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Abstract

A 10% (w/v) beet sucrose solution was used to adulterate freshly squeezed orange juice
over the range 0-20% (or 0-20 g 1~ ' of added sucrose). Samples were analy:=d by the rapid
automated screening technique of Curie-point pyrolysis mass spectrometry (PyMS). To
deconvolve these spectra neural cognition-based methods of multilayer perceptrons (MLPs)
and radial basis functions (RBF.) and the linesr regression technique of partial least squares
(PLS) were studied. 1t was found that each of the methods could he used to provide
calibration models which gave excellent predictions for the level of sucrose adulteration at
levels below 1% for samples, with an accuracy of +1.3%, on which they had not been
trained. The best results were obtained using PLS when 8 latent variables were employed for
predictions. Furthermore, the inputs to MLPs could be reduced usiiig principal components
analysis (PCA) from 150 masses to € PC scores without any deterioration of the predictive
ability of the modei, highlighting that PCA is an excellent pre-processing step which has the
potential to speed up neural network learning as there are fewer weights to update. Since any
foodstuff can he pyrolysed in this way, the combination of PyMS with chemometrics
constitutes a rapid, powerful and novel approach to the quantitative assessment of food
adulteration generally. © 1997 Elsevier Science B.V.
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1. Introduction

There is a continuing requirement for rapid, accurale, automated methods to
characterise biological systems, for instance in determining whether a particular
foodstuff has the provenance claimed for it or whether it has been adulterated with
or substituted by a lower-grade material. A novel approach to the solution of these
problems exploiting pyrolysis mass spectrometry (PyMS) and chemometrics will be
described for the adulteration of orange juice.

Fruit juices are big business. In the UK alone some £800 million worth are sold
per year and in the US the annual market is £7.5 billion [1). In 1991 the British
Ministry of Agriculture Fisheries and Food (MAFF) found that no less than 16 out
of 21 leading brands of orange juice sold in the UK contained additional sub-
stunces, such as beet sugar, while in the US it has been estimated that frauduient
products can account for 10% of the market [1]. The incentive for fraud is clear,

There are many methods that have been exploited for assessing the authenticity
of orange juice and two recent excellent reviews have been published which detail
these [2,3). The most consistent fraud in the orange juice industry has been the
‘stretching’ of juices with preparations based on cane and beet invert sugar
(sucrose) [3]. The aim is to add extra water to the juice whilst keeping the soluble
solids constant, the typical level of adulteration is 5- 15% of a 10% sucrose solution
[2-4], which equates to 5-15 g 1~' of added sucrose. Methods to investigate the
addition of sugar include those based on chromatography [5,6], infrared spec-
troscopy [7], Proton NMR [8] and most recently site-specific natural isotopic
fractionation studied by nuclear magnetic resonance (SNIF/NMR) [9].

The reason that the most common sugar used to adulterate orange is beet sucrose
1s because the isotopic composition of this sugar and those found in the orange are
very similar and difficult to Jifferentiate. During photosynthesis the orange tree
(Citrus sinensis) and sugar beet (Beta vulgaris) plant both fix CQ, via the C3
pathway, whilst cane uses the C4 pathway [10]. Although SNIF/NMR is very
powerful and can detect ostensibly low levels (14 g 1-') of cane and beet sugar
addition to fruit juices [9] it is very slow; since the sugars present in the juice need
to be fermented to ethanol; sample anaiysis typically takes 5-10 days to complete.
There is therefore a need for a method which is automated and has the ability to
screen many hundreds of samples per working day,

Pyrolysis mass spectrometry (PyMS) is a rapid, automated, instrument-based
technique which permits the acquisition of spectroscopic data from 300 or more
samples per working day. Pyrolysis is the thermal degradation of a complex
non-volatile material in an inert atmosphere or a vacuum. It causes molecules to
cleave at their weakest points to produce smaller, volatile fragments called py-
rolysate [11). Curie-point pyrolysis is a particularly reproducible and straightfor-
ward version of the technique, in which the sample, dried onto an appropriate
metal is rapidly heated (0.5 s is typical) to the Curie point of the metal, which may
itself be chosen (358, 480, 510, 530, 610 and 770°C are common temperatures). For
the analysis of biological material the usual pyrolysis temperature employed is
530°C because it has been shown [12,13] to give a balance between fragmentation
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from polysaccharides (carbohydrates) and protein fractions. A mass spectrometer
can then be used to separate the components of the pyrolysate on the basis of their
mass-to-charge ratio {m/z} to produce a pyrolysis mass spectrum [14], which can
then be used as a ‘chemical profile’ or fingerprint of the complex material analysed.

Within the food industry PyMS has been exploited to confirm the provenance of
orange juice [15] and the quality of scotch whisky [16,17]. However, the interpreta-
tion of the PyMS spectra has conventionally been by the application of ‘unsuper-
vised' pattern recognition methods of principal components analysis (PCA),
canonical variates analysis (CVA) and hierarchical cluster analysis (HCA). With
‘unsupervised learning’ methods of this sort the relevant multivariate algorithms
seek ‘clusters’ in the data [18], thereby allowing the investigator to group objects
together on the basis of their perceived closeness; this process is oiten subjective
because it relies upon the interpretation of complicated scatter plots and dendro-
grams. In addition, such methods although in some sense guantitative, are better
seen as qualitative since their chief purpose is merely to distinguish objects or
populations.

More recently, various related but much more powerful methods, most often
referred to within the framework of chemometrics, have been applied to the
‘supervised’ analysis of PyMS data [19,20]. Arguably, the most significant of these
is the application of (artificial) neural networks (ANNSs). The first demonstration of
the ability of ANNS to discriminate between biological samples from their pyrolysis
mass spectra was for the qualitative assessment of the assessment of the adulter-
ation of extra virgin olive oils with various seed oils [21,22); in that study, which
was performed double-blind, neural networks were trained with the spectra from 12
virgin olive oils, coded 1 at the output node, and with the spectra from 12
adulterated oils, which were coded 0. This permitted their rapid and precise
assessment, a task which was previously labour intensive and very difficult. It was
most significant that the traditional ‘unsupervised’ multivariate analyses of PCA,
CVA and HCA failed to separate the oils according to their virginity or otherwise
but rather discriminated them on the basis of their cultivar. Several studies have
now shown that this combination of PyMS and ANNs is also very effective for the
rapid identification of a variety of bacterial strains [20,23-27].

The above studics all exploited ANNs to solve classification problems which by
definition are essentially qualitative in nature. However, perhaps the most signifi-
cant application of ANNs to the analysis of PyMS data is to gain accurate and
precise quantitative information about the chemical constituents of microbial (and
other) samples. For cxample, it has been shown that it is possible using this method
to follow the production of indole in 2 number of strains of E. coli grown on media
incorporating various amounts of tryptophan [28], to quantify the (bio)chemical
constituents of complex biochemical binary mixtures of proteins and nucleic acids
in glycogen, and to measure the concentrations of tertiary mixtures of cells of the
bacteria Bacillus subtilis, Escherichia coli and Staphylocaccus aureus [29-31]. The
later study [31) also demonstrated that other supervised learning methods such as
partial least squares (PLS) and principal components regression (PCR) could also
be used to extract quantitative information from the specira of the binary and
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tertiary mixtures. Finally, the combination of PyMS and ANNs also has the
potential Tor the screening and analysis of microbial cultures producing recombi-
nant proteins {32] and antibiotics [33,34).

The objective of the present study is to demonstrate that the combination of
PyMS with chemometrics, riz. neural network-based methods (muliilayer percep-
trons and radial basis functions) and linear regression (partial least squares) which
employ supervised learning algorithms, can permit the rapid and quantitative
assessment of the adulteration of orange juicc with beet sucrose.

2. Experimental
2.1. Preparation of adulterated orange juice

First, 25 oranges (Outspan; Navelate from §. African) were bought from a local
supermarket and were hand squeezed to give approximately 2 1 of raw material.
This was then centrifuged at 6000 g for 20 n.in to remove pith and particulates (the
pellet was found gravimetrically to be 6.36% weight by weight). Next a 10%
solution of Beet sucrose (‘Silver Spoon’, British Sugar) was prepared in distilled
water and was used to adulterate the orange juice from 0 to 20% in steps of 0.5%;
these 41 binary mixtures prepared therefore spanned the region (-20 g |- of
added sucrose.

2.2, Pyrolysis mass spectrometry (PyMS)

Of the above materials, t pl was evenly applied onto iron—nickel foils to give a
thin uniform surface coating. Prior to pyrolysis the samples were oven-dried at
50°C for 30 min. Each sample was analysed in triplicate. The pyrolysis mass
spectrometer used was the Horizon Instruments PyMS-200X (Horizon Instruments,
Ghyll Industrial Ectate, Heathfield, E. Sussex, UK); for full operational procedures
see [25,31,34]. The sample tute carrying the foil was heated, prior to pyrolysis, at
1X0°C for 5 s. Curig-point pyrolysis was at 530°C for 3 s, with a temperature rise
tme of 0.5 s. The data from PyMS were collected over the m/z range 51-200 and
may be displayed as quantitative pyrolysis mass spectra (e.g. Fig. 1). The abscissa
represents the r/z ratio whilst the ordinate contains information on the ion count
for any particular m/z value ranging from 51-200. Data were normalised as a
percentage of total ion count to temnve the most direct influence of ;ample size per
se.

2.3. Canonical variates analysis (CVA)

Canonical variates analysis (CVA) (also referred to as discriminant function
analysis (DFA)) is a multivariate statistical techniqu.: thai separates objects {sam-
ples) into groups or classes by minimising the within-group variance and maximis-
ing the between-group variance [35-37).
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Before CVA was employed principal components anaivsic (PCA) was used to
reduce the dimensionality of the data and only those principal components (PCs)
whose eigenvalues accounted for more than 0.1% of the total variance are used.
After the first few PCs, the axes generated will usually be due to random ‘noise’ in
the data; these PCs can be ignored without reducing the amount of useful
information representing the data, since each PC is now independent of (uncorre-
laied with) any other PC [18,38-43),

CVA then separated the objects (samples) into groups on the basis of the retained
PCs and the a priori knowledge of the approprictc aember of groupings [35-37);
the a priori groups here are the known triplicate pyrolysis mass spectra and so do
not bias the analysis in any way.

The objective of CVA is to maximise the ratio of the between-group io within-
group variance, therefore a plot of the first two canonical variates {CVs) displays
the best 2-D representation of the group separation. To effect CVA the normalisea
data were processed with the GENSTAT package [44] run under Micrasoft DOS
6.22 on an IBM-compatible PC.
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Fig. 1. Representative pyrolysis mass specira of pure orange juice (A), beet sucrose {B) and orange juice
adulterated with 10% beet sucrose solation (C).
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Table 1

The partitioning of the pyrolysis mass spectral data into the training, cross validation and test sets

Sel Members®

Training 0, 24,68 10,12, 14, 16, 18, 20

Cross validation £,3,5, 7,9, 11,13, 15, 17, ¢

Test 0.5, 1.5, 2.5, 3.5, 4.5, 55, 6.5, 75, 8.5, 9.5, 10.5, 11.5, 2.5, 13.5, 14.5, 15.5, 16.5,
17.5, 13.5. 19.5

“Expressed as % sucrose solution zdulteration.
2.4. Creation of training, calibration and test data sets

It is known [28,31,43,45-47] that supervised learning methods such as neural
networks and partial least squares can over-fit data. For example, an over-trained
neural network has usually learnt perfectly the stimulus patterns it has seen but can
not give accurate predictions for unseen stimuli, i.e., it is no longer able to
generalise. For supervised learning methods accurately to learn and predict the
concentrations of determinands in biological sysiems the model must obviously be
calibrated to the correct point.

For the various supervised learning methods used 1o analyse these pyrolysis mass
spectral data, the data were split into three sets (Table 1): (1) data used to calibrate
the model; (2) data employed to cross-validate the model; and (3) spectra whose
determinand concentration was ‘unknown' and used to test the ‘calibrated’ system.
It is important that the training data encompasses the full range under study [29.47]
since, although supervised methods are excellent at being able to interpolate, they
will give poor estimates outside their knowledge realm, i.e., they can not extrapolate
sufficiently well.

During calibration the models were interrogated with both the training anJ the
cross validation set and the root mean squared (RMS) error between the output
seen and that expected was calcutated, thus allowing two calibration curves for the
training and cross-validation sets to be drawn. When the error on the cross-valida-
tion data was lowest the system was deemed to have reached the best generalisation
point and was ther challenged with stimuli (i.e., pyrolysis mass spectra) whose
dvterminand concentrations were 'unknown’,

2.5. Multilayer perceptrons (MLPs)

All MLP analyses (also known as back-propagation artificial neural networks
(ANNSs)) were carried out with a user-friendly, neural network simulation progiam,
NeuFrame version 1,1,0,0 (Neural Computer Sciences, Lulworth Business Centre,
Nutwood Way, Totton, Southampton, Hants), which runs under Microsoft Win-
dows NT on an IBM-compatible PC. In-depth descriptions of the modus operandi
of this type of MLP analysis are given elsewhere [25,31,34).
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The structure of the MLP used in this study to analyse pyrolysis mass spectra
consisted of threc layers containing 159 processing nodes (neurons or units) made
up of the 150 input nodes (normalised pyrolysis mass spectra), 1 output node
(amount of determinand), and one ‘*hidden’ layer containing 8 nodes (i.e., a 150-3-1
architecture). Each of the 150 input nodes was connected to the 8 nodes of the
hidden layer using abstract interconnections (connections or synapses) (see Fig. 2
for a diagrammatic representation). Connections each have an associated real value,
termed the weight (w;), that scales the input (i) passing through them, this also
includes the bias (9), which also has a modifiable weight. Nodes sum the signals
feeding to them (Net):

Net=iywy + fywa + Bwy + =+ iwi+ =+ iw, = Y iw, + 3

P
1=

The sum of the scaled inputs and the node’s bias, are then scaled to lie between
0 and + 1 by an activation function to give the nodes output (Out); this scaling is
typically achieved using a logistic ‘squashing’ (or sigmoidal) function:

Out=——
" (1 +exp~— "

Taput layer Hidden layer Outpat layer
{lincar) with summation and {lincar or
{non-linear squashing) non-lincar)

Fig. 2. A multilayer perceptron neural netwark consistiag of an input layer (150 masses) connected to
a single node in the output layer (determinand voncents ation; perventage sucrose) by 1 hidden layer. In
the architecture shown, adjacent layers of the network are fully interconnected although other architec-
tures are possible, Wodes in the hidden and output layeis consist of processing elements which sum the
input applied to it and scalc the signal usinz a sigmoidil logistic squashing function.
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These signals {Cut) are then passed to the output node which sums them and in
turn squashed by the above logistic sigmoidal activation function; the product of
this node was then feed to the “outside world'.

Before training commenced the values applied to the input and output nodes
were normalised between 0.1 and 0.9. The scaling regime used for the input layer
was to scale nodally, where the input nodes were scaled for each input node such
that the lowest mass was set to 0.1 and the highest mass to 0.9. Finally, the
connection weights were set to smitll random values (typically between — 0.005 and
+ 0.00%).

The algorithm used to train the neural network was the standard back-propaga-
tion (BP) [45,48-50]. For the training of the MLP each input (i.e., normalised
pyrolysis mass spectrum) is paired with a desired output (i.e., the percentage of the
sucrose solution added to the pure orange juice, the determinand); together these
are called a training pair (or training pattern). A MLP is trained over a number of
training pairs; this group is collectively called the training set. The input is applied
to the network, which is allowed to run until an output is produced at each output
node. The differences between the actual and the desired output, taken over the
entire training set are fed back through the network in the reverse direction to
signal flow (hence back-propagation) modifying the weights as they go. This
process is repeated until a suitable tevel of error is achieved. i» the present work,
a learning rate of 0.1 and a momentum of 0.9 were used.

Each epoch represented 1217 connection weight "pdatings and a recalculation of
the RMS error between the true and desired outputs over the entire training set
{RMS error of formation; RMSEF). During training a plot of the error versus the
number of epochs represents the ‘learning curve’, and may be used to estimate the
extent of training. In addition a second curve for the cross-validation set was
calculated and training may be said to have finished when the network has found
the lowest error for the cross-validation data. Provided the network has not become
stuck in a local minimum, this point is referred to as the global minimum on the
error surface.

Finally after training all pyrolysis mass spectra of the mixtures were used as the
‘unknown’ inputs (test data); the network then output its estimate (best fit) in terms
of the percentage sucrose solution added to pure orange juice.

2.6. Radial basis function neural networks (RBFs)

All RBF analyses were carried out with 2 user-friendly, neural network simuia-
tion program, NeuralDesk version 2.10 (Neural Computer Sciences), which runs
under Microsoft Windows NT on an IBM-compatible PC as detailed specifically by
51}

RBFs are hybrid neural networks encorapassing both unsupervised and super-
vised learning [46,51-56). RBFs are typically three-layer neural networks and in
essence the sigmoidal squashing function is replaced by non-linear (often Gaussian
or ‘Mexican hat’) basis functions or kernels (Fig. 3). The kernel is the function that
determines the output of each node in the hidden layer when an input pattern is



R. Guodacre er al. /J. Anal. Appl, Pyrolysis 40-41 (1997} 135- 158 143

Input layer Hidden layer Outpet layer
(lincar) of radial basis function nodes (lincar)
(non-linear)

Fig. 3. Radial basis function neural net consisting of an input layer (150 masses) connecied to a single
node in the output layer (determinand concentration; percentage sucrose) by 1 hidden layer. The hidden
layer consists of radially-symmetric Mexican hat funciions, although others exist (¢.g., gaussian and thin
plate splines).

applied to it. This output is simply a function of the Euclidean distance from the
kernel centre to the presented ioput pattern in the multi-dimensional space, and
each node in the hidden layer only produces an output when the input applied is
within its receptive field; if the input is beyond this receptive field the output is 0.
This receptive field cen be chosen and is radially symmetric around the kernel
centre. Between them the receptive fields cover the entire region of the input space
in which a multivariate input pa‘tern may occur; a diagrammatic representation of
this is shown in Fig. 4, where a two dimensional input is mapped by seven
radially-symmetric basis functions. This is a fundamentally different approach from
the MLP, in which each hidden node represents a non-linear hyperplanar decision
boundary bisecting the input space (Fig. 4).

The outputs of the RBF nodes in the hidden layer are then fed forward via
weighted connections to the nodes in the output layer in a similar fashion to the
MLP, and each output node calculates a weighted sum of the outputs from the
non-linear transfer ‘tom the kemels in the hidden layer. The only difference is that
the output nodes of an RBF network are linear, whilst those of the MLP more
typically employ a logistic (non-linear) squashing function.

The implementation of these RBF neural networks is exactly as described by
Saha and Keller, [51]. Briefly the training proceeds in two stages:

(1) The first involves unsupervised clustering of the input data, typically using
the K-means clustering algorithm [18,55,57} to divide the hiph-dimensional input
data into clusters. Next, kernel centres are placed at the mean of each cluster of
data points. The use of K-means is particularly useful because it positions the
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kernels relative to the density of the input data points. Next the receptive field is
determined by the nearest neighbour heuristic where r; (the radius of kernel ;) is set
to the Euclidean distance between w, (the vector determining the centre for the ;™
RBF) and its nearest neighbour (k), and an overlap constant (Overlap) is used:

r, = Overlap x min(]|w; — w, ||}

where ||...| denotes a vector norm, or Euclidean distance.

The overlap that gave best results was found to be 2, which means that the edge
of the radius of one kernel is at the centre of its nearest neighbour; this optimum
wus also in agreement with the studies of Saha and Keller [51].

The output from nodes in the hidden layer is dependent on the shape of the basis
function aud the one used was that of the Mexican hat, Thus this value (R;) for
node j when given the i*" input vector (i,) can be calculated by:

A

4

oy
Cal

Fig. 4. (A) Typical decisien boundary for a classification problem created Letween two dava classes by
a MLP with 2 nodes in the hidden layer, for 2 input nodes. Each hidden node represenis a non-linear
boundary and the nodes in the output layer interpolate this to form a decision boundary. (B) The same
classification problen modelled by 7 radially-symmetric basis functions. The widih of each kernel
function {referred to as its receptive field) is determined by the tocal density distribution ol training
examples.
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-
= wy = i)

R(i)) =exp

(2) The second stage involves supervised learning in 2 single layer MLP. The
inputs are the output values for all # basis functions (R,—R,} for all the
training input patterns (Table 1) to that layer {{, —i,), and the outputs are the
percentage of sucrose solution added to the orange juice (0-20%).

The output nodes are trained using the standard back-propagation algorithm
using gradient descent [45,48-50] by finding the weighted connections between
the hidden layer and output layer that minimise the RMS error between the
actual output and that known; the single output node (determinand concentra-
tion) used a linear scalar to the ‘outside world’. Training was for 3 x 10* epochs,
and several RBFs were trained varying in the number of kernel functions in
hidden layer. Using the cross-validation regime detailed above, the optimum
number of kerne! functions was found by calculating the minimum error for the
cross-validation set (Table 1). Finally, all pyrolysis mass spectra of the orange
juice/sucrose mixtures were used as the ‘unknown’ inputs (test data); the network
then output its estimate {best fit) in terms of the percentage sucrose solution
added to pure orange juice.

2.7. Partial least squares (PLS)

All PLS analyses [43,58-62] were carried out using an in-house program,
developed by Dr Alun Jones (Institute of Biological Sciences, University of
Wales, Aberystwyth) which runs under Microsoft Windows NT on an IBM-com-
patible PC. Data were also processed prior to analysis using the Microsoft Excel
5.0 spreadsheet,

The first stage was the preparation of the data. This was achieved by present-
ing the ‘training set’ as two data matrices to the program; X, which contains the
normalised triplicate pyrolysis mass spectra, and Y, which repicsents the amount
of sucrose (0-20%) in pure orange juice. The X-data were mean centred and
scaled in proportion to the reciprocal of their standard deviations.

The next stage was the generation of the calibration model. The method of
validation used was full cross-validation, via the leave-one-out method [43]. This
technique sequentially omits one sample from the calibration; the PLS model is
then redetermined on the basis of this reduced sample set. The percentage su-
crose of the omitted sample is then predicted with the use of this model. This
method is required to determine the optimal size of the calibration model, so as
to obtain good estimates of the precision of the multivariate calibration method
(i.e., neither to under- nor over- fit predictions of unseen data) [43,63-65).

To choose the oftimal number of latent variables (PLS factors) to use in
predictions after th: model was calibrated, the cross-validation regime detailed
above wus used. After validation, or tuning, the number of PLS factors used in
the predictions which gave the minimum RMS error for the cross-validation set
was used for the test set.



146 R. Goadacre e al. ; J. Awal. Appl. Pyrolysis 40 -41 (1997) {35- 158

i0 I ;
Increasing amcf)um of sucrose
51 - R S
~
E : 10,
g 15 L LT
3 ° rx M5 ST s gt N gl s
2 25 : 15.18.
-5. ........ :
-10 '
-10 -5 0 5 10
Canonical variate |

Fig. 5. Discriminant analysis piot based on PyMS data analysed by GENSTAT showing the relutionship
between the 41 orange juice samples. The canonical variale group means are shown; values are percent
adulteration. The first 14 principal components (accounting for 99.2% of the varance) were fed into
canionical vatiates analysis (replicates coded as groups). the fiest two accounted for 61.0% and 15.6%
(76.6", total) of the variance, respectively.

3. Results and discussion

Pyrolysis mass spectra of pure orange juice, pure beet sucrose and orange juice
adulterated with 10% beet sucrose solution are shown in Fig. 1. From the spectrum
of beet sucrose (Fig. 1) one can observe the following series of peaks as being
characteristic: m/z 55, 60, 69, 72, 77, 85, 97, 101, 113, 126, 132 and 145. These
peaks are also seen clearly in the spectrum of pure orange juice; indeed sucrose
occurs naturally in orange juice, and of the 10 g of carbohydrates per 100 g of
orange juice, typically 2.9-5.6 g of this is from sucrose {2]. As expecied the
spectrum of an adulterated orange juice with sucrose also contains these ‘sucrose
peaks’. Such spectra readily illustrate the need to employ multivariate statistical
techniques in the analysis of PyMS data.

The first stage was to perform discriminant analysis, as detailed above, PCA was
employed as a dimensionality reduction step and {4 PCs were extracted (accounting
for 99.24% of the total variance) and the resulting score vectors were subsequently
used as inputs to the CVA algorithm; the resulting ordination plot is shown in Fig.
5, where only the replicate means are shown. This figure shows clearly that the first
CV {which accounts for 61% of the total variance} describes the adulteration of
orange juice with sucrose; that this feature is readily observed using this unsuper-
vised feature extraction method implies that techniques using supervised learning



R. Goodacre et al. /J. Anal. Appl. Pyrolysis 40-41 (1997) 135-158 i47

should be able 1o give an accurate quantification the levels of sucrose adulteration
in orange juice.

3.1, Multilayer perceptrons (MLPs)

MLPs were trained, using the standard back-propagation algorithm, with the 11
normalized triplicate PyMS data from the training sets as the inputs, scaled for each
input node [30] such that the lowest mass was set to 0.1 and the highest mass to 0.9,
and the percentage of the sucrose solution (0-20%) as the output (which used a
logistic squashing function), the latter being scaled between 0 and 20. Furthermore,
8 nodes were used in the single hidden layer and this topology can be represented
as a 150-8-1 MLP architecture. The effectiveness of training was expressed in terms
of the RMS error between the acteal and desired network outputs and during
training the network was interrogated with the cross-validation set of 30 (including
triplicates) pyrolysis mass spectra. A plot of the learning curves for the training,
cross-validation (and test) sets is shown in Fig. 6; it can be seen that whereas the
learning curve of the training set continues to decrease during training the cross-val-
idation set’s learning curve initially decreases for approximately 80 epochs (indi-
cated by the arrow) and then increases which indicates that the MLP was being
over-trained. It is also noteworthy that the RMS error for the test set also reaches
a minimum at this point, strongly illustrating the necessity for the use of the
cross-validation procedure and that the MLP's ability to generalise to un-seen data
is sufficiently good.

RMS emror

1 10 100 1000
Number of cpochs

-0~ Training set
-® Cross validation sel
~~ Test set

Fig. 6. Typical learning curves for the MLPs, using the standard back propagation algorithm and with
one hidden layer consisting of eight nodes, trained to estimate the amount of sucrose solution in the
orange juice. The open circles represent the root mean squared (RMS) error of the data used to train the
neural network (the training set), the ctosed squares from the cross validation data set, and the partially
shaded triangles the data from the test set. The arrow indicates the lowest ervor for the cross validation
data set; this was after 80 epochs.
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Fig. 7. The estimates of trained 150-8-1 MLPs vs. the true percentage volume of adulterant (-20%) in
orange juice. The networks were trained using the standard back propagatien algorithm, for B0 epochs,
to the point at whici: the cross validation set was optimally estimated. Open circles represent spectra {hat
were used to train the network, closed squares the cross validation set and partially shaded triangles
indicate ‘unknown' spectra which were not in the training or validation sets. Data points are the
averages for the three replicate sumples of each concentration and error bars show standard deviations.
The caleulaled linear fit for the test set only (bold line) and expected proportional fit (broken line) are
shown.

Five MLPs were then trained in an identical fashion to that described above and
training was stopped after 80 epochs. These MLPs were then interrogated with the
training, cross-validution and test sets and a plot of the network’s estimate versus
the true amount of sucrose (Fig. 7) gave a linear fit (bold line) which was very close
o the expected proportional fit (i.e. y = x; shown here as a broken line). For the
five runs the average RMS errors for the training. cross-validation and test sets
were typically 0.79. 1.39, and 1.64, respectively (total 1.40) {Table 2). It was
therefore evident that the network’s estimate of the quantity of sucrose adulteration
in the mixtures was very similar to the true quantity, both for spectra that were
used as the training and cross-validation sets and, most importantly, for the
‘anknown® pyrolysis mass spectra. That alt five MLPs gave very similar results
indicates that training was reproducible despite the random starting weights chosen.

The training set for these MLPs contained only 33 spectra (11 samples in
triplicate), and it is well known that if the number of parameters, or weights, in the
calibration model is significantly higher than the number of exemplars in the
traintng set then these methods are more prone te over-fitting [46,65). That all five
VILPs gave very similar results shows that this was not a problem; however, to
obey the parsimony principle as described by Seasholtz and Kowalski [65] the next
stage was to reduce the number of inputs to the MLP. PCA is an excellent
dimensionality reduction technique, and the use of PC scores as inputs to neural
networks, without deterioration of the calibration model, has previously been
applied to the analysis of UV/visible spectroscopic data [66.67) and for the
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Table 2
Comparison of the RMS errors between the predicted percentage level of adulteration with a 10%
sucrose solution in orange juice and that expected using PLS. MLPs and RBFs

PLS PLS MLP* MLFF MLP? PC-MLF RBFf

Factors/epochs? 3 8 30 00 1500 2000 30000

Training set 212 0.37 0.79 | Rt 0.46 0.79 0.75
Cross validetion set 1.23 1.1 1.39 1 56 2.05 .65 1.50
Test set 2.27 1.26 1.64 1.82 2.68 .61 1.74
Overall RMS error 212 1.05 140 1.48 2.16 1.45 1.48

“Number of epochs calculated by running five MLPs from liffercot random starting points.

*150-8-1 MLP, The input layer was scaled for each input node such that the lowest mass was set to 0.1
and the highest mass to 0.9. Qutput node used a sigmoidal squashing function.

“150-3-1 MLP. The input layer was scaled for each input node such that the lowest mass was set 1o 0.1
and the highest mass to {.9. Qutput node used a sigmoidal squashing function.

4150-8-1 MLP. The input layer was scaled for cach input node such that the lowest mass was sct 10 0.1
and the highest mass to 0.9. Output node used a linear squashing function.

*MLP Trained with the first eight PCs, determined by running X'-4-1 MLPs where X' = 1-20 PCs. The
input layer was scaled for each input node such that the lowest PC was set 1o 0 and the highest PC 10
LR

fRadial basis functions were trained with S0 kernel functions. 50 was determined to be optimum by
raining with 0-100 kernel functions in the 150-X-1 RBFs.

identification of bacteria from their FT-IR spectra [68). Therefore, as detailed
above, the first 20 PC scores were extracted; the percentage explained variance is
shown in Fig. 8 where it can be seen that as the number of PCs increases more of
the variance is explained and when 20 PCs are extracted 99.58% of the total
variance is explained. Between 1 and 20 PCs were used sequentially as the inputs to
X-4-1 MLPs (where X = number of PCs), these were cross-validated as detailed
above and the RMS for the training, cross-validation and test sets were plotted

2

Percent variance explained
o0
(=]

2

TTI T Ny T T I rrrry

2 4 6 8 10121416182
Number of principal components

& Percent variance explained

Fig. 8. Plot of the total explained vanance vs. the number of principal components from dimensionality
reduction of the 123 pyrolysis mass spectra collected.
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Fig. 9. Effect of the number of principal components used 1o represent the spectral data in the input
layer of X-4-1 MLPs. The open circles represent the root mean squared (RMS) error of the data used
10 train the PLS model (the training set), the closed squares from the cross validation data set, and the
partially sharded triangles the duta from the test set. The arrow indicates that the optimal point wis when
the first 8 principal components were used {this accounted for 97.31% totel varaince).

against the number of PCs used as the MLPs’ inputs {(Fig. 9). For the training set
it is observed that as more and more PCs are used in the MLPs the error in the
training set decreases. In contrast, it can be seen that when only the first few PCs
are used the error in cross-validation set is high, typically above 3, the optimum is
reached (as indicated by the arrow) when eight PCs are used, and inclusion of 10
or more PCs leads to the error in the crcss validation set again increasing to above
3. These results show that when too few PCs are used not enough information is
present to account for the sucrose addition to orange juice, and when more PCs are
employed the later PCs contribute only noise to the model, thus increasing the
probability of chance correlations between input and output data.

The optimal solution was when cight PCs were used as the inputs to §-4-1 MLPs
(Fig. 9) and a plot of the network’s estimate versus the true amount of sucrose (Fig.
10) again gave a linear fit (bold line) which was very close to the expecied
proportional fit (broken line). These PC-MLPs were trained five times; very
consistent resul's were seen in that the average RMS errors for the training,
cross-validation and test sets were typically 0,79, 1.65, and 1.61, respectively (total
1.40). These values were very similar to the MLP trained using all the PyMS data
(Table 2). which shows that PCA is an excellent pre-processing stage for the
reduction of data prior to neural network analyses.

3.2, Rudial basis function newral networks (RBFs)

The next stage was to assess the ability of RBFs to quantify the amount of
sucrose addition o pure orange juice. The approach detailed above using the
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unsupervised feature extraction algorithm PCA as a means for reducing the
dim=nsionality of the mass spectral data, prior to the supervised learning involved
in training a MLP, bears similarities to RBF newral networks. RBFs contains two
stages: the unsupervised clustering of the mass spectra using K -means, followed by
supervis~d lerrning of a single layer MLP with the outputs from the ‘Mexican hat’
kerne] functions in the RBF’s hidden layer.

RBFs were trained with the 11 normalized triplicate PyMS data from the training
sets as the inputs, scaled for each input node such that the iowest mass was set to
0.1 and the highest mass to 0.9, and the percentage of the sucrose solution (0-20%)
as the output (which used a linear scalar), the latter being scaled between 0 and 20.
Various RBFs were trained which differed in the number of kermel functions
present in their hidden layers (from 10 to 100 kernels in steps of 10). All RBFs were
trained for 3 x 10? epochs. After training the RBFs were interrogated with all three
data sets and the RMS error between the actual and desired outputs computed and
plotted against the number of kernel functions (Fig. 11). The best prediction results
for the cross-validation set were achieved with 50 functions (as indicated by the
arrow). Fewer kernel functions gave poorer results indicating the inability of that
number of receptive fields to adequately span the input space. When more than 50
functions were used the model was only slightly worse, indicating that very little
over fitting occurred.

Since the parsimony principle [65] also applies to keeping the number of
parameters to as a low number as possible whilst still baeg able to generalise well,

MLP's estimate

0 -] 10 15 20
Percent sucrose adulteration

O Training W Cross validation & Testsct
— Caleulated lincar fit (PCs)
-+~ - Expected proportional fit

Fig. 10. The estimates of trained 8-4-1 MLPs vs. the true percentage volume of adulterant (0-20°%}) in
orange juice. The networks were trained with the first eight principal components, using the standard
back propagation algorithm, for 2 x 10° epochs, to the point at which the cross validation set was
sptimally estimated. Open circles represent spectra that were used to train the network, closed squares
the cross validation set and partially shaded triaugles indicate ‘unknown’ spectra which were not in the
training or validation sets. Data points are the averages for the three replicate samples of each
concentration and error bars show standard deviations. The calculated linear fit for the test set only
{bold lire) and expected proportional fit (broken line) are shown.
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Fig. 11. Effect of varying the number of kernel functions in the hidden layer of 150-X-1 RBFs; 10 to 100
(in steps of 10} functions were used to find the optimum training po.nt. Since a linear ANN was used
10 map the hidden layer to the output layer, training was conducied for the same number of epochs
{3 x 10%) for each of the RBFs. The open circles vepresent the root mean squared (RMS) error of the
data used to train the PLS model (the training set}, the closed squares from the cross validation data set.
and (he partially shaded triangles the Jata from the test set. The arrow indicates the lowest error for the
cross validation data set. this was with 50 functions.

50 kernel functions were thought 10 be most suitable. To test reproducibility in
training a total of five 150-50-1 RBFs were trained for 3 x 10* epochs. All RBFs
had very similar predictive power for assessing the level of sucrose in orange juice
and a plot of the RBF's estimate versus the true amount of sucrose (Fig. 12) again
gave a linear fit (bold line) which was very close to the expected proportional fit
(broken line). The average RMS errors for the training, cross-validation and test
sets were 0,75, 1.50, and .74, respectively (total 1.48) and very similar to the MLP
trained using all the PyMS data (Table 2) using a logistic squashing iunction.

Although these results are comparable to those obtained using the MLPs, the
scaling function on the output node clearly is not. Therefore other MLPs identical
to the ones used above were trained using a linear scalar rather than a logistic
squashing function on the output node. Five MLPs were trained for 1500 epochs
using cross-validation and interrogated with all the mass spectral data. The results
obtained were similar and the average RMS errors for the training, cross-validation
and icst sets were (146, 2.05, and 2.68, respectively (total 2.16). These predictions
were slightly poorer than those obtainad using the other MLP and RBF (Table 2)
and it is possible that this is 4 consequence of the linear scalar not being bounded
{the sigmoidal squashing function was bounded between 0 and 1).

3.3, Pariial least squares (PLS)

in further studies, another supervised learning method, partial least squares
(PLS), which employs multivariate linear regression, was also applied to these data
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using the same training, cross-validation and test sets as used for the above
non-linear neural network-based analyses. Again, cross-validation was used so as to
assure that the calibration models constructed by PLS was not over-fiting these
data. Since there were 33 samples in the training set, between 1 and 33 PLS factors
{latent variables) were used to construct models; these were then challenged with all
the data and a plot of the calibration curves for the training, cross-validation (and
test) sets is shown in Fig. 13. These calibration curves show that whercas the
training set continues to decreast when more and more latent variables are used
that the cross-validation set’s calibration curve has two minima at 3 and 8 factors
(as indicated by the arrows); when greater than 8 factors are used the RMS error
increases slightly, indicating that at least some ovcifitting was occurring. Although
the RMS errors for PLS models challenged with the cross-validation data were
similar (when 3 factors were used this error was 1.73 compared with 1.11 when 8
latent variables were employed (Table 2)), plots of the PLS model’s estimate versus
the true amount of sucrose (Fig. 14) shows that the mode!l using 8 factors (Fig.
14(b})) was much better. In addition, the slope of the best fit lines sliown in Fig. 14
wos 0.95 (intercept 0.82) when § factors were used compared with only 0.72
(intercepl 2.87) when 3 were employed.

The nodes in the hidden layers of MLPs may be considered as sets of intermedi-
ate analogues to the latent variables in linear regression such as PLE [69]. If true
then the optimum number of latent variables used to calibrate a PLS model might
aiso approximate the optimum number of nedes to have in the hidden layer of a

RBF estimates

0 5 10 15 20
Percent sucrose adultcration

O Training & Cross validation 4 Testset
= Calculated linear fit
* - -+ Expected proportional fit

Fig. 12. The estimates of trained 150-50-1 RBFs vs. the true percentage velume of adulterant (0-20%})
in orange juice, The RBF networks were trained for 3 x 10 ¢pochs. Open circles represent spectra that
were used to train the network, closed squares the cross validation set and partially shaded triangles
indicate ‘unknown' spectra which were not in the training or validation sets. Data points are the
averages for the three replicate samples of each conecentration and errer bars show standard deviations.
The calculated linear fit for the test set only (bold line) and expected proportional fit (broken line) are
shown.
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Fig. 13. Calibration curves for the PLS madels. trained to estimate the amount of sucrose solution in the
orange juice. The open circles represent thi root mean squared (RMS) error of the data used to train the
PLS meodel (the training set), the closed ~quares from the cross validation data set, and the partiaily
shaded triangles the data from the test sel. Tie arrows indicates two possible stopping ortima using 3
or § latent variables,

three layer MLP, provided that the mapping between the inputs (X-data) and
outputs (¥-data) was more-or-less linear. That PLS gave better estimates than the
150-8-1 MLPs (Table 2) would tead to suggest that the mapping of sucrose levels
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- © Training set @ Cross validation set & Test set
—— Celculated linear fit ---- Expected proportional fit

Fig. 14. The estimates of calibrated PLS models vs. the true perceritage volume of aduiterant (0-20%)
in orange juice. Models were created using 3 (A) and 8 (B) latent variables. Open circles represent
spectra that were used to calibrated the PLS model, closed squares the cross validation set and partially
shaded triangles indicate ‘unknown’ spectra which were not in the training or validation sets. Data
points are the averages for the three replicate samples of each concentration and error bars show
standard deviations. The calculated linear fit for the test set cnly (bold line) and expected proportional
fit (broken line} are shown.
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in crange juice was linear. Indeed the first canonical variate (Fig. 5) did seem to
describe the influence of sucrose in the mass specira.

Further MLPs were set up which employed only 3 nodes in the hidden layer
rather than 8, representing a 150-3-1 architecture. The optimum trainin: point was
found using cross-validation, and the average RMS errors for the training, cross-
validation and test sets were 0.40, 1.56, and 1.82, respectively (total 1.48). These
were slightly worse than those for 150-8-1 MLPs but considerably better than the
PLS model employing only 3 latent variables (Table 2). These results tead to
indicate that although 8 nodes were better than 3 there was very little deterioration
in the model. Whilst the use of more factors in PLS predictions can exacerbate the
chances of overfitting [43,65], the requircment for more factors in the optimal PLS
mode, a phenomenon that has however been seent previously {31,34), usually implies
that there are at least some non-linear relationships within the pyrolysis mass
spectral data [43). It is therefore perhaps not surprising that the 150-3-1 MLP was
able to predict the levels of sucrose more accurately that a PLS model emploving
3 latent variables, since the nodes in the hidden layer use a non-linear squashing
function and cach hidden node represents a noo-linear hyperplanar decision
boundary bisecting the input space (Fig. 4a).

4. Conclusion

Although the pyrolysis mass spectra of pure orange juice contained peaks that
were qualitatively characteristic of pure beet sucrose (Fig. 1) when discriminant
analyses was used to analyse a series of 41 binary mixtures of orange juice
containing 'evels of sucrose ranging from 0-20% of 10% solution, the quantitative
MS profiles characteristic of sucrose were observed as the most important feature
in this series and were extracted in the first canonical variate {(which accounted for
61% of the total variance in the data).

Neural cognition-based methods of MLPs and RBFs and the lincar regression
technique of PLS were employed successfully for the quantitative deconvolution of
these pyrolysis mass spectra. It was found that each of the methods could be used
to provide calibration models which gave excellent predictions for the percentage
adulteration of orange juice with sucrose; for the test set samples which they had
not been trained these were between +1.3% and + 2.7%, and the limit of detection
was < 1% which equates to 1 g [ ="' of added sucrose. PLS, using 8 latent variabies
for predictions, gave the best results and typical RMS errors for the training,
cross-validation and test sets were 0.37, 1.11 and 1.26, respectively.

The inputs to MLPs were also reduced using PCA and it was found that the data
could be reduced from 150 masses to 8 PC scores without any deterioration of the
accuracy of the model to predict the level of sucrose adulteration. This highlights
that PCA is an excellent pre-processing step which also has the potential to speed
up neural network learning since there are fewer weights to update.

PyMS is a physico-chemical method which has been extensively exploited for
whole-organism fingerprinting [20,70]. Other spectroscopic techniques which have



156 R. Goodacre el al. /J. Anal. Appl. Pyrolysis 40-41 (1997) 135- 158

also been used for microbial identification include UV resonance Raman spee-
troscopy [71,72] and Fourier transform infrared spectroscopy (FT-IR) [68,73,74].
These methods all produce complex reproducible biochemical fingerprints which are
qualitatively distinct for different samples and quantitative in respect of target
determinands; indeed FT-IR has been exploited recently within the food area for
the authentication of vegetable oils (75] and fruit purees [76), whilst Raman
spectroscopy has also been investigated for the analysis of foods [77-82).

The combination of PyMS and neural networks has been shown previously to be
an excellent technique capable of the exquisitely sensitive qualitative assessment of
the adulteration of extra virgin olive oils with various seed oils [21,22], and recent
work has also shown that this is also possible to measure the level of adulteration
quantitatively at levels below 3% [83], whilst other olive oil studies have concen-
trated on regional classification [84]. Other quantitative studies using PyMS and
chemometrics have also shown that it is possible to assess of the adulteration of
goats’ or ewes’ milk with cows’ milk to below 1% [85] and to measure fat content
in milk [86). Therefore in conclusion, since any foodstuff can be pyrolysed in this
way, the combination of PyMS with supervised learning may be seen to constitute
a rapid, powerful and novel approach to the qualitative and quantitative assessment
of food adulteration generally.
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