
lite is essential in order to provide sufficient material 
for chemical characterization and further biological 
evaluation. Metabolite titres can be significantly im- 
proved through the generation and isolation of over- 
producing mutants derived from the original wild- 
type organism [5,10-241. Over-producing mutants 
arise typically at frequencies around lop4 [25], and 
therefore tens of thousands of cultures need to be 
screened in the search for an improved, overproduc- 
ing strain. 

Pyrolysis mass spectrometry (PyMS) is a rapid, 
automated, instrument-based technique which per- 
mits the acquisition of spectroscopic data from 300 
or more samples per working day. The method typi- 
cally involves the thermal degradation of complex 
material in a vacuum by Curie-point pyrolysis; this 
causes molecules to cleave at their weakest points to 
produce smaller, volatile fragments called pyrolysate 
1261. A mass spectrometer can then be used to sepa- 
rate the components of the pyrolysate on the basis of 
their mass-to-charge ratio (m/z) to produce a pyrol- 
ysis mass spectrum, which can then be used as a 
chemical signature (fingerprint) of the complex ma- 
terial analysed. 

PyMS has been applied to the characterisation and 

identification of a variety of microbial and biotech- 
nological systems over a number of years 126-341 
and, because of its high discriminatory ability [35], 
represents a powerful fingerprinting technique, which 
is applicable to any organic material. 

Our own aims have been to extend the PyMS 
technique for the quantitative analysis of the chemi- 
cal constituents of microbial and other samples [36]. 
To this end, we have sought to apply fully-intercon- 
nected feedforward artificial neural networks (ANNs) 
(see [37-491 for introductory surveys), and the mul- 
tivariate linear regression techniques of partial least 
squares regression (PLS) and principal components 
regression (PCR) (see [50-601 for first-rate texts) to 
the deconvolution and interpretation of pyrolysis 
mass spectra. Thus, we have been able to follow the 
production of indole in a number of strains of Es- 
cherichia coli grown on media incorporating various 
amounts of tryptophan [61], to estimate the amount 
of casamino acids in mixtures with glycogen [62,63], 
to deconvolute the pyrolysis mass spectra of com- 
plex biochemical and microbiological mixtures [64], 
and for the analysis of recombinant cytochrome b, 
expression in E. coli [65]. 

With regard to discrimination of materials from 
their pyrolysis mass spectra we have also exploited 
ANNs for the rapid and accurate assessment of the 
presence of lower-grade seed oils as adulterants in 
extra virgin olive oils [66,67], and for the identifica- 
tion of strains of Propionibacterium spp. [68,69]. 
Chun et al. [70] and Freeman et al. [71] have also 
used the combination of PyMS and ANNs for the 
differentiation of strains of Streptomyces and my- 
cobacteria respectively. 

Industry exploits the biosynthetic capabilities of 
microorganisms to produce pharmaceuticals and other 
products through fermentation. It is imperative there- 
fore that the concentration of the product (the deter- 
minand) is assessed accurately so as to optimise 
control of the fermentation process. Whilst on-line 
tandem mass spectrometry (MS/MS) has been used 
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to analyse fermentation broth extracts for flavones 
1721, the majority of mass spectrometry (MS) appli- 
cations during fermentations have been for the analy- 
sis of gases and volatiles produced over the reactor 
173,741, or by employing a membrane inlet probe for 
volatile compounds dissolved in the broths [75-801. 
Although, Hansen et al. [81], using membrane-inlet 
MS, have shown that compounds of relatiuely low 
volatility may be monitored in fermentors, it is obvi- 
ous, that more worthwhile information could be 
gained by measuring the non-volatile components of 
fermentation broths. Indeed, Heinzle et al. [82] were 
able to characterise the states of fermentations using 
off-line PyMS, and this technique was extended to 
on-line analysis [83]. These authors, however, were 
not very satisfied with their system and although 
they have continued to use mass spectrometry for the 
analysis of volatiles produced during fermentation 
[74,84] the analysis of non-volatiles by PyMS seems 
to have been less than fully exploited. 

More recently, therefore, we have also applied 
ANNs to the quantitative analysis of the pyrolysis 
mass spectra of fermentor broths, thus effecting a 
rapid screening for the high-level production of de- 
sired substances 1851. A particularly noteworthy fea- 
ture of that study [85] was that ANNs trained to 
predict the amount of ampicillin in E. coli were able 
to generalise so as to predict the concentration of 
ampicillin in a Staphylococcus aureus background, 
illustrating the great robustness of ANNs to rather 
substantial variations in the biological background. 
In other words, whilst the pyrolysis mass spectra 
measure the presence of all molecules simultane- 
ously they contain sufficient spectral information 
from the target molecules of interest to allow their 
quantification. 

The major aim of the present study was to demon- 
strate that PyMS, with multivariate calibration and 
ANNs, can be used to effect the rapid prediction of 
the amount of penicillins in fermentor broths con- 
taining Penicillium chrysogenum. The p-lactam an- 
tibiotic penicillin was chosen because it is a well- 
characterised, industrially important system [4,5,86- 
911, and there is access to over-producing mutants. It 
is worth pointing out that the penicillin production of 
Fleming’s Penicillium notatum isolate was about 2 
International Units ml - I, whilst today’s processes 
yield a penicillin titre of at least 85,000 units ml-’ 

[5]. This represents a substantial increase from 1.2 
mg 1-l to some 50 g 1-l and well illustrates the 
value and power of strain selection (although the 
efficiency of glucose conversion to penicillin is still 
less than 10% [91]). 

The first noteworthy improvement in yield came 
in 1943 with the isolation of P. chrysogenum strain 
NRRL 1951; this organism was chosen because it 
was better suited to submerged production than 
Fleming’s isolate. Strain NRRL 1951 was subse- 
quently subjected to mutagenesis using X-ray and 
ultraviolet radiation treatment to produce Wis Q176, 
the original strain in the famous Wisconsin culture 
line [92]. Strain Q176 has been used as the starting 
strain for many improvement programs, one of which 
by Panlabs Inc. produced a number of high yielding 
derivatives including Pl and P2 [93]. The wild type 
P. chrysogenum NRRL 1951, and its higher yielding 
derivatives Q176, Pl and P2 were used in this study; 
in terms of their genealogy Pl and P2 are distantly 
related to NRRL 1951 and Q176 which are evolu- 
tionary closer. 

When screening mutants for the overproduction of 
metabolites of interest there is a need to go beyond 
the realm of the “knowledge base”, that is, there is 
a desire to extrapolate beyond the concentration range 
of the metabolite already observed [85]. We have 
previously reported [62] that ANNs should not ex- 
pected to give wholly correct estimates near the 
edges of or outside their training sets because they 
cannot be expected to extend beyond the range of the 
nonlinear squashing function on the output node(s) 
(see later), a phenomenon also reported by other 
workers [94-971. 

One way around this is simply to spike samples 
with the determinand, so that the knowledge base is 
effectively extended to encompass the higher con- 
centrations desired [85]. (However, spiking with 
product does not take into account underlying bio- 
chemical changes which might be needed to give 
increased titre.) An alternative and arguably more 
attractive approach (in that it requires no a priori 
knowledge of the range attainable), is to alter the 
existing models so that they can then be used to 
extrapolate. When the individuals in a population of 
samples are (more-or-less) linearly separable meth- 
ods such as multiple linear regression (MLR), PLS 
and PCR should be able to extrapolate. Therefore we 
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used these methods on the pyrolysis mass spectra of 
binary mixtures of ampicillin (O-5000 pg ml-’ in 
steps of 250 pg ml-‘) with Escherchia coli (as a 
very simple model of a fermentor previously studied 
[85]) to show here that these multivariate linear 
regression models could indeed extrapolate beyond 
the knowledge base. 

In a previous study we showed that ANNs could 
not extrapolate [62] when we were employing a 
sigmoidal squashing function on the output node and 
we indicated in that report that future work would 
involve the assessment of the use of a linear activa- 
tion function to ascertain if it may improve the 
ability of ANNs to generalise better from pyrolysis 
mass spectral data. We also therefore compared sig- 
moidal versus linear squashing functions on the out- 
put nodes of identical neural networks and found that 
(1) more accurate estimates near the edges of the 
concentration range could be gained using linear 
scalars on the output nodes and (2) that neural 
networks employing linear squashing function could 
be used to extrapolate successfully in producing 
predictions of concentration significantly greater than 
those used in the training set. 

2. Experimental 

2.1. Preparation of Penicillium chrysogenum fermen- 
tation broths and agar plugs 

The strains of Penicillium chrysogenum used were 
the wild type NRRL 1951 and three higher penicillin 
producing strains Wis Q176, Pl and P2 and were 
obtained from Dr. Saunders’ laboratory at the Uni- 
versity of Westminster. Details of how all four strains 
are related can be found in Hersbach et al. [98]. All 
strains were maintained on slants of GM agar (con- 
taining: glycerol, 7.5 g; molasses, 2.5 g; yeast ex- 
tract, 1 g; MgSO,, 0.05 g; KH,PO,, 0.06 g, Bacto 
peptone, 5 g; NaCl, 10 g, FeSO, - 7H,O, 3 mg; 
CuSO, .5H,O, 1 mg; per litre water). Slant cultures 
were incubated at 25°C until well sporulated. 

Spores were harvested and suspended in sterile 
20% glycerol +O.l% Tween 80 before inoculation 
into sterile 10 ml Panlab seed medium [99] held in a 
large test tube fitted with a loose lid. The seed 
cultures were incubated at an angle of 60” at 25°C 

and with agitation at 240 rpm for 2 days. 10% v/v 
seed culture was used to inoculate 10 ml PFM 
medium [99] (with cotton seed flour instead of Phar- 
mamedia), again held in a large test tube. Incubation 
was conducted under the same conditions for up to 
10 days. Samples of whole broth were removed 
aseptically and stored at -20°C until required for 
PyMS analysis. Samples for antibiotic bioassay were 
centrifuged for 5 min in a microfuge. The clarified 
broth was also stored at - 20°C prior to bioassay. 

In order to confine growth and impose nutrient- 
limiting conditions, solid phase cultures were grown 
as mini cultures in 24-well sterile tissue culture plate. 
PFM agar was prepared as above with 1.5% LabM 
Agar No. 2 and 1 ml aliquots of agar were dispensed 
into each well. Spores of each P. chrysogenum strain 
were spotted onto the centre of each agar-filled well 
and incubated at 25°C for between 3 and 11 days. 
Samples were removed on days 3, 5, 7, 9 and 11 by 
punching a 7 mm diameter cork borer into the 
culture, and stored at -20°C until required for 
bioassay and PyMS; before PyMS analysis the agar 
plug and biomass were ground using a plastic loop to 
form a smooth paste. 

Penicillin production was measured by bioassay 
against Bacillus subtilis var niger using the agar 
diffusion assay technique. log,, dose response curves 
were constructed using pure penicillin G (obtained as 
the sodium salt from Sigma). Penicillin G was cho- 
sen because it is considered to be the most abun- 
dantly produced penicillin by P. chrysogenum. Sam- 
ples of clarified broth were analysed by loading 10 
~1 aliquots onto sterile bioassay discs. Agar plugs 
were bioassayed by placing directly onto the seed 
agar. The standard curve was constructed by casting 
a known concentration of pure penicillin G in molten 
agar and removing the plug in the same way as 
culture samples were taken. All bioassay determina- 
tions were conducted in triplicate with the error in 
these values being typically 20-30%. 

2.2. Preparation of the ampicillin mixture with Es- 
cherichia coli 

The bacterium used was E. coli W3110 [61]; this 
is ampicillin-sensitive, indicating that any spectral 
features observed are not due for instance to p- 
lactamase activity. The mixtures were prepared as 
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previously used [85]: the strain was grown in 4 1 
liquid medium (glucose (BDH), 10.0 g; peptone 
(LabM), 5.0 g; beef extract (LabM), 3.0 g; per litre 
water) for 16 h at 37°C in a shaker. After growth the 
cultures were harvested by centrifugation and washed 
in phosphate buffered saline (PBS: NaH,PO, . 
2H,O, 2.652 g; Na,HPO, . 12H,O, 65.6055 g; per 
litre water, then adjust pH to 7.8). The dry weights 
of the cells were estimated gravimetrically and used 
to adjust the weight of the final slurries using PBS to 
approximately 40 mg/ml. Ampicillin (desiccated 
D[ - I-a-aminobenzylpenicillin sodium salt, 98% 
(titration), Sigma) was prepared in each of the bacte- 
rial slurries to give a concentration range of from 0 
to 5000 pg/ml in 250 pg/rnl steps. 

2.3. Pyrolysis mass spectrometry 

Clean iron-nickel foils (Horizon Instruments, 
Heathfield, UK) were inserted, using clean forceps, 
into clean pyrolysis tubes (Horizon Instruments), so 
that 6 mm was protruding from the mouth of the 
tube. 5 ~1 aliquots of the above materials were 
evenly applied to the protruding foils. The samples 
were oven dried at 50°C for 30 min, then the foils 
were pushed into the tube using a stainless steel 
depth gauge so as to lie 10 mm from the mouth of 
the tube. Finally, viton ‘O’-rings (Horizon Instru- 
ments) were placed on the tubes. Samples were run 
in triplicate. 

The pyrolysis mass spectrometer used in this study 
was the Horizon Instruments PYMS-200X, as ini- 
tially described by Aries et al. [loo]. The sample 
tube carrying the foil was heated, prior to pyrolysis, 
at 100°C for 5 s. Curie-point pyrolysis was at 530°C 
for 3 s, with a temperature rise time of 0.5 s. This 
pyrolysis temperature was chosen because it has 
been shown [101,102] to give a balance between 
fragmentation from polysaccharides (carbohydrates) 
and protein fractions. The pyrolysate then entered a 
gold-plated expansion chamber heated to 150°C 
whence it diffused down a molecular beam tube to 
the ionisation chamber of the mass spectrometer. To 
minimize secondary fragmentation of the pyrolysate 
the ionisation method used was low voltage electron 
impact ionisation (25 eV>. These conditions were 
employed because it has been found that the stated 
expansion chamber temperature gives the most re- 

producible spectra [103], whilst the spectra from 
samples ionised at 25 eV are much more robust to 
small changes in ionisation voltage than are those 
[28] obtained at lower ionisation voltages, whilst 
much higher ionisation voltages lead to excessive 
fragmentation. Non-ionised molecules were de- 
posited on a cold trap, cooled by liquid nitrogen. The 
ionised fragments were focused by the electrostatic 
lens of a set of source electrodes, accelerated and 
directed into a quadrupole mass filter. The ions were 
separated by the quadrupole, on the basis of their 
mass-to-charge ratio, detected and amplified with an 
electron multiplier [ 1041. The mass spectrometer 
scans the ionised pyrolysate 160 times at 0.2 s 
intervals following pyrolysis. Data were collected 
over the m/z range 51 to 200, in one tenth of a 
mass-unit intervals. These were then integrated to 
give unit mass. Given that the charge of the fragment 
was unity the mass-to-charge ratio can be accepted 
as a measure of the mass of pyrolysate fragments. 
The IBM-compatible PC used to control the PYMS- 
200X, was also programmed (using software pro- 
vided by the manufacturers) to record spectral infor- 
mation on ion count for the individual masses scanned 
and the total ion count for each sample analysed. 

Prior to any analysis the mass spectrometer was 
calibrated using the chemical standard perfluoro- 
kerosene (Aldrich), such that the abundance of m/z 
181 was one tenth of that of m/z 69. 

The data from PyMS may be displayed as quanti- 
tative pyrolysis mass spectra (e.g., as in Fig. 1). The 
abscissa represents the m/z ratio whilst the ordinate 
contains information on the ion count for any partic- 
ular m/z value ranging from 51-200. Data were 
normalised as a percentage of total ion count to 
remove the influence of sample size per se. 

2.4. Multivariate data analysis 

The normalised data were then processed with the 
GENSTAT package [105] which runs under Mi- 
crosoft DOS 6.2 on an IBM-compatible PC. This 
method has been previously described by MacFie 
and Gutteridge [106] and Gutteridge et al. [107]. In 
essence, the first stage was the reduction of the data 
by principal components analysis (PCA) [29,54,108- 
1121, which is a well-known technique for reducing 
the dimensionality of multivariate data whilst pre- 
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Fig. 1. Pyrolysis mass spectra of (A) Penicillium chrysogenum 

strain Pl grown for six days in shaken submerged culture produc- 

ing 112 pg ml-’ penicillin and of (B) 200 pg pure penicillin G 

(sodium salt). 

serving most of the variance. Data were reduced by 
keeping only those principal components (PCs) 
whose eigenvalues accounted for more than 0.1% of 
the total variance. Canonical variates analysis (CVA) 
then separated the samples into groups on the basis 
of the retained PCs and the a priori knowledge of the 
appropriate number of groupings [113,114]. The next 
stage was the construction of a percentage similarity 
matrix by transforming the Mahalanobis’ distance 
between a priori groups in CVA with the Gower 
similarity coefficient S, [115]. Finally, hierarchical 
cluster analysis (HCA) was employed to produce a 
dendrogram, using average linkage clustering [1071. 

2.5. Artificial neural networks 

All ANN analyses were carried out under Mi- 
crosoft Windows 3.1 or WindowsNT on an IBM- 
compatible PC. Data were normalised prior to analy- 
sis using the Microsoft Excel 4.0 spreadsheet. Three 

back propagation neural network simulation pro- 
grams were employed. The first was NeuralDesk 
version 1.2 (Neural Computer Sciences, Southamp- 
ton, UK) with an accelerator board for the PC (Neu- 
Sprint) based on the AT&T DSP32C chip; the ad- 
vantage bestowed by using this package was that 
simulations could be carried out relatively quickly 
(typically 20 min). The other two programs that were 
used were WinNN version 0.93 (Yaron Danon, Troy, 
NY) and Thinks version 1.02~ (Logical Designs 
Consulting, La Jolla, CA). These did not use a 
co-processor board and so were relatively slow (typi- 
cally a tenth of the speed compared with NeuralDesk 
using NeuSprint); however, the major advantage that 
these packages offered was that, among other topo- 
logical and processing options, the “squashing” 
function of the output node (and indeed of the nodes 
on the hidden layer) could be varied. NeuralDesk 1.2 
permitted only sigmoidal squashing functions. 

The structure of the ANN used in this study to 
analyse pyrolysis mass spectra consisted of 3 layers 
containing 159 processing nodes (neurons or units) 
made up of the 150 input nodes (normalised pyroly- 
sis mass spectra), 1 output node (amount of determi- 
nand), and one “hidden” layer containing 8 nodes 
(i.e., a 150-8-l architecture). Each of the 150 input 
nodes was connected to the 8 nodes of the hidden 
layer using abstract interconnections (connections or 
synapses). Connections each have an associated real 
value, termed the weight, that scale signals passing 
through them. Nodes in the hidden layer sum the 
signals feeding to them and output this sum to each 
driven connection scaled by a “squashing” function 
(f) with a sigmoidal shape, the function f= l/(1 + 
edX), where x = Zinputs. These signals are then 
passed to the output node which sums them and in 
turn squashed either by the previously mentioned 
sigmoidal activation function or a linear scalar; the 
product of this node was then feed to the “outside 
world”. 

In addition, the hidden layer and output node 
were connected to a bias (whose activation was 
always set to + 11, making a total of 1217 connec- 
tions, whose weights will be altered during training. 
Before training commenced the values applied to the 
input and output nodes were normalised between 0 
and + 1; the input layer was scaled globally, i.e., 
across the whole mass range such that the lowest ion 
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count was set to 0 and the highest to 1. Finally, the 
connection weights were set to small random values 
(typically between -0.005 and +0.005). 

The algorithm used to train the neural network 
was the standard back-propagation (BP) [37,116]. 
For the training of the ANN each input (i.e., nor- 
malised pyrolysis mass spectrum) is paired with a 
desired output (i.e., the amount of antibiotic, the 
determinand); together these are called a training 
pair (or training pattern). An ANN is trained over a 
number of training pairs; this group is collectively 
called the training set. The input is applied to the 
network, which is allowed to run until an output is 
produced at each output node. The differences be- 
tween the actual and the desired output, taken over 
the entire training set are fed back through the 
network in the reverse direction to signal flow (hence 
back-propagation) modifying the weights as they go. 
This process is repeated until a suitable level of error 
is achieved. In the present work, we used a learning 
rate of 0.1 and a momentum of 0.9. 

Each epoch represented 1217 connection weight 
updatings and a recalculation of the error between 
the true and desired outputs over the entire training 
set. During training a plot of the error versus the 
number of epochs represents the “learning curve”, 
and may be used to estimate the extent of training. 
Training may be said to have finished when the 
network has found the lowest error. Provided the 
network has not become stuck in a local minimum, 
this point is referred to as the global minimum on the 
error surface. 

It is known [37,41,44,61,64] that neural networks 
can become over-trained. An over-trained neural net- 
work has usually learnt perfectly the stimulus pat- 
terns it has seen but cannot give accurate predictions 
for unseen stimuli, i.e., it is no longer able to gener- 
alise. For ANNs accurately to learn and predict the 
concentrations of determinands in biological systems 
networks must obviously be trained to the correct 
point. Therefore for the various neural network runs 
the pyrolysis mass spectral data were usually split 
into three sets: (1) data used to train the ANN; (2) 
data employed to cross-validate the model; (3) spec- 
tra whose determinand concentration is “unknown” 
and used to test the “calibrated” system. During 
training the network was interrogated with the cross 
validation set and the %error between the output 

seen and that expected was calculated, thus allowing 
a second learning curve for the cross-validation set 
to be drawn. Training was stopped when the error on 
the cross-validation data was lowest. Once trained to 
the best generalisation point, the neural network was 
challenged with stimuli (i.e., pyrolysis mass spectra) 
whose determinand concentrations were “un- 
known”. 

2.6. Principal components and partial least squares 
regression 

All PCR and PLS analyses were carried out using 
the program Unscrambler II Version 4.0 (CAMO, 
Trondheim, Norway) (and see [54]) which runs under 
Microsoft MS-DOS 6.2 on an IBM-compatible PC. 
Data were also processed prior to analysis using the 
Microsoft Excel 4.0 spreadsheet, run under Mi- 
crosoft Windows NT on an IBM-compatible PC. 

The first stage was the preparation of the data. 
This was achieved by presenting the “training set” 
as two data matrices to the program; X-, which 
contains the normalised triplicate pyrolysis mass 
spectra, and Y- which represents the concentration of 
the determinand. Unscrambler II also allows the 
addition of “start noise” (i.e., noise to the X-data); 
this option was not used. Finally, the X-data were 
mean centred and scaled in proportion to the recipro- 
cal of their standard deviations. 

The next stage is the generation of the calibration 
model; this first requires the user to specify the 
appropriate algorithm. The Unscrambler II program 
has one PCR algorithm and two PLS algorithms: 
PLSl which handles only one Y-variable at a time, 
and PLS2 which will model several Y-variables si- 
multaneously [54]. Since we wanted to predict only 
one Y-variable the PCR and PLSl algorithms were 
used. 

The method of validation used was full cross- 
validation, via the leave-one-out method. This tech- 
nique sequentially omits one sample from the cali- 
bration; the PCR or PLS model is then re-determined 
on the basis of this reduced sample set. The concen- 
tration ( pg/ml) of the omitted sample is then pre- 
dicted with the use of the model. This method is 
required to determine the optimal size of the calibra- 
tion model, so as to obtain good estimates of the 
precision of the multivariate calibration method (i.e., 
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neither to under- nor over-fit predictions of unseen 
data) [52,54,117,118]. Unscrambler also has reason- 
ably sophisticated outlier detection methods; al- 
though these were employed we did not find it 
necessary to delete any of the objects from the 
calibration models formed. 

Cross-validation can indicate the optimal number 
of principal components (PCs) or PLS factors to use 
in predictions after the model is calibrated. To estab- 
lish the accuracy of the suggestions produced by 
Unscrambler we therefore calculated the RMS error 
between the true and desired concentrations over the 
entire calibration model, for the known training set, 
cross-validation set and unknown mass spectra, and 
plotted these RMS errors vs. the number of latent 
variables (factors) used in predictions. Using this 
approach, after calibration, to choose the optimal 
number of PCs or PLS factors to use in the predic- 
tion, all pyrolysis mass spectra were used as the 
“unknown” inputs (test data); the model then gave 
its prediction in terms of the concentration of deter- 
minand. 

3. Results and discussion 

3.1. Analysis of the agar plugs 

After collection of the pyrolysis mass spectra 
from the P. chrysogenum, grown on solid media and 
homogenised with the agar plug to form a paste; the 
first stage of the experiment was to perform multi- 
variate statistical analysis using the GENSTAT pack- 
age to establish the relationships between the Peni- 
cillium strains. Each of the four species grown for 
three days, represented by the three replicate spectra, 
were coded to give four groups; the resulting dendro- 
gram and principal components analysis plot are 
shown in Fig. 2. In the abridged dendrogram (Fig. 
2a) it can be seen that at 33% relative similarity the 
strains cluster into two groups: the first of the wild 
type NRRL 1951 and Wis Q176, having a relative 
similarity of 70% (although 70% may seem rather 
small this is due to the size of the universe analysed 
and hence why the word relative is used, that is to 
say if a different Penicillium species were also 
analysed then these two strains would be close to 
100% similar); the second cluster contains Pl and P2 
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Fig. 2. Abridged dendrogram (A) and principal components analy- 

sis plot (B) representing the relationships between the PeniciNium 
chrysogenum wild type strain and three mutants (Q176, Pl and 

P2) grown on solid media, based on PyMS data of the biomass 

and the agar plug analysed by GENSTAT. In the ordination 

diagram the first two principal components are displayed which 

respectively account for 55.8% and 26.3% of the total variance. 

which were 85% similar. PCA is the best method for 
reducing the dimensionality of multivariate data 
whilst preserving most of the variance; in our pyrol- 
ysis mass spectral data this reduction was from the 
150 m/z values to 2 principal components (PCs>. 
Plots of the first two PCs of the variance in the 
PyMS for these four strains (Fig. 2b) show that the 
majority of the variation was preserved in the first 
two PCs and was 55.8% and 26.3% (82.1% total) of 
the variance respectively; with the foresight of the 
hierarchical cluster analysis (Fig. 2a) the same two 
clusters may be observed. Similar results (data not 
shown) were found when the same organisms were 
analysed when sampled after five, seven, nine or 11 
days of growth. Furthermore, although only four 
strains were studied the degree of separation ob- 
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served between them appears to reflect their different 
genealogical history. 

The method of analysing these samples is novel in 
that the organism and the agar matrix, containing 
diffused antibiotic, were subjected to PyMS together. 
PCA displays the natural relationships between mul- 
tivariate data, i.e., there is no a priori knowledge of 
the triplicate sampling, it is reassuring therefore that 
the three spectra for the wild type strain and the 
three for Q176 cluster together indicating that good 
reproducible data could be obtained from materials 
prepared using this rather ‘crude’ sampling tech- 
nique. It is likely that this method of sample prepara- 
tion could be exploited for the accurate discrimina- 
tion of other organisms which grow into the solid 
agar media on which they are being cultured. 

The next stage was to use PCA to observe whether 
there were any differences between the same P. 
chrysogenum strain cultured over 11 days. Fig. 3 
displays the PCA plots based on the PyMS data from 
the homogenised biomass/agar plugs of the wild 
type (Fig. 3a) and mutant P2 (Fig. 3b) grown for 
three, five, seven, nine and 11 days; the first two 
principal components are displayed which for NRRL 
1951 account for 72.0% and 13.1% (85.1% total) of 

the total variance respectively, and for P2 82.3% and 
8.6% (90.9% total). The reproducibility of the three 
replicate samples for each strain on different days 
was again good. 

The most obvious feature seen in both of the PCA 
plots (Fig. 3) was that the first PC roughly accounted 
for the time the culture had been grown, indicating 
that PyMS was detecting a phenotypic difference in 
the P. chrysogenum strains (This was also observed 
in the cultures of Q176 and Pl (data not shown)). 
The differences observed also proceed on from one 
another and followed a roughly linear trend. That 
this trend ceased after seven days indicates that a 
shift in their metabolism may have occurred; if this 
is true then PyMS might be exploited to highlight 
such changes. 

3.2. Quantification of the penicillins produced by 
Penicillium chrysogenum 

After the analysis of the relationships between the 
cultures the next stage was to assess whether the 
penicillin titre could be accurately assessed using 
PyMS. The results of the bioassay measurements of 
the penicillin titre ( pg ml-‘) produced by the four 

Table 1 
The amount of antibiotic activity (expressed as the titre of all penicillins, /zg ml-’ ) produced in the various samples taken from 
fermentation broths of PeniciZZium chrysogenum wild type and mutants 

Strain Incubation period penicillin titre Use in neural Strain Incubation period Penicillin titre Use in neural 

(days) (pgml-‘1 network training (days) (pg ml-‘) network training 

WT 2 0.079 Train 0176 2 3.1 Test 
WT 10 1.5 Cross-Val Q176 5 5.9 Test 
WT 6 3.4 Train Q176 9 1.4 Train 
WT 5 5.5 Train Q176 8 2.6 Test 
WT 3 8.7 Cross-Val Q176 10 3.6 Test 
WT” 9 10.3 Train Q176 3 4.1 Test 
wTB 4 12.5 Cross-Val Q176 7 3.4 Test 
wTa 5 15.5 Train Pl 10 39 Train 

WT” 3 18.7 Cross-Val Pl 8 69 Test 
w-r” 7 21.4 Train Pl 6 112 Train 
WI” 6 23.4 Cross-Val Pl 5 81 Test 
WT” 10 31.5 Cross-VaI Pl 3 50.1 Test 
wTa 7 41.4 Train Pl 2 61.6 Train 
WT” 3 48.0 Cross-Val P2 10 22 Train 
wTa 5 55.5 Cross-Val P2 9 43 Test 
WI-’ 6 63.4 Train P2 7 91 Train 
WC” 6 73.4 Cross-Val P2 2 43 Train 
wIa 9 go.3 Train P2 4 229 Test 

’ Sample was spiked with pure penicillin G (Sigma) to titre shown. 
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Fig. 3. Principal components analysis plots showing the relation- 

ships between (A) the Penicillium chrysogenum wild type strain 

and (B) the P. chrysogenum mutant P2 grown on solid media for 

either 3, 5, 7, 9 and 11 days, based on PyMS data of the biomass 

and the agar plug analysed by GENSTAT. The first two principal 

components are displayed which for A account for 72.0% and 

13.1% of the total variance, and for B 82.3% and 8.6%, respec- 

tively. 

Penicillium chrysogenum strains from fermentation 
liquors are given in Table 1. The error of the bioas- 

say was typically 20-30%. 
Pyrolysis mass spectral fingerprints of P. chryso- 

genum Pl grown for 6 days producing a penicillin 
titre of 112 pg ml-‘, and of the pure /3-lactam 
(Penicillin G sodium salt), are shown in Fig. 1. The 
pyrolysis mass spectrum of the P. chrysogenum 
fermentation producing penicillin is quite complex 
and difficult to interpret (Fig. la); however the 
chemical fingerprint of the pure antibiotic (Fig. lb) 
is relatively simple and contains intense (characteris- 
tic) peaks at m/z 91, 100 and 175, and the m/z 91 
peak represents almost 20% of the total ion count. 

We have previously observed the m/z 100 peak in 
the pyrolysis mass spectra of ampicillin [85] and this 
pyrolysis fragment has also been observed in peni- 
cillins analysed under somewhat different mass spec- 
tral conditions by Meuzelaar et al. [28]. The exact 
structure(s) of the ions described by this peak and of 
m/z 91 and m/z 175 have yet to be elucidated. If 
the origin of these peaks were determined by either 
pyrolysis MS/MS or pyrolysis GC/MS the compli- 
cated fragmentation of penicillins by pyrolysis may 
become known, but for present purposes the detailed 
interpretation of the individual mass spectra is not 
important. 

The peaks m/z 91, 100 and 175 which are 
characteristic of penicillin G (Fig. lb) are relatively 
minor in the mass spectra of P. chrysogenum pro- 
ducing penicillins (Fig. la). If these masses can be 
considered characteristic for the antibiotic, the inten- 
sities should alter linearly depending on the relative 
titre of penicillin produced by P. chrysogenum. A 
plot of the average intensities of the mass m/z 91 
vs. the penicillin titre from the fermentation liquors, 
with standard error bars and the best linear fit (which 
has a slope of 0.0004 and intercept at 0.531, is shown 
in Fig. 4. The intensity of the m/z 91 peak was 
evidently not well correlated with increasing peni- 
cillin titre. Similar results were observed when m/z 
100 and m/z 175 were plotted against the amount of 
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Fig. 4. Effect of the concentration of penicillins on the percentage 

intensity of m/z 91 in the pyrolysis mass spectra of the Penicil- 
lium chrysogenum wild-type strains producing penicillin(s) and 

the same strains spiked with penicillin G (open circles) and three 
mutant strains (closed squares). Error bars show standard devia- 

tion. The linear fit is shown and has a slope of 0.0004 and 

intercept at 0.53. 
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antibiotic (data not shown). Thus, changes in single 
ions could not be used to estimate the amount of 
penicillin produced in the P, chrysogenum fermenta- 
tions. 

60 

We therefore trained 150-8-l ANNs, using the 
standard back-propagation algorithm, with nor- 
malised ion intensities from the averaged pyrolysis 
mass spectra from 16 fermentation liquors (see Table 
1 for details) as inputs and the penicillin titres as 
outputs; the latter covered the range from 0.079 pg 
ml-’ to 112 pg ml-’ and were scaled to lie be- 
tween 0 and 1. To ensure good generalisation it is 
normally important to have a training set that fills 
the concentration range [62], and therefore some of 
the fermentation liquors from the wild type Penicil- 
lium were spiked with pure penicillin G (this peni- 
cillin was chosen because it is the most abundantly 
produced by P. chrysogenum). The effectiveness of 
training was expressed in terms of the percentage 
error between the actual and desired network out- 
puts; this “learning curve” is shown in Fig. 5a 
(open circles). During training the network was inter- 
rogated with a second collection of 9 pyrolysis mass 
spectra (these were the remaining spectra from wild 
type liquors; see Table 1 for details), termed the 
cross validation set, the %error between the seen and 
desired outputs calculated and a second learning 
curve was also plotted in Fig. 5a (open squares). It 
can be seen that whereas the learning curve of the 
training set continues to decrease during training the 
cross validation set’s learning curve initially de- 
creases for approximately 1900 epochs and then 
increases. This indicates that the ANN was being 
over-trained, and it is important not to over-train 
ANNs since (by definition) the network will not then 
generalise well [37,44,45,61,119]. This over-training 
appears even more marked when the %error of the 
cross validation set is plotted against the %error of 
the training set (Fig. 5b); the minimum RMS error in 
the cross validation was reached (13.19%) when the 
RMS error of the training set was 6.55% and optimal 
training had occurred. 

i 100 1000 

Number of epochs 

-c- Training set -o- Cross validation set -a. Test set 

% error in training set 

Fig. 5. (A) Typical learning curves for the ANN, using the 

standard back propagation algorithm and with one hidden layer 

consisting of eight nodes, trained to estimate the amount of 

penicillin (pg ml-‘) production. The open circles represent the 

percentage error of the data used to train the neural network (the 

training set), the open squares from the cross validation data set, 

and the closed circles the data from the test set. A plot of the 

percentage RMS error of the test set versus the percentage error of 

the cross validation set (B) shows that optimal training (to pro- 

duce a network which generalised well) occurred at 6.55% error in 

the training set; the number of epochs (and hence extent of 

training) increases from right to left. 

%error between the actual and desired outputs for 
the test set calculated and plotted versus the number 
of epochs (Fig. 5a; closed circles). It can be seen that 
the point at which the %error of the results from the 
test sets error is lowest is at a very similar point to 
that when the error in the cross validation set is 
minimal. 

The method of using a cross validation set during At the optimal point indicated by the cross valida- 
the training of neural networks is invaluable in tion set, the ANN was then interrogated with all the 
achieving the best generalisation. In the present ex- PyMS data, including the 11 spectra from the test set 
periment we were confident that the neural network (refer to Table 1 for details), and a plot of the 
training was terminated at the correct point because network’s estimate versus the true titre of penicillins 
subsequent neural networks were also trained and the (Fig. 6) gave an approximately linear fit; the slope of 
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____ Calculated linear best tit 
- Expected proportional fit 

Fig. 6. The estimates of trained 150-8-l neural networks versus 

the true amount of penicillin produced by Penicillium chryso- 
genum; refer to Table 1 for details of training, cross validation and 

test sets. Networks were trained using the standard back propaga- 

tion algorithm employing a sigmoidal squashing function on the 

output layer to the point at which best generalisation occurred 

(this is the point indicated by Fig. 5 and was at 6.55% error in the 

training set); open circles represent spectra that were used to train 

the network, open squares the cross validation set and closed 

circles indicate “unknown” spectra which were not in the train- 

ing or validation sets. The calculated linear best fit and the 

expected proportional fit are shown. 
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the best fit line for the test data was 1.102 and the 
intercept was 4.9 (Table 21. Given that the error in 
bioassays for the true penicillin titre was between 
20-30% and that these values were used to train the 
neural networks, it was indeed very encouraging that 
the error in the test set was “only” 11.71%; it was 
therefore evident that the network’s estimate of the 
quantity of penicillin in the fermentor liquors was 
similar to the true quantity, both for spectra that were 
used to train (open circles) and cross validate (open 
squares) the neural network and, most importantly, 
for the “unknown” pyrolysis mass spectra (closed 
circles). It is particularly noteworthy that those “un- 
seen” cultures actually containing the 3 highest con- 
centrations of penicillin were indeed predicted to 
have the 3 highest concentrations. The prediction of 
the penicillin titre for P. chrysogenum P2 grown for 
4 days producing 229 pg ml-’ of the penicillin was, 
however, rather inaccurately assessed to be 104.4 pg 
ml-’ (Fig. 6). Thi s was unsurprising since it is 
generally accepted [61,94,95] that neural networks 
which perform non-linear mappings cannot be ex- 
pected to extrapolate beyond their knowledge base, 
that is to say the range on which they had been 
trained. That the value given for P2 was near the 
maximum output (112 pg ml-‘) is encouraging 
because this would indicate to the investigator that 

Table 2 
Comparison of artificial neural network calibration with partial least squares, principal components regression and multiple linear regression 

in the deconvolution of pyrolysis mass spectra for determining the concentration of penicillin ( pg ml-t) produced in fermentations by 

Penicillium chrysogenum 

Percentage error between true values and estimates of the concentration of penicillin ( pg.ml-t): 

Training data 

ANNs es 
6.55 

PLSb 

2.64 

PCR = 

15.04 

MLR d 

0.00 
Cross validation 13.19 18.77 18.84 23.07 

Test data 11.71 33.96 51.57 50.90 

Results for the test data: 

Intercept 4.9 48.9 - 63.6 80.4 

Slope 1.102 0.410 2.002 - 0.170 
Correlation coefficient 0.922 0.336 0.704 - 0.098 

a Neural network trained to optimal point (1900 epochs) with the standard back propagation algorithm exploiting a sigmoidal squashing 

function on the output layer. 
b Results using partial least squares (PLS) were from the optimal calibration models which were formed using 11 latent variables. 

’ Results using principal components regression (PCR) were from the optimal calibration models which were formed using 8 principal 

components. 

d Multiple linear regression (MLR). 
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fermentation liquors with higher titres of penicillin 
than those previously seen should lie near the rnaxi- 
mum and that these samples would then be targeted 
for further study. 

As outlined above, PCR and PLS were also used 
to create calibration models, using the same data that 
were used to train ANNs, in order to predict the titre 
of penicillin produced by the P. chrysogenum strains. 
Table 2 gives the percentage error on the predictions 
produced by PCR and PLS on the training, cross 
validation and test sets, and these are compared with 
results from ANNs and MLR. It can be seen that 
whereas ANNs were able to predict the test set 
reasonably well (11.7% error in the test set) these 
linear regression methods were really very poor at 
interpolation and the %test set error was from 34.0% 
to 51.6%. In addition, the number of latent variables 
used to obtain optimal calibration models were 11 
factors for PLS and 8 principal components for PCR, 
although one might have presumed that using more 
than 3 factors would cause overfitting [118], that is 
to say inaccurate predictions on the test data. That 
optimal calibration occurred using > 3 latent vari- 
ables, a phenomenon that has however been seen 
previously [64,85], usually implies that there are 
non-linear relationships within the pyrolysis mass 
spectral data [54]. The neural network architecture 
used in this study was 150-8-l and employed non- 
linear squashing functions on the 8 nodes in the 
hidden layer; networks of this topology permit the 
accurate mapping of non-linear features within data 
[120,121]. It is therefore not surprising that the ANNs 
used in this study predicted the penicillin titre more 
accurately than either PCR, PLS or MLR, techniques 
which rely only on linear regression. Furthermore, 
in the present study penicillin (the determinand) was 
produced in four different biological backgrounds 
and this may also explain why the linear regression 
techniques failed to predict the penicillin titre. 

3.3. Investigation into extrapolation using neural 
networks and linear regression techniques 

We have previously reported in a study to quan- 
tify the amount of casamino acids in glycogen [62], 
that when ANNs were trained with PyMS data, even 
though the network’s estimate was linear, the edges 
of the data range were nearly always sigmoidal. This 

curvature in the graphs of neural networks estimates 
versus determinand concentration has also been ob- 
served by other workers using infrared spectroscopy 
[96,97]. Since this phenomenon has been observed 
when analysing IR and MS data it is not likely to be 
an effect of the data capture technique but due to the 
use of the sigmoidal squashing function on the out- 
put node(s). Neural networks should not therefore be 
expected to give wholly correct estimates near the 
edges of or outside their training sets because they 
cannot be expected to extend beyond the range of the 
non-linear activation function. To test this hypothesis 
it was desirable to compare sigmoidal versus linear 
squashing functions on the output nodes of topologi- 
tally identical 150-8-l neural networks to see if 
more accurate estimates near the edges of the con- 
centration range could be gained. 

We therefore prepared a mixture of 40 mg ml-’ 
E. coli containing from 0 to 5000 pg ml-’ ampi- 
cillin, in 250 pg ml-’ steps, and analysed these 

using PyMS. Next ANNs were trained, using the 
standard back-propagation algorithm, with nor- 
malised ion intensities from the averaged triplicate 
pyrolysis mass spectra from O-5000 pg ml- ’ in 500 
pg ml-’ steps as inputs and the ampicillin concen- 
tration as outputs. The output node was scaled to lie 
between 0 and 1 and employed either a sigmoidal 
squashing function (f= l/(1 + eeX), where x = 
Zinputs) or a linear scalar ( f = x). To ensure good 
generalisation the spectra from samples containing 
250 pg ml-l-4750 pg ml-’ ampicillin in 500 pg 
ml-’ steps were used to cross validate the model. 

Training was stopped when the cross validation set 
error was 1.89% and 2.75% for ANNs with sig- 
moidal and linear squashing functions respectively; 
this was after approximately 5000 and 1500 epochs, 
respectively (the error in the training data were 
2.47% and 1.61%). The network’s estimate was then 
plotted versus the true ampicillin concentration (Fig. 
7). It can be seen that the estimates from networks 
employing sigmoidal activation function on the out- 
put node (bold line) did indeed have a slight curva- 
ture at the edges of the concentration range; that is 
from 0 pg ml-’ to 1000 pg ml-’ and from 4000 
pg ml-i to 5000 pug ml- ‘, which is a reflection of 
the sigmoidal nature of the non-linear squashing 
function. However, the estimates near the edges from 
networks employing linear squashing functions (bold 
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Fig. 7. The estimates of trained 150-8-l neural networks vs. the 

true amount of ampicillin (O-5000 pg ml-’ in steps of 2.50 pg 
ml-‘) mixed in 40 mg ml-’ E. coli. Networks were trained on 
O-5000 pg ml -’ in steps of 500 pg ml-’ using the standard 

back propagation algorithm employing either a sigmoida1 (bold 

line) or a linear (bold broken line) squashing function on the 

output layer (node). The expected proportional fit is also shown. 

broken line) were more accurate and closer to the 
expected proportional fit (thin line). It is concluded 
that the latter neural networks can be used to attain 

better results. It is noteworthy that although the error 
in the test set of networks employing only sigmoidal 
squashing functions was slightly better, these net- 
works did take (3 times) longer to train. Further- 
more, during the early stages of training the sig- 
moidal effect in plots of estimates vs. real values was 
even more pronounced; this phenomenon did not 
occur at any point in the training of networks using a 
linear scalar on the output node (data not shown). 

Since neural networks using linear functions on 
the output node gave more accurate predictions at 
the edges of the concentration range it was worth 
considering whether they could be used to extrapo- 
late beyond their knowledge base, that is can they 
extend beyond the range of the squashing function 
on the output node(s)? 

ANNs were therefore trained, using the standard 
back-propagation algorithm, with normalised ion in- 
tensities from the averaged triplicate pyrolysis mass 
spectra from O-2500 pg ml-’ in 500 pg ml-’ steps 
as inputs and the ampicillin concentration as outputs. 
The output node was scaled to lie between 0 and 1 
and employed either a sigmoidal squashing function 
or a linear scalar. To ensure good generalisation the 

Table 3 

Comparison of artificial neural network calibration with partial least squares, principal components regression and multiple linear regression 

in the deconvolution of pyrolysis mass spectra from ampicillin mixed in Escherichiu coli. These analyses were aimed at assessing the 

ability of these techniques to extrapolate above the range used to train the neural networks or to calibrate the linear regression models 

Percentage error between true values and estimates of the amount of ampicillin ( be, ml-‘) in 40 mg ml- ’ E. coli: 

ANNs a ANNs b 
- 

PLSC PCR ’ MLR e 

Training data f 2.08 1.21 1.35 3.81 0.00 

Cross validation s 2.44 2.28 2.43 2.84 6.47 

Extrapolation data set h 28.38 3.44 4.26 7.01 7.34 

Results for the extrapolation data set: 

Intercept 2240 - 503 - 15 31 - 894 

Slope 0.06 1.16 0.96 0.90 1.30 

Correlation coefficient 0.899 0.966 0.968 0.982 0.938 

a Neural network trained to optimal point (2500 epochs) with the standard back propagation algorithm exploiting a sigmoidal squashing 

function on the output layer (node). 
b Neural network trained to optimal point (750 epochs) with the standard back propagation algorithm exploiting a linear squashing function 

on the output layer (node). 
’ Results using partial least squares (PLS) were from the optimal calibration models which were formed using 2 latent variables. 
d Results using principal components regression (PCR) were from the optimal calibration models which were formed using 2 principal 

components. 
e Multiple linear regression (MLR). 
f Pyrolysis mass spectral data from O-2500 pg ml- ’ ampicillin in 500 pg ml- ’ steps (6 patterns). 

g Pyrolysis mass spectral data from 250-2250 pg ml- ’ ampicillin in 500 pg ml- 1 steps (5 patterns). 

’ Pyrolysis mass spectral data from 2750-5000 pg ml- 1 ampicillin in 250 pg ml- ’ steps (10 patterns). 
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Fig. 8. The estimates of trained 150-8-l neural networks vs. the 

true amount of ampicillin (o-5000 pg ml-’ in steps of 250 pg 
ml-‘) mixed in 40 mg ml-’ E. coli. (open symbols) Networks 

were trained using the standard back propagation algorithm em- 
ploying a sigmoidul squashing function on the output layer; open 

circles represent spectra that were used to train the network, open 

squares represent the cross validation set and open triangles 

indicate “unknown” spectra which were beyond the training 
range to test the network’s ability to extrapolate. In contrast 

(closed symbols) show data from neural networks set up as above 

except that they used a linear squashing function on the output 
node; again closed circles represent spectra that were used to train 

the network, closed squares the cross validation set and the closed 

triangles indicate the “unknown” extrapolation data set. The 

expected proportional fit is shown. 

spectra from samples containing 250 pg ml- ’ -2250 
pg ml-l ampicillin in 500 pg ml-’ steps were used 
to cross validate the model. Training was stopped 
when the cross validation error was minimal and was 
2.44% and 2.28% for ANNs with sigmoidal and 
linear squashing functions, respectively; this was 
after approximately 2500 and 750 epochs, respec- 
tively (Table 3). The remaining mass spectra from 
2750 pg ml-‘-5000 pg ml-’ ampicillin in 250 pg 
ml-’ steps were then passed through the trained 
networks and the results plotted against the true 
ampicillin concentration (Fig. 8). It can be seen that 
as expected the network using sigmoidal squashing 
functions was unable to extrapolate and all the esti- 
mates were near the maximum value seen, i.e., 2500 

pg ml - ‘. In contrast, neural networks employing a 
linear scalar on the output node gave accurate predic- 
tions of the concentration of ampicillin showing that 
these networks could indeed be used to extrapolate. 

The linear regression methods of MLR, PCR and 
PLS were also used to create calibration models, 
using the same data that were used to train and cross 
validate ANNs, in order to assess their ability to 
extrapolate. Table 3 gives the percentage error on the 
predictions produced by MLR, PCR and PLS on the 
training, cross validation and test sets and are com- 
pared with results from the two ANNs; the intercept, 
slope and correlation coefficient were also calculated 
for these five analysis techniques. It can be seen that 
MLR, PCR and PLS can also be used to form 
models which will allow one to extrapolate to obtain 
the ampicillin concentration of samples analysed by 
PyMS at levels beyond those in the calibration model, 
and that PLS gave the best predictions with the error 
in the test set being 4.26%. The ANN using the 
linear squashing function did however still extrapo- 
late best and the test set %error between estimated 
and real ampicillin concentration was only 3.44%. It 
is likely that the reason ANNs gave better predic- 
tions was because ANNs are considered to be robust 
to noisy data [120,121]. Furthermore, we have previ- 
ously observed a small amount of noise in pyrolysis 
mass spectral data [64] (particularly in m/z values 
of low intensity) to which ANNs were robust but 
which PLS and PCR incorporated into their calibra- 
tion models to give less accurate predictions for the 
determinand in binary mixtures [64]. 

In conclusion, ANNs (with linear squashing func- 
tions on the output node) and the linear regression 
methods can be used accurately to predict the con- 
centration of ampicillin mixed with E. coli when 
this is beyond the concentration range used in the 
training or cross-validations sets; in the present study 
the range of the test set was 100% above that of the 
training and cross-validation datasets. It is likely that 
the reason this extrapolation is possible is because 
the spectra are linearly orderable in the high dimen- 
sional weight space; since linear regression methods 
were also able to extrapolate using PyMS data. 

Although the PyMS of ampicillin mixed in E. 
coli cannot necessarily be expressed solely in terms 
of linear superpositions of subpatterns of spectra 
describing the pure components of the mixtures since 
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intermolecular reactions take place in the pyrolysate 
[85], because PLS could be used to quantify accu- 
rately the amount of ampicillin in E. coli from their 
spectra, the increasing additivity of ampicillin to E. 

coli, in terms of the features (variables) used by PLS 
to create calibration models from their pyrolysis 
mass spectra, can be considered linear. However, 
when the amount of determinand (e.g., ampicillin) 
becomes large, compared to the biological back- 
ground (e.g., E. cd), saturation effects on the in- 
tense peaks in the spectrum will occur. This is when 
the smaller peaks increase more in size relative to 
larger peaks and is because the electron multiplier in 
the mass spectrometer is being overloaded with ions. 
Saturation will therefore lead to a deterioration in the 
linear superposition of the pyrolysis mass spectra 
and the spectra will no longer be linearly orderable 
in the high dimensional weight space, thus there is a 
limit beyond which ANNs and the linear regression 
methods will no longer be able to extrapolate accu- 
rately. 

The last stage of this study was to see if ANNs 
and the linear regression techniques could be trained 
or calibrated with the pyrolysis mass spectra of P. 

chrysogenum strains producing penicillin to predict 
the titre of the antibiotic beyond the training data 
range. The spectra from the four mutant cultures 
producing the most penicillin (81, 91, 112 and 229 

pg ml-‘) were used as an extrapolation test set and 
the remaining 32 spectra were used to train ANNs or 
calibrate regression models; the maximum value in 
the training set was 80.3 pg ml-‘. Table 4 gives the 
predictions produced by ANNs (employing either a 
sigmoidal or linear squashing function), MLR, PCR 
and PLS. It can be seen that ANNs using a sigmoidal 
squashing function could not be used to extrapolate 
and estimates produced were all near the maximum 
seen. All the linear regression techniques gave accu- 
rate estimates for cultures producing 112 pg ml-’ 
penicillin, the ANN employing a linear squashing 
function slightly over estimated this to be 119.2 pg 
ml-‘. The estimates for 81 and 91 pg ml-’ peni- 
cillin were less accurate and were between 102.7 and 
123.5, and 60.9 and 67.5, respectively, for all meth- 
ods. Finally, although the estimates for the culture 
producing three times as much penicillin (229 pg 
ml-‘) as the maximum value in the training set were 
low, typically 162 pg ml-’ (MLR, PCR and PLS) 
and even lower (100 pg ml-‘) for the ANN, it was 
encouraging that these estimates were beyond the 
maximum value seen in the training set. Although 
these estimates were not always accurate, this does 
demonstrate that ANNs and linear regression tech- 
niques can be applied to the PyMS spectra of mu- 
tants in a screening program to give an indication 
which cultures are over-producing the desired 

Table 4 

Comparison of artificial neural network calibration with partial least squares, principal components regression and multiple linear regression 

in the deconvolution of pyrolysis mass spectra for determining the concentration of penicillin ( pg ml-‘) produced in fermentations by 

Penicillium chrywgenum. These analyses were aimed at assessing the ability of these methods to extrapolate above the range used to train 
the neural networks or to calibrate the linear regression models. 

The true values and estimates of the concentration of penicillin ( pg ml-’ 1 produced in Penicilliwn chrysogenum fermentations 

True value ANNs a ANNSb PLSC PCR d MLR ’ 

81.0 71.2 123.5 106.2 103.2 102.7 

91.0 78.7 67.5 60.9 61.7 61.0 

112.0 71.6 119.2 115.1 112.1 111.7 

229.0 73.8 99.5 163.4 161.9 160.7 

a Neural network trained until the error in the training set was 2.5% (approximately 10,000 epochs) with the standard back propagation 

algorithm exploiting a sigmoidal squashing function on the output layer. 
b Neural network trained until the error in the training set was 2.5% (approximately 40,000 epochs) with the standard back propagation 

algorithm exploiting a linear squashing function on the output layer. 

’ Results using partial least squares (PLS) were from calibration models which Unscrambler II suggested would give best results and were 
formed using 24 latent variables. 
d Results using principal components regression (PCR) were from calibration models which Unscrambler II suggested would give best 

results and were formed using 31 principal components. 

’ Multiple linear regression (MLR). 
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metabolite(s) to the greatest extent, thus highlighting 
strains for further study. 

4. Conclusions 

PyMS was able to differentiate between the four 
strains of Penicillium chrysogenum grown on solid 
media and the clustering of these organisms was in 
agreement with the genealogical history of these 
strains. The method of analysing these samples was 
novel in that the organism and the agar matrix, 
containing diffused penicillin, were subjected to 
PyMS and it is possible that this method of sample 
preparation could be exploited for the accurate dis- 
crimination of other organisms which grow into the 
solid agar media on which they are being cultured, 
and for which existing sample preparation techniques 
are extremely cumbersome. 

PyMS was able to detect phenotypic difference in 
the P. chysogenum strains grown for either five, 
seven, nine and 11 days growth. These differences 
may have been a reflection of their metabolic states, 
information which might be exploited in screening 
programs if correlated with the onset of secondary 
metabolism. 

P. chrysogenum fermentation broths could be 
analysed quantitatively for penicillin (as judged by 
antimicrobial activity of culture to B. subtilis var 
niger) using PyMS and ANNs; the linear regression 
methods of PLS, PCR and MLR, using the same 
pyrolysis mass spectra, could not be used to predict 
the titre of penicillins (Table 2). It is likely that the 
latter linear regression methods could not form good 
calibration models because of (1) the very variable 
biological background (the four different strains) in 
which the penicillin was produced and (2) their 
inability accurately to map non-linearities. 

Sigmoidal versus linear squashing functions on 
the output nodes of identical 150-8-l neural net- 
works were compared and it was found that net- 
works employing linear functions gave more accu- 
rate estimates of ampicillin in E. cob near the edges 
of the concentration range than did networks using 
sigmoidal functions. Finally, it was shown that these 
neural networks could be used to extrapolate suc- 
cessfully for ampicillin mixed in E. coli, and to a 

lesser degree for the analysis of the fermentation 
broths of P. chrysogenum producing penicillin. 

We conclude that the combination of PyMS and 
ANNs constitutes a rapid and convenient method for 
exploitation in microbial fermentation development 
programmes generally. PyMS is rapid (the typical 
sample time is less than 2 mitt) and automated; the 
present system allows 300 samples to be analysed in 
8 h 45 min. Thus in a working day of two shifts (and 
allowing for two days down-time per month) one 
might expect to be able to analyse some 12,000 
isolates per month. 
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