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A IWO (w/v) beet sucrose solution was used to adulterate freshly squcexed orange juice 
over the range O-20% (or O-20 g I - ’ of added sucrvsc). Samples were analyzed by the rapid 
automated screening technique of Curic-point pyrolysis mass spectrometry (PyMS). To 
deconvotve these spectra neural cognition-based methods of multilayer pcraptrons (MU’s) 
and radial basis functions (RBFr) and the line= regression technique of partial feast squat= 
(PLS) were studied. It was found that each of the methods could bc used to provide 
calibration models which gave exceknt predictions for the level of sucrose adulteration at 
levels below I% for samples, with an accuracy of f 1.3%, on whkb they had not been 
trained. The best results were obtained using PLS when 8 latent variabks were employed for 
predictions. Furthermore, the inputs to MLR could be reduad t&g principal comfmnents 
analysis (PC4) from 150 ~~~SSCS to 8 PC scores without any deterioration of the predictive 
ability of the modei, highlighting that PCA is an excelfont pep-g step which has the 
potential to speed up neural network tearuing as there arc fewer weights to update. Since any 

foodstuff can he pyroiysed in this way, the combination of PyMS with chtmome@ics 
constitutes a rapid, powerful and novel approach to the quantitative asXssmcnt of food 
adulteration generally. 0 1997 Elsevkr science B.V. 
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1. Introductiun 

There is a continuing requirement for rapid. accurate, automated methods lo 
characterise biological systems, for instance in determining whether a particular 
foodstuff has the provenance claimed for it or whether it has been adulterated with 
or substituted by a lower-grade material. A novel approach to the solution of these 
problems exploiting pyrolysis mass spectrometry (PyMS) and chemometrics will be 
described for the adulteration of orange juice. 

Fruit juices are big business. In the UK atone some ES00 million worth are sold 
per year and in the US the annual market is f7.5 billion [I]. In 1991 the British 
Ministry of Agriculture Fisheries and Food (MAFF) found that no less than 16 out 
of 21 leading brands of orange juice sold in the UK contained additional sub- 
stmces, duct as beet sugar, while in the US it has tmn estimated that fraudulent 
products can account for 10% of the market [il. The incentive for fraud is clear, 

There are many methods that have been exploited for assessing the authenticity 
of orange juice and two recent excellent reviews have been published which detail 
these [2.3]. The most consistent fraud in the orange juice industry has been the 
‘stretching’ of juices with preparations based on cane and beet invert sugar 
(sucrose) [3]. The aim is to add extra water to the juice whilst keeping the soluble 
solids constant, the typical level of adulteration is S- 15% of a 10% sucrose solution 
[2-41, which equates to 5- 15 g 1 --I of added sucrose. Methods to investigate the 
addition of sugar include those based on chromatography [5,6]. infrared spec- 
troscopy [7l, Proton NMR [S] and most recently site-specific natural isotopic 
fractionation studied by nuclear magnetic resonance (SNIF/NMR) [9], 

The reason that the most common sugar used to adulterate orange is beet sucrose 
is because the isotopic composition of this sugar and those found in the orange are 
very similar and difficult to differentiate. During photosynthesis the orange tree 
(Cite sinensis) and sugar b& (I&u uujguris) plant both fix CO2 via the C3 
pathway, whilst cane uses the C4 pathway [IO]. Although SNIF/NMR is very 
powerful and can detect ostensibly low levels (I4 g I - I) of cane and beet sugar 
addition lo fruit juices [9] it is very slow; since the sugars present in the juice need 
to be fermented to ethanol; sample anaiysis typically takes 5-10 days to complete. 
There is therefore a need for a method which is automated and has the ability to 
screen many hundreds of samples per working day. 

Pyrolysis mass spectrometry (PyMS) is a rapid, automated, instrument-based 
technique which permits the acquisition of spectroscopic data from 300 or more 
samples per working day. Pyrolysis is the thermal degradation of a complex 
non-volatile material in an inert atmosphere or a vacuum. It causes molecules to 
cieave at their weakest points to produce smaller, vulatile fragments called py- 
rolysate [ll). Curie-point pyrolysis is a particularly reproducible and straightfor- 
ward version of the technique, in which the sample, dried onto an appropriate 
metal is rapidly heated (0.5 s is typical) to the Curie point of the metal, which may 
itself be chosen (358, 480, 510. 530,610 and 770°C are common temperatures). For 
the analysis of biological material the usual pyrolysis temperature employed is 
530°C because it has been shown [ 12,131 to give a balance between fragmentation 
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from polysaccharides (carbohydrates) and protein fractions. A mass spcctromcter 
can then be used to separate the components of the pyrolysate on the basis of their 
mass-to-charge ratio {m/z) to produce a pyrolysis mass spe&um (141, which can 
then be used as a ‘chemical profile’ or fingerprint of the complex material analyzed. 

Within the food industry PyMS has been exploited to confirm the provenance of 
orange juice [15] and the quality of scotch whisky [ 16,17& However, the interpret+ 
tion of the PyMS spectra has conventionally been by the apph&on of ‘msuper- 
vised’ pattern recognition methods of principal components analysis (PCA), 
canonical variates analysis (CVA) and hierarchical cluster analysis (HCA). With 
‘unsufzcrvised leaning’ methods of this sart the relevant multjvariate algorithms 
seek ‘clusters’ in the data [IQ thereby allowing the investigator to group objects 
together on the basis of their perceived clostncss; this process is &en subjective 
because it relies upon the interpretation of complicated mtter plots and dendro- 
grams. In addition, such methods although in some sense quantitative, are better 
seen as qualitative since their chief purpose is merely to distinguish objects or 
populations. 

More recently, various related but much more powerful methods, most ofkn 
referred to within the framework of chemometrics, have been applied to the 
‘supervised’ analysis of PyMS data [19,20]. Arguably, tbc most sill of tbcse 
is the application of (artificial) neural networks (ANT&). The first demonstration of 
the ability of ANNs to di scriminate between biological sampks from their pyrolysis 
mass spectra was for the qualitative assessme nt of the assessment of the adultcr- 
ation of extra virgin olive oils with various zeed oils [21,22]; in that study, which 
was performed double-blind, neural networks were trained with the spa&a from 12 
virgin olive oils, coded I at the output node, aad with the spectra from 12 
aduherated oils, which were coded 0. This pcrmitted their rapid and precise 
assessment, a task which was previously labour intensive and very diEcult. It was 
most significant that the traditional ‘unsupervised’ multivariate analyses of PCA, 
CVA and HCA failed to separate the oils according to their virginity or otherwise 
but rather discriminated them on the basis of their cuhivar. Several studies have 
now shown that this combination of PyMS and ANNs is also very elfactive for the 
rapid identi6cation of a variety of bacterial strains [20,23-21. 

The above studies all exploited AN% to solve classification probkms which by 
definition are essentially qualitative in nature. However, perhaps the most sign& 
cant application of ANNs to the analysis of FyMS data is to gain accurate and 
precise quantitative information about the chemical constitueuts of microbial (and 
other) samples. For example, it has ken shown that it is possible using this method 
to follow the production of indole in a number of strains of E. cd’ grown on media 
incorporating various amounts of tryptophan [28], to quantify the (bio)&em&.l 
constituents of complex biochemical binary mixtures of proteins and au&c acids 
in glycogen, and to measure the concentrations of tertiary mixtures of cells of the 
bacteria Bacillus subtdis, ficherichia coli and Staphylmxcw auras [29-311. The 
later study :31] &o demonstrated that o*&r supervised learning methods such as 
partial least squares (PLS) and principal components rcgmssion (PCR) could also 
be used to extract quantitative information from the spectra of the binary and 
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tertiary mixturizs. Finally, the combination of PyMS and ANNs also has the 
potential for the screening and analysis of microbial cultures producing recombi- 
nant proteins [32] and antibiotics [33,34]. 

The objective of the present study is to demonstrate that the combination of 
PyMS with chemometrics, viz. neural network-based methods (multilayer percep- 
trons and radial basis functions) and linear regression (partial least squares) which 
employ supervised learning algorithms, can permit the rapid and quantitative 
assessment of the adulteration of orange juice -;Jith beet sucroaje. 

2. Experimrritai 

2.1. Prcpamrion of adulterated orange J’uice 

First, 25 oranges (Outspan; Navelate from S. African) were bought from a local 
supermarket and were hand squeezed to give approximately 2 1 of raw material. 
This was then centrifuged at 6WO g for 20 n&in to remove pith and particuiates (the 
pellet was found gravimetricaiiy to be 6.36% weight by weight). Next a 10% 
solution of Beet sucrose (‘Silver Spoon’, British Sugar) was prepared in distilled 
water and was used to adulterate the orange juice from 0 to 20% in steps of 0.5%; 
these 41 binary mixtures prepared therefore spanned the region O-20 g I- I of 
added sucrose. 

2.2. Pyrolysis mass spectromerry (PyMSJ 

Of the above materials, 1 ~1 was evenly applied onto iron-nickel foils to give a 
th.in uniform surface coating. Prior to pyrolysis the samples were oven-dried at 
WC for 30 min. Each sample was anaiysed in triplicate. The pyrolysis mass 
spectrometer used was the Horizon Instruments PyMS-200X (Horizon Instruments, 
Ghyll Industrial Ectate. Heathfield, E. Sussex, UK); for full operational procedures 
we [25,3!,34]. The sample tube carrying the foil was heated, prior to pyrolysis, at 
I WC for 5 s. Curie-point pyrolysis was at 530°C for 3 s, with a temperature rise 
time of 0.5 s. The data from PyMS were collected over the m/z range 51-200 and 
may be displayed as quantitative pyrolysis mass spectra (e.g. Fig. I). The abscissa 
represents the m/z ratio whilst the ordinate contains information on the ion count 
for any particular m/z value ranging from 51-200. Data were normalised as a 
percentage of total ion count to remove the most direct influence of zmpie size per 
se. 

2.3. Canonical variates analysis (CVA) 

Canonical variates analysis (WA) (also referred to as discriminaot function 
ardiysis (DFA)) is a multivariate statistical techniqul’ that separates objects +am- 
pies) into groups or classes by minimising the within-group variance and maximis- 
ing the between-group variance (35-371. 
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Before CVA was employed principal components anaiv.;k (PCA) was used to 
reduce the dimensionaiity ot‘ the data and only those principal components (PCs) 
whose eigenvalues accounted for more than 0.1% of the total variancx are used. 
After the first few PCs, the axes generated will usually be due to random ‘noise’ in 
the data; these PCs can be ignored without ~xWing the amount of useful 
infin-mation representing the data, sintx each PC is now independent of (uncorre- 
lad with) any other PC [l&38-43]. 

CVA then separated the objects (samples) into groups on the basis of the retained 
PCs and the P priori knowledge of the approp tiztc Nmber of groupings [35-373; 
the (1 priori groups here are the known triplicate pyrolysis mass spectra and so do 
not bias the analysis in any way. 

The objective of CVA is to maximise the ratio of !he between-group io within- 
group variance, therefore a plot of the 6rst two canonical variates [D’s) displays 
the best 2-D representation of the group separation. To efl&t CVA the r~ormatised 
data were processed with the GENSTAT package [44] run under Microsoft DOS 
6.22 on an IBM-compatible PC. 

Fig. I. Representative pyrolysis ma5$ spectra of pure orrqe juice (A). beet sucrose (Et) and orange juice 
adulterated with lW’/. beet 5ucrose solution (Cj. 
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Table I 
The partitioning of the pyrolysis mass spectral data into the training, cross validation and test sets 

se1 Members” 

Training 0. 2, 4. 6, 8, IO, 12. 14, 16, ia, 20 
Cross validation f . 3. 5, 7. 9, I I, 13. 15, 17, I9 
TeSl 0.5. 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5. 8.5. 9.5. 10.5, 11.5. 125. 13.5. 14.5. 15.5. 16.5. 

17.5. 18.5. 19.5 

“Expressed as u/a sucrose solution adulrcra!ion. 

2.4. Crruriun of rraining, calibration and test data sets 

It is known [28,31,43,45-47j that supervised learning methods such as neural 
networks and partial least squares can over-fit data. For example, an over-trained 
neural network has usually learnt perfectly the stimulus patterns it has seen but can 
not give accurate predictions for unseen stimuli, i.e., it is no longer able to 
generalise. For superviad learning methods accurately to learn and predict the 
concentrations of determinands in biological systems the model must obviously be 
calibrated to the correct point. 

For the various supervised learning methods used to analyse these pyrolysis mass 
spectral data, the data were split into three sets (Table 1): (1) data used to calibrate 
the model; (2) data employed to cross-validate the model; and (3) spectra whose 
determinand concentration was ‘unknown’ and used to test the ‘calibrated’ system. 
It is important that the training data encompasses the full range under study [29.47] 
since, although supervised methods are excellent at being able to interpolate, they 
will give poor estimates outside their knowledge realm, i.e., they can not extrapolate 
sufficiently well. 

During calibration the models were interrogated with both the training anrJ the 
cross validation set and the root mean squared (RMS) error between the output 
seen and that expected was calculated, thus allowing two calibration curves for the 
training and cross-validation sets to be drawn. When the error on the cross-valida- 
tion data was lowest the system was deemed to have reached the best generalisation 
point and was then challenged with stimuli (i.e., pyrolysis mass spectra) whose 
dcterminand concentrations were ‘unknown’. 

All MLP analyses (also known as back-propagation artificial neural networks 
(ANNs)) were carried out with a user-friendly, neural network simulation program, 
NeuFrame version I, 1 ,O,O {Neural Computer Sciences, Lulworth Elusiness Centre, 
Nutwood Way, Totton, Southampton, Hants), which runs under Microsoft Win- 
dows NT on an IBM-compatible PC. In-depth descriptions of the modus oprrundi 
of this type of MLP analysis are given elsewhere [25,31,34]. 
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The structure of the MLP used in this study to analyse pyrolysis mass spectra 
consisted of three layers containing 159 processing nodes (neurons or units) made 
up of the 150 input nodes (normal&d pyrolysis mass spectra), I output node 
(amount of detenninand), and one ‘hidden’ layer containing 8 nodes (i.e., a 150-8-l 
architecture). Each of the 150 input nodes was connected to the 8 nodes of the 
hidden layer using abstract interconnections (connections or synapses) (see Fig. 2 
for a diagrammatic representation). Connections each have an associated real value, 
termed the weight (We), that scales the input (ii) passing through them, this also 
includes the bias (9), which also has a modifiable weight. Nodes sum the signals 
feeding to them (Net}: 

The sum of the scaled inputs and the node’s bias, are then scaled to lie between 
0 and + I by an activation function to give the nodes output (Out); thii scaling is 
typically achieved using a logistic ‘squashing’ (or sigmoidal) function: 

out = 
1 

(1 + expSN”) 

Fig. 2. A multilayer perceptron neural netwxk wnsistiog of an input layer (150 masses) conrlectcd to 
a single ntie in the output layer (determiaand mncentr~tion; pcrcmtagt sucrose) by I hidden layer. In 
the architecture shown, adjacent layers of the network arc fully inmconnected although other arch&c- 
tures are possible. Node in Ihe hidden and output layers consist of pdg eknmts which sum the 
iopuf applied to it and scak the signal usinp a sigmotid logi%ic squashing Function. 
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These signals (Out) are then passed to the output node which sums them and in 
turn squashed by the above logistic sigmoidal activation function; the product of 
this node was then feed to the ‘outside world’. 

Before training commenced the values applied to the input and output nodes 
were normalised between 0.1 and 0.9. The scaling regime used for the input layer 
was to scale nodally, where the input nodes were scaled for each input node such 
that the lowest mass was set to 0.1 and the highest mass to 0.9. Finally, the 
connection weights were set to small random values (typically between - 0.005 and 
+ 0.005). 

The algorithm used to train the neural network was the standard back-propaga- 
tion (BP) [45,48-501. For the training of the MLP each input (i.e., normalised 
pyrolysis mass spectrum) is paired with a desired output (i.e., the percentage of the 
sucrose solution added to the pure orange juice, the determinand); together these 
are called a training pair (or training pattern). A MLP is trained over a number of 
training pairs; this group is collectively called the training set. The input is applied 
to the network, which is allowed to run until an output is produced at each output 
node. The differences between the actual and the desired output, taken over the 
entire training set are fed back through the network in the reverse direction to 
signal flow (hence back-propagation) modifying the weights as they go. This 
process is repeated until a suitable tevel of error is achieved. ic the present work, 
a learning rate of 0.1 and a momentum of 0.9 were used. 

Each epoch represented 1217 connection weight .tpdatings and a recalculation of 
the RMS error between the true and desired outputs over the entire training set 
(RMS error of formation; RMSEF). During training a plot of the error versus the 
number of epochs represents the ‘learning curve’, and may be used to estimate the 
extent of training. In addition a second curve for the cross-validation set was 
calculated and training may be said to have fn&hed when the network has found 
the lowest error for the cross-validation data. Provided the network has not become 
stuck in a local minimum, this point is referred to as the global minimum on the 
error surface. 

Finally after training all pyrolysis mass spectra of the mixtures were used as the 
‘unknown’ inputs (test data]; the network then output its estimate (best tit) in terms 
of the percentage sucrose solution added to pure orange juice. 

2.6. Radial basis funcrion mural nerrvorks (RBAcs) 

All RBF analyses were carried out with a user-friendly, neural network simula- 
tion program, NeuralDesk version 2.10 (Neural Computer Sciences), which runs 
under Microsoft Windows NT on an IBM-compatible PC as detailed specifically by 
1511. 

RBFs are hybrid neural networks encoripassing both unsupervised and super- 
vised learning [46.51-561. RBFs are typically three-layer neural networks and in 
essence the sigmoidal squashing function is replaced by non-linear (often Gaussian 
or ‘Mexican hat’) basis functions or kernels (Fig. 3). The kernel is the function that 
determines the output of each node in the hidden layer when an input pattern is 



Fig. 3. Radial basis I’unction neural net consisting of an input layer (I50 masses) ccmecrcd to a single 
node in the output layer (deteminand concentration; percentage sucrose] by 1 hidden layer+ The hid&n 
layer consists of radial\y-symmetric IHcxican hat functions. although others mist (e.g., gussian and thin 
plate splints). 

applied to it. This ourput is simply a function of the Euclidean distance from the 
kernel antre to the presented input pattern in the multidimcusional space, and 
each node in the hidden layer only produces au output when the input applied is 
within its receptive field; if the input is beyond this receptive G&l the output is 0. 
This receptive field can be chosen and is radially symmetric around the kernel 
centre. Between them the receptive fields cover the entire region of the input space 
in which a multivariate input pattern may occur; a diagrammatic representation of 
this is shown in Fig. 4, where a two diiensiooai input is mapped by seven 
radially-symmetric basis functions. This is a fundamentally dit%rent approach from 
the MLP, in which each hidden node represents a non-linear hyperplanar decision 
boundary bisecting the input space (Fig. 4). 

The outputs of the RBF nodes in the hidden layer are then fed forward vis 
weighted connections to the nodes in the output layer in a similar fashion to the 
MLP, and each output node calculates a weighted sum of the outputs from the 
non-linear transfer !‘rom the kernels in the hidden layer. The only difference is that 
the output nodes of an RBF network arc linear, whilst those of the MLP more 
typically employ a logistic (non-linear) squashing function. 

The implementation of these RBF neural networks is exactly as described by 
Saha and Keller, [51]. Briefly the training prm in two stages: 

(1) The first involves unsupervised clustering of the input data, typically using 
the K-means clustering algorithm (18.S5.57J to divi& the highdimensional input 
data into clusters. Next, kernel centres are placed at the mean of each cluster of 
data points. The use of K-means is particularly useful because it positions the 
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kernels retative to the density of the input data points. Next the receptive field is 
determined by the nearest neighbour heuristic where rj (the radius of keme1 j) is set 
to the Euclidean distance between 11; (the vector determining the centre for thejlh 
RBF) and its nearest neighbour (k), and an overlap constant (Overlap) is used: 

r, = Overlap x min( 11 n; - wI 11) 

where /I. ,. 11 denotes a vector norm, or Euclidean distance. 
The overlap that gave best results was found to be 2, which means that the edge 

of the radius of one kernel is at the centre of its nearest neighbour; this optimum 
WJS also in agreement with the studies of Saha and Keller [51]. 

The output from nodes in the hidden layer is dependent on the shape of the basis 
function and the one used was that of the Mexican hat. Thus this value (Ri) for 
node j when given the ith input vector (i,) can be calculated by: 

A 

Fig. 4. (A) Typical decision boundary for a c!assification problem crated ktwecn IWO data classes by 
a MLP with 2 ncdcs in the hidden layer, for 2 input nodes. Each hidden no& represents a non-linear 
boundary and the nodes in the output layer interpolate this to form a d&ion boundary. (B) The same 
classification problr,n modellcd by 7 radially-symmetric basis functions. The widQ of each kernel 
function (referred to as ils receptive field) is determined by the local density distribuGn 0: training 
examples. 
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(2) The second stage involves supervised learning in a single layer MLP. The 
inputs are the output values for all n basis functions (R, -R,) for all the 
training input patterns (Table 1) to that layer (i, -i,), and the outputs are the 
percentage of sucrose solution added to the orange juice (O-20%). 

The output nodes are trained using the standard back-propagation algorithm 
using gradient descent [45,48-501 by tinding the weighted connections between 
the hidden layer and output faycr that minimix the RMS error between the 
actual output and that known; the singk output node (determinand conccntra- 
tion) used a linear scalar to the ‘outside world’. Training was for 3 x 10 epochs, 
and several RBFs were trained varying in the number of kernel functions in 
hidden layer. Using the cross-validation regime detailed above, the optimum 
number of kernel functions was found by calculating the minimum error for the 
cross-validation set (Table 1). Finally, all pyrolysis mass spectra of the orange 
juice/sucrose mixtures were used as the ‘unknown’ inputs (test data); the network 
then output its estimate (best fit) in terms of the percentage sucrose solution 
added to pure orange ju&. 

2.7. Partial least squares (PLS) 

Al1 PLS analyses [43,58-621 were canied out using an in-house program, 
developed by Dr Alun Jones (Institute of Biological Sciences, University of 
Wales, Aberystwyth) which runs under Microsoft Windows NT on an IBM-corn- 
pat,ible PC. Data were also processed prior to analysis us@ the Microsofi Excel 
5.0 spreadsheet. 

The first stage was the preparation of the data. This was achieved by present- 
ing the ‘training set’ as two data matrices lo the program; X, which contains the 
normalised triplicate pyrolysis mass spectra, and Y, which represents the amount 
of sucrose (O-20%) in pure orange juice. The X-data were mean centred and 
scaled in proportion to the reciprocal of their standard deviations. 

The next stage was the generation of the calibration model. The method of 
validation used was full cross-validation, via the leave-one-out method [43]. Thii 
technique sequentially omits one sample from the calibration; the PLS model is 
then redetermined on the basis of this reduced sample set. The percenta@ su- 
crose of the omitted sample is then predicted Vito the rise of this model. This 
method is required to determine the optimal size of the calibration model, so as 
to obtain good estimates of the precision of the m&variate calibration method 
(i.e., neither to under- nor over- fit predictions of unseen data) [43,63-651. 

To choose the oy,timal number of latent variables (PLS factors} to use in 
predictions after the model was calibrated, the cross-validation regime detailed 
above was used. AiIter validation, or tuning, the number of PLS factors used in 
the predictions which gave the minimum RMS error for the cross-vahdation set 
was used for the test set. 
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Fig. 5. Discriminant analysis plot based an PyMS data analysed by GENSTAT showing the relationship 
between the 41 orange juice samples. The canonical variate group means are shown; values are percent 
adulteration. The first 14 principal mmponents (accounting for 99.2% of the variance) were fed into 
canonical vatiatcs analysis (replicates coded as groups). the t’irst two accounted for 61.0% and 156% 
(76.6% total) of the variance. respctively. 

3. Results and discus&m 

Pyrolysis mass spectra of pure orange juice, pure beet sucrose and orange juice 
adulterated with 10% beet sucrose solution are shown in Fig. 1. From the spectrum 
of beet sucrose (Fig. I) one can observe the following series of peaks as being 
characteristic: m/z 55, 60, 69, 72, 77, 85, 97, 101, 113, 126, 132 and 145. These 
peaks are also seen clearly in the spectrum of pure orange juice; indeed sucrose 
occurs naturally in orange juice, and of the IO g of carbohydrates per 100 g of 
orange juice, typically 2.4-5.6 g of this is from sucrose (21. As expected the 
spectrum of an adulterated orange juice with sucrose also contains these ‘sucrose 
peaks’. Such spectra readily illustrate the need to employ multivariate statistical 
techniques in the analysis of PyMS data. 

The first stage was to perform discriminant analysis, as detailed above, PCA was 
employed as a dimensionality reduction step and 14 PCs were extracted (accounting 
for 99.24% of the total variance) and the resulting score vectors were subsequently 
used as inputs to the CVA algorithm; the resulting ordination plot is shown in Fig. 
5. where only the replicate means are shown. This figure shows ciearly that the first 
CV {which accounts for 61% of the total variance) describes the adulteration of 
orange juice with sucrose; that this feature is readily observed using this unsuper- 
vised feature extraction method implies that techniques using supervised learning 
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should be able to give an accurate quantification the levels of sucrose adulteration 
in orange juice. 

3.1, Multilayer perceptrons (MU’s) 

MLPs were trained, using the standard back-propagation algorithm, with the I1 
normalized triplicate PyMS data from the training sets as the inputs, scaled for each 
input node [3OJ such that the lowest mass was set to 0.1 and the highest mass to 0.9, 
and the percentage of the sucrose. solution (O-20%) as the output (which used a 
logistic squashing function}, the latter being scaled between 0 and 20. Furthamorc~ 
8 nodes were used in the single hidden layer and this topology can be represented 
as a 150-8-l MlP architecture. The efftiiveness of training was expressed in terms 
of the RMS error between the actual and desired network outputs and during 
training the network was interrogated with the cross-validation set of 30 (including 
triplicates) pyrolysis mass spectra. A plot of the learning curves for the training, 
cross-validation (and test) sets is shown in Fig. 6; it can be seen that whereas the 
learning curve of the training set continues to decrease during training the cross-val- 
idation set’s learning curve initialIy decreases for approximately 80 epochs (indi- 
cated by the arrow) and then increases which indicates that the MLP was being 
over-trained. It is also noteworthy that the RMS error for the test set also reaches 
a minimum at this point, strongIy illustrating the necessity for the use of the 
cross-validation procedure and that the MLP’s ability to gene&se to un-seen data 
is sutTiciently good. 

1 10 100 loo 

Numbaofq~hs 

Tniniqscl 

cnasvllid&nsd 

TeStSet 

Fig. 6. Typical learning curves for the MLR, using the standard back propagation algorithm and with 
one hidden layer consisting of eight nates. trained to estimate the amount of sucrose solution in the 
orange juice. The open circles represent the root mean squared (RMS) error of the data used to train the 
neural network (the lmining set), Ihe do& squares from the crass validation data set. and the partially 
shaded triangles the data from the test set. The arrow indicates the lowesl error for the cross validation 
data at; this was aRer 80 epochs. 
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Fig. 7. The estimates of trained 1504341 MLPs vs. the true percentage volume of adultcram (II-I(Y%) in 
orange juice. The networks were trained using the standard back propagation algorithm, for 60 epochs, 
to the point at ahi& :he cro.ss validation set was optimally estimated. Open circles represent swtra lhat 
were used to train the network, closed squares the cross validaiion set and partially shaded triangles 
indicate ‘unknown’ spectra which were not in the training or validation sets. Data points are the 
averages for the three replicate samples of each concentration and error bars show standard devistions. 
The calculated linear fir for the test set only (bold line1 and expected proportional fit (broken line) are 
shown. 

Five MLPs were then trained in an identical fashion to that described above and 
training was stopped after 80 epochs. These MLPs were then interrogated with the 
training, cross-validation and test sets and a plot of the network’s estimate versus 
the true amount of sucrose (Fig. 7) gave a linear fit (bold line) which was very ctose 
to the expected proportional fit (i.e. p = X; shown here as a broken line). For the 
five runs the average RMS errors for the training. cross-validation and test se& 
were typically 0.79. 1.39. and 1.64, respectively (total 1,40) (Table 2), It was 
t hercfore evident that the network’? estimate of the quantity of sucrose adulteration 
in the mixtures was very similar to rhe true quantity, both for spectra that were 
rlsed as the training and cross-validation sets and, most importantly, for the 
’ mknown’ pyrolysis mass spectra. That all five MLPs gave very similar results 
indicates that training was reproducible despite the random starting weights chosen, 

The training set for these MLPs contained only 33 spectra (11 samples in 
triplicate), and it is well known that if the number of parameters, or weights, in the 
calibration model is significantly higher than the number of exemplars in the 
training set then these methods are more prone to over-fitting [46,65]. That all five 
ZvfLPs gave very similar results shows that this was not a problem; however, to 
obey the parsimony principle as described by Seasholtz and Kowalski [65] the next 
stage was to reduce the number of inputs lo the MLP. PCA is an excellent 
dimensionality reduction technique, and the use of PC scores as inputs to neural 
networks, withour deteriorrltion of the calibralion model, has previously been 
applied to the analysis of W/visible spectroscopic data [66.673 and for the 
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Table 2 
Comparison of the RMS errors bcwccn the predicted pcrccncagc level of ddterarbn with a 10% 
sucrose solution in orange juice and that cqxctcd using PLS. MLPs aad RBFs 

PLS PLS MLPb MLl= MLPd PC-MLP= RBFr 

Factorsicpochsa 
Training set 
Cross validation set 
-rest Xl 
Overall RMS error 

3 8 $.o ,DJ 1500 zoo0 3o@Q0 
2.12 0.37 0.79 0. ‘xl 0.46 0.79 0.75 
1.73 1.11 1.39 1% 2.05 1.65 1.50 
2.27 1.26 1.64 1.52 2.63 t.61 1.74 
2.12 I.05 I.40 I.48 2.16 1.45 1.48 

‘Number of cpchs calculated by running five MLPr from GtTcrcnt random slarting points. 
bUO-8-l h4LP. The input layer was scaled for c&ch input node such that the lowest mass wti scl to 0.1 
and the highest mass to 0.9, Output node used a sigmoidal qua&ing fun&on. 
“150-3-i MLP. The input layer ws scaled for each input node such that the lowest maSS was set lo 0.1 
and the highest maSS lo 0.9. Output node usA a sigmoidal squashing fimction. 
d I N-8- I MLP. The input layer was scaled for each input acdc such that the Iom mass was set lo 0.1 
and the highest mass to 0.9. Output node used a linear squashing function. 
WLP Trained with the first eight PCs. detcticd by nmning X-l-1 MLR where X= I-2U PCs. The 
input layer was scaled for each input node SIKH rhat the lowest PC was set to 0 and tie highest PC 10 
!. 
‘Radial basis runctions were trained with SO kernel f-ions. 50 was determined to be optimum by 
training with O-100 kernel functions in the IW-X-t RBFs. 

identikation of bacteria from their FT-IR spectra i68]. Therefore, as detailed 
above, the first 20 PC scores were extracted; the percentage explained variance is 
shown in Fig. 8 where it can be seen that as the number of PCs increz?es more of 
the variance is explained and when 20 PCs are extracted 99.33% of the total 
variance is explained. Between 1 and 20 PCs were used sequentially as the inputs to 
X4-1 MlPs (where X= number of PCs). kse were cross-vkidated as detailed 
above and the RMS for the training, cross-validation and test sets were plotted 

2 4 6 II IO I2 I4 16 IS 20 

Numbcrofprincipslannpoxnts 

a- Fkrccnt variance eqdaincd 

Fig. 8. Plot of the total trpltined vati vs. the aumlxr of principal components from dimcnsiondity 
reduction of the 123 pyrolysis mass spectra collected. 
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Fig. 9. Effect of the number or prirApa1 components used to represent the speztrzl data in the input 
layer of X4-l MLPs. The open circles represent the root mean squared (RMS) error of the data used 
to train the PLS mode1 (the training set). rhe closed squilres from the cross validation data set. and the 
partially shaGed triangles the data from the test set. The arrow indicates that the optimal point was when 
the first 8 principal components were used (this accounted for 97.31% tot4 varaince). 

against the number of PCs used as the MLPs’ inputs (Fig. 9). For the training set 
it is observed that as more and more PCs are used in the MLPs the error in the 
training set decreases. In contrast, it can be seen that when only the first few PCs 
arc used the error in cross-validation set is high, typically above 3, the optimum is 
reached (as indicated by the arrow) when eight PCs are used, and inclusion of IO 
or more PCs leads to the error in the cress validation set again increasing to above 
3. These results show that when too few PCs are used not enough information is 
present to account for the sucrose addition to orange juice, and when more PCs are 
employed the later PCs contribute only noise to the model, thus increasing the 
probability of chance correlations between input and output data. 

The optimal solution was when eight PCs were used as the inputs to 8-4-l MLPs 
(Fig. 9) and a plot of the network’s estimate versus the true amount of sucrose (Fig. 
10) again gave a linear fit (bold line) which was very close to the expected 
proportional fit (broken line). These PC-MLPs were trained five times; very 
consistent results were seen in that the average RMS errors for the training, 
cross-validation and test sets were typically 0.79, 1.65, and 1.61, respectively (total 
1.40). These values were very similar to the MLP trained using a11 the PyMS data 
(Table 2). which shows that PCA is an excellent pre-processinp stage for the 
reduction of data prior to neural network analyses. 

The next stage was to assess the ability of RBFs to quantify the amount of 
sucrose addition to pure orange juice. The approach detailed above using the 



unsupervised feature extraction algorithm PCA as a means for reducing the 
d;mPnsionality of the mass spectral data, prior to the supervised learning involved 
in training a MLP, bears similarities to RBF mural networks. RBFs contains two 
stages: the unsupervised clustering of the mass spectra using K emcans, followed by 
supervis-d le:/rning of a single layer MLP with the outputs from the ‘Mexican hat’ 
kernel functions in the RBF’s hidden layer. 

RBFs were trained with the I1 normalized triplicate PyMS data from tht training 
sets as the inguts, scaled for each input node such that the lowest mass was set to 
0.1 and the highest mass to 0.9, and the pcrce~~tage of the sucrose solution (O-20%) 
as the output (which used a linear scalar), the latter being scaled between 0 and 20. 
Various RBFs were trained which differed in the number of kernel functions 
present in their hidden layers (from 10 to 100 kernels in steps of IO). All RBFs were 
trained for 3 x 104 epochs. After traiuing the RBFs were interrogated with all three 
data sets and the RMS error between the actual and desired outputs computed and 
plotted against the number of kernel functions (Fig. 11). The best prediction results 
for the cross-validation set were achieved with 50 functions (as indicated by the 
arrow). Fewer kernel functions gave poorer results indicating the inability of that 
number of receptive fields to adequately span the input space. When more than 50 
functions were used the model was only slightly worse, indicating that very little 
over fitting occurred. 

Since the parsimony principle [65] also applies to keeping the number of 
parameters to as a low number as possible whilst still b?lcg able to general& well, 

lb 1; 20 

PcIUllt sucluseaduWotl 

0 Training m Crossvalidation A Test set 

- Calculated linear fit (PCS) 

-.-- Ex@xdprqnnlianalfit 

Fig. IO. The estimates of trained 841 MLR vs. tbc true percentage volume of adulterant (D-Z!%) in 
orange juice. The networks were trained with the first eight principal components. using the standard 
back propagation algorithm, for 2 x Iti epochs, to the point at which the on*l validation set was 
~ptimslly estimated. Open circles represent spectra that were used to train the network. cloxd squares 
the cross validation set and partially shaded triallgks indicate ‘unknown’ spectra which were not in the 
training or validation sets. Data points are the avenges for the three replicate sampks of each 
concentration and error bars show standard deviations. The cakulatcd linm fit for the test set only 
{bold line) and expected proportional fit (broken line) ;m shown. 
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Fig. Il. Effect of varying the number of kernel runctions in the hidden layer of 150-X-I RBFs; IO to 100 
(in steps uf 10) funcrions were used to fmd (he optimum training po.nt Since a linear ANN was used 
lo map the hidden layer to the output layer. training was conducird !br the same number of epochs 
(3 x lo’) for each or the RSFs. The open circles represent I~C root mean squared (RMS) error of the 
dam used to train the PLS model (the training set). the closed squares from the cross validauun data s.cl, 
and lhe partially shaded lrirangles the &la from the test sai. The arrow indicates the lowest error for the 
cross validation data set. this was with 50 functions. 

50 kernel functions were thought to be most suitable. To test reproducibility in 
training a total of five 150-50-I RBFs were trained for 3 x I@ epochs. All RBFs 
had very similar predictive power for assessing the level of sucrose in orange juice 
and a plot of the RBF’s estimate versus the true amount of sucrose (Fig. 12) again 
gave a linear fit (bold line) which was very close to the expected proportional fit 
(broken line). The average RMS errors for the training, cross-validation and test 
sets were 0.75, 1.50, and 1.73, respectively (total 1.48) and very similar to the MLP 
trained using all the PyMS data (Table 2) using a logistic squashing function. 

Although these results are comparable to those obtained using the MLPs, the 
scaling function on the output node clearly is not. Therefore other MLPs identical 
to the ones used above were trained using a linear scalar rather than a logistic 
squashing funckion on the output node. Five MLPs were trained for I500 epochs 
usin, cro?s-validation and interrogated with all the mass spectral data. The results 
obtained were similar and the average RMS errors for the training, cross-va!idation 
and test sets were 0.46, 2.05, and 2.68, respectively (total 2.16). These predictions 
were slightly poorer than those obtained using the other MLP and RBF (Table 2) 
and it is possible that this is a consequence of the linear scalar ilo? being bounded 
(the sigmoidal squashing function was bounded between U and I). 

3.3. Partial Ieasr sqtrares (PLS) 

In further studies, another super&d learning method, partial least squares 
(PLS), which employs multivariate linear regression, was also applied to these data 
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using the same training, cross-validation and test sets as used for the above 
non-linear neural network-based analyses. Again, cross-validation was used so as to 
assure that the calibration models constructed by PLS was not over-Wing these 
data. Since there were 33 samples in the training set, between I and 33 PLS factors 
(latent variables) were ~std to construct models; these were then challenged with all 
the data and a plot of the calibration curves for the training, cross-validation (and 
test) sets is shown in Fig. 13. These calibration cu-xs show that whereas the 
training set continues to decrease when more and more latent variables are uxd 
that the cross-vatidation set’s calibration curve has two minima at 3 and 8 factors 
(as indicated by the arrows); when greater than 8 factors are used the RMS error 
increases slightly, indicating that at least somt ovctitting was occurring. Although 
the RMS errors for PLS models challenged with the cross-validation data were 
similar (when 3 factors were used this error was 1.73 compared with 1.11 when 8 
latent variables were employed (Table 2)), plots of the PLS model’s estimate versus 
the true amount of sucrose (Fig. 14) shows that the model using 8 factors (Fig. 
14(b)) was much belter. In addition, the slope of the best fit lines shown in Fig. 14 
was 0.95 (intercept 0.82) when S factors were used compared with only 0.72 
(intercept 2.87) when 3 were employed. 

The nodes in the hidden layers of MLPs may be considered as sets of intermedi- 
ate anatogues to the latent variables in linear regression such as PLZ [WJ. If true 
then the optimum number of tatent variables used to calibrate a PLS modei m&h1 
also approximate the optimum number of nodes to have in the hidden Iayer of a 

o Training ??Cross validation A Tcst~a 

- CalcuIatcd linear fit 

...* EXpcctrdprqWtilmalfil 

Rg. 12. ‘Ihe estimate of trained I50-50-I RBFs vs. the true pcraotage v&me of aduttcrant (0-2U3’0) 
in orange juice. The RBF ncrwarks were trained for 3 x IU’ epochs. Open circks nprrsent spectra that 
wet-e used to train the network, closed squares the crdss vzdidztion set and partially shaded triangles 
indicate ‘unknown’ spectra which were not in the training or va&idatioa sets. Data points arc the 
averages for the three replicate samples of each conccntrd:ion and error bars show standard deviations. 
The calculated linear fit for the test set only (bold line) and expect& proportional At (broken line) arc 
shown I 
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Fig. 13. Calibration curves for the PLS models. trained co esdmate the amount of sucrose solution in the 
orange juice. The open circle represent the root mean s+~ared (RMS) error of the data used IO train the 
PLS model (lhe training w), the closed t#quares from the cross validation data ser. and ;he partially 
shaded triangles the data from the test ~1. Tile arrows indicates two possible stopping oft!ma using 3 
or 8 latent variables, 

three layer MLP. provided that the mapping between the inputs (X-data) and 
outputs (Y-data) was more-or-less linear. That PLS gave better estimates lhan the 
I50-N-l MLPs (Table 2) would terld to suggest that the mapping of sucrose leveb 

Percent sucmw uduQcralioll Percent sucrose adulteration 

- 
- 0 TrGli:lgset ??Crossvalidation set a Test set 

- Cdculatcd linear fit . -. I Expected proportional tit 

Fig. 14. The estimates of calibrated PLS models vs. the true percer,tage volume of adulterant (O-20%) 
in orange juice. Models were created using 3 (A) and 8 (B) latent variables. Open circles reprtscnt 
spectra that were used to calibrated the PLS model, closed squares the cross validation set and partially 
shaded triangles indicate ‘unknown’ spectra which were not in the training or validation sets. Data 
points are the averages for the three replicate samples of each concentration and error bars show 
standard deviations. The calculated linear lit for the test set cnly {bold line) and expated proportional 
fit (broken line) are shown. 
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in @range juice was linear. Indeed the first canonical variate (Fig. 5) did seem to 
describe the influence of sucrose in the mass spectra. 

Further MLPs were set up which employed only 3 nodes in the hidden layer 
rather than 8. representing a 150-3-I architecture. The optimum trainin; point was 
found using cross-validation, and the average RMS errors for the training, cross- 
validation and test sets were 0.40, 1.56, and 1.82, respectively (total 1.45). These 
were slightly worse than those for 150-8-l MLPs but considerably better than the 
PLS model employing only 3 latent variables (Table 2). These results tend to 
indicate that although 8 nodes were better than 3 there was very little deterio~tlon 
in the model. Whilst the use of more factors in PLS predictions can e~~~rbate the 
chances of overfitting [43.65], the requirerncnt for more factors in the optimal PLS 
mode, a phenomenon that has however been seen previously 131,341, usually i@ks 
that there are at least some non-linear relationships within tbe pyrolysis mass 
spectral data [43]. it is therefore perhaps not surprising that the 150-3-l MLP was 
able to predict the levels of sucrose more accurately that a PLS model emplo_ying 
3 latent variables, since the nodes in the hidden layer use a non-linear squashing 
function and each hidden node represents a non-linear hypcrp1ana.r decision 
boundary bisecting the input space (Fig. 4a). 

Although the pyrolysis mass spectra of pu,re orange juice contained pcalrs that 
were qualitatively characteristic of pure beet sucrose (Fig. 1) when discriminant 
ana!yses was used to analyse a fries of 41 binary mixtures of orange juice 
containing levels of sucrose ranging from O-20% of 10?/ solution, the quantitative 
MS profiles characteristic of sucrose were observed as the moat bnportant fature 
in this series and were extracted in the first canonical variate (which accounted for 
61% of the total variance in the data). 

Neural cognition-hased methods of MLPs and RBFs and the linear regression 
technique of PLS were employed successfully for the q;lantitative decouvolulion of 
these pyrolysis mass spectra. It was found that each of the methods could be used 
to provide calibration models which gave excellent predictions for tbc percentage 
adulteration of orange juice with sucrose; for the test set samples which they had 
not heen trained these were between + 1.3% and f X7%, and the limit of detection 
was < I% which equates to I g f - ’ of added sucrose. PLS, using 8 latent variables 
for predictions, gave the best results and typical RMS errors for the training, 
cross-validation and test sets were 0.37, I.1 I and 1.26, respectiveIy. 

The inputs to MLPs were also reduced using PCA and it was found that the data 
could be reduced from 150 masses to 8 PC scores w&out any deterioration of the 
accuracy of the model to predict the kveI of sucrose adulteration. This highlights 
that PCA is an excellent pre-processing step which aIso has the potential to speed 
up neural network learning since there are fewer weights to update. 

PyMS is a physico-chemical method which has been extensively exploited for 
whole-organism fingerprinting [20,70]. Other spectroscopic techniques which have 
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also been used for microbial identification include UV resonance Raman spec- 
troscopy [71,72] and Fourier transform infrared spectroscopy (FT-IR) [68,73,74]. 
These methods all produce complex reproducible biochemical fingerprints which are 
qualitativeIy distinct for different samples and quantitative in respect of target 
determinands; indeed FT-IR has been exploited recently within the food area for 
the authentication of vegetable oils [7S] and fruit purees [76], whilst Raman 
spectroscopy has also been investigated for :hc analysis of foods [77-82). 

The combination of FyMS and neural networks has been shown previously to be 
an excellent technique capable of the exquisitely sensitive qualitative assessment of 
the adulteration of extra virgin olive oils with various seed oils [21,22], and recent 
work has also shown that this is also possible to measure the level of adulteration 
quantitatively at levels below 3% [83], whilst othet olive oil studies have concen- 
trated on regional classification [#4]. Other quantitative studies using PyMS and 
chemometrics have also shown that it is possible to assess of the adulteration of 
goats’ or ewes’ milk with cows’ milk to below I% [85] and to measure fat content 
in milk [86]. Therefore in conclusion, since any foodstuff can be pyrolysed in this 
way, the combination of FyMS with supervised learning may be seen to constitutr: 
a rapid, powerful and novel approach to the qualitative and quantitative assessment 
of food adulteration generally. 
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