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Binary mixtures of the protein lysozyme with glycogen, of 
DNA or RNA in glycogen, and the tertiary mixture of cells of 
the bacteria Bacillus subtilh, Escherichia coli, and Staphy- 
lococcusaurecls were subjected to pyrolysis mass spectrometry. 
To analyze the pyrolysis mass spectra so as to obtain quan- 
titative information representative of the complex compo- 
nents of the mixtures, partial least-squares regression (PLS), 
principal components regression (PCR), and fully intercon- 
nected feedforward artificial neural networks (ANNs) were 
studied. In the latter case, the weights were modified using the 
standard back-propagation algorithm, and the nodes used a 
sigmoidal squashing function. It was found that each of the 
methods could be used to provide calibration models which 
gave excellent predictions for the concentrations of determi- 
nands in samples on which they had not been trained. Neural 
networks were found to provide the most accurate predictions. 
We also report that scaling the individual nodes on the input 
layer of ANNs significantly decreased the time taken for the 
ANNs to learn. Removing masses of low intensity, which 
perhaps mainly contributed noise to the pyrolysis mass spectra, 
had little effect on the accuracy of the ANN predictions though 
could dramatically speed up the learning process (by more 
than 100-fold) and slightly improved the accuracy of PLS 
calibrations. 

Pyrolysis mass spectrometry (PyMS) has been widely 
applied to the characterization of microbial systems over a 
number of years (see refs 1-5 for reviews) and, because of its 
high discriminatory ability? presents a powerful fingerprinting 
technique, which is applicable to any organic material. Only 
in the last decade, however, has the chemical basis for any 
such differences either been sought or found. 

From the range of possible chemometric techniq~es,~-lO 
Windig and Meuzelaar” successfully used factor and dis- 
criminant ana1ysesl2J3 to uncover the concentration of com- 
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ponents (expressed in the form of “variance diagrams”) from 
various sets of simulated mixtures (biopolymers, lignites, and 
grass leaves). The same authors and their colleagues have 
also extended their factor analysis techniques to the analysis 
of jet fuels14 and have implemented self-modeling curve 
resolution by factor analysis of a continuous series of pyrolysis 
mass spectra.1s Factor analysis has also been applied to the 
extraction of pure component Fourier transform infrared 
(FTIR) spectra from the spectra of mixtures.16 More recently, 
a method using principal components analysis (PCA) todetect 
pure variables (m/zfor mass spectrometry) that have intensity 
contributions from only one component, called simple-to-use 
interactive self-modeling mixture analysis (SIMPLISMA) 
has been successfully applied to the deconvolution of mass 
spectral data.17J8 

Kaltenbach and Smalllg successfully demonstrated that 
the interpretation of FTIR spectra by linear discriminant 
analysis (LDA) and piecewise linear discriminant analysis 
(PLDA)( 19) was possible, while two other linear multivariate 
statistical techniques, partial least-squares (PLS) and principal 
components regression (PCR), have also been widely applied 
to the analysis of infrared (IR) ~ p e c t r a . ~ . ~ ~ ~ ~  Finally, multiple 
least-squares regression techniques have been applied to mass 
spectral data derived from the pyrolysis of the simple 
biochemical mixture of glycogen, dextran, and serum albu- 
min.2s 

During pyrolysis, intermolecular reactions can take place 
in the p y r ~ l y s a t e , ~ ~ . ~ ~  leading to a lack of superposition of the 
spectral components and to a possible dependence of the mass 
spectrum on sample size. In this sense it is perhaps surprising 
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that quantitative analysis of mixtures by PyMS has been 
possible using linear discriminant analyses, such as factor 
analysis and methods based on principal component analysis. 
An alternative approach is the use of artificial neural networks 
(ANNs), which are, by now, a well-known means of uncovering 
complex, nonlinear relationships in multivariate data (vide 
infra). 

To this end, our own aims have been to extend the PyMS 
technique to the quantitative analysis of the chemical 
constituents of microbial and other samples, and we have 
therefore sought to apply ANNs to the analysis and inter- 
pretation of pyrolysis mass spectra. Thus, we have been able 
to follow the production of indole in a number of strains of 
E. coli grown on media incorporating various amounts of 
tryptophan28 and to estimate the amount of casamino acids 
in mixtures with glycogen.29 With regard to classifications 
and discriminations, we have also exploited the combination 
of PyMS and ANNs for the rapid and accurate assessment 
of the presence of lower grade seed oils as adulterants in extra 
virgin olive oils30*31 and for the identification of strains of 
Propionibacterium ~ p p . ~ ~  

ANNs can be considered as collections of very simple 
“computational units” which can take a numerical input and 
transform it (usually via summation) into an output (see refs 
33-49 for excellent introductory surveys, and refs 28,29, and 
50-58 for applications in analytical chemistry). The relevant 
principle of supervised learning in ANNs is that the ANNs 

(28) Gwdacre, R.; Kell, D. B. Anal. Chim. Acta 1993, 279, 17-26. 
(29) Goodacre, R.; Edmonds A. N.; Kell, D. E. J .  Anal. Appl. Pyrol. 1993, 26, 

(30) Goodacre, R.; Bianchi, G.; Kell, D. B. Nature 1992, 359, 594. 
(31) Goodacre, R., Kell, D. B., Bianchi, G. J .  Sci. FoodAgric. 1993,63,297-307. 
(32) Goodacre, R., Neal, M. J., Kell, D. B., Greenham, L. W., Noble, W. C.; 

Harvey, R.G. J .  Appl. Bacteriol. 1994, 76, 124-134. 
(33) Rumelhart, D. E.; McClelland, J. L.; and the PDP Research Group. Parallel 

Distributed Processing. Experiments in the Microstructure of Cognition; MIT 
Press: Cambridge, MA, 1986; Vols. I, 11. 

93-1 14. 

(34) Cowan, J. D.; Sharp, D. H. Q. Rev. Biophys. 1988, 21, 365427. 
(35) McClelland, J. L.; Rumelhart, D.E. Explorations in Parallel Distributed 

Processing; A Handbook of Models, Programs and Exercises; MIT Press: 
Cambridge, MA, 1988. 

(36) Amit, D. J. ModelingBrain Function;rhe WorldofAttractorNeuralNetworks; 
Cambridge University Press: Cambridge, 1989. 

(37) Kohonen, T. Self-Organization and Associative Memory; Springer: Heidel- 
berg, 1989. 

(38) Wasserman, P. D. Neural Computing: Theory and Practice; Van Nostrand 
Reinhold New York, 1989. 

(39) Wasserman, P. D.; Octzel, R. M. Neuralsource: the Bibliographic Guide to 
Artificial Neural Networks; Van Nostrand Reinhold New York, 1989. 

(40) Aleksander, I.; Morton, H. An Introduction to Neural Computing, Chapman 
& Hall: London, 1990. 

(41) Beale, R.; Jackson, T. Neural Computing: An Introduction; Adam Hilger: 
Bristol, 1990. 

(42) Eberhart, R. C.; Dobbins, R. W. Neural Network PC Tools; Academic Press: 
London, 1990. 

(43) Pao, Y . -H.  Adaptive Pattern Recognition and Neural Networks; 
Addison-Wesley: Reading, MA, 1989. 

(44) Simpson, P. K. Artificial Neural Systems; Pergamon Prcss: Oxford, 1990. 
(45) Hecht-Nielscn, R. Neurocomputing, Massachusetts: Addison-Wesley, 1990. 
(46) Hertz, J.; Krogh, A.; Palmer, R. G. Introduction to the Theory of Neural 

(47) Carpenter, G. A.;Grossberg, S. Pattern Recognition byself-OrganizingNeural 

(48) Peretto, P. An Introduction to the Modelling of NeuralNetworks; Cambridge 

(49) Gallant, S. I. Neural Network Learning, MIT Press: Cambridge, MA, 1993. 
(50) Curry, E.; Rumelhart, D. E. Tetra. Comput. Methods 1990, 3, 213-237. 
(51) Long, J. R.; Mayfield, H.  T.; Henley, M. V.; Kromann, P. R. Anal. Chem. 

(52) Bos,A.; Bos, M ~ v a n d e r  Linden, W.E. Anal. Chim. Acta 1992,256,133-144. 
(53) McAv0y.T.J.; Su, H. T.; Wang, N. S.; He, M. Biotechnol. Bioeng. 1992,40, 

(54) Shadmehr, R.; Angell, D.; Chou, P. B.; Oehrlein, G. S.; Jaffe, R. S. J.  Elec- 

(55) Ball, J. W.; Jurs, P. C. Anal. Chem. 1993,65, 505-512. 
(56) Bruchmann, A.; GBtze, H.-J.; Zinn, P. Chemom. Intell. Lab. Syst.1993, 18, 

Computation; Addison-Wesley: Rtdwood City, 1991. 

Networks; MIT Press: Cambridge, MA, 1991. 

University Press: Cambridge, 1992. 

1991,63, 1256-1261. 

53-62. 

trochem. Soc. 1992, 139, 907-914. 

59-69. 

take numerical inputs (the training data) and transform them 
into “desired” (known, predetermined) outputs. The input 
and output nodes may be connected to the “external world” 
and to other nodes within the network. The way in which 
each node transforms its input depends on the so-called 
“connection weights” (or “connection strength”) and “bias” 
of the node, which are modifiable. The output of each node 
to another node or the external world then depends on both 
its weight strength and bias and on the weighted sum of all 
its inputs, which are then transformed by a (normally 
nonlinear) weighting function referred to as its activation 
function. For present purposes, the great power of neural 
networks stems from the fact that it is possible to “train” 
them. Training is effected by continually presenting the 
networks with the “known” inputs and outputs and modifying 
the connection weights between the individual nodes and the 
biases, typically according to some kind of back-propagation 
algorithm,33 until the output nodes of the network match the 
desired outputs to a stated degree of accuracy. The commonest 
architecture, as considered herein, is a fully interconnected 
feedforward network. The network, the effectiveness of whose 
training is usually determined in terms of the root-mean- 
square (rms) error between the actual and the desired outputs 
averaged over the training set, may then be exposed to 
“unknown” inputs and will then “immediately” output the 
globally optimal best fit to the outputs. If the outputs from 
the previously unknown inputs are accurate, the trained ANN 
is said to have generalized. 

One reason that this general method is so attractive for the 
quantitative analysis of PyMS (or other multivariate spectral) 
data is that it has been shown mathematically 5943 that a 
neural network consisting of only one hidden layer, with an 
arbitrarily large number of nodes, can learn any, arbitrary 
(and hence nonlinear) mapping of a continuous function to 
an arbitrary degree of accuracy. In addition, ANNs are widely 
considered to be relatively robust to noisy data, such as those 
which may be generated by PyMS. 

To determine how well ANNs can be trained using back- 
propagation for the quantitative analysis of pyrolysis mass 
spectra, other chemometric methods need to be applied to the 
same data to give a benchmark. The two methods used for 
this purpose by McAvoy et ales3 to deconvolute fluorescence 
spectra were principal components regression (PCR) and 
partial least squares (PLS). These authors and others studying 
multiple least-squares methods as well as the latent variable 
PCR and PLS methods,64-66 have concluded that the best 
technique appears to be PLS; therefore PLS and PCR were 
used as a comparison in the present study. 

PCR and PLS regression techniques are multivariate factor 
analysis methods67d8 that are useful when the target matrix 
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(hereequivalent to theoutput layer of ANNs) does not contain 
the full model repre~entation,~~ Le., there are more variables 
in the data matrix than in the target matrix. These methods 
are therefore ideally suited to quantify pyrolysis mass spectra 
since the number of variables in the data matrix is large, 
typically 150 (m/ z  5 1-200). As with supervised learning in 
ANNs both approaches utilize a priori information about the 
samples.70 The first stage in PCR is the decomposition of the 
data (X) matrix into latent variables by PCA; then each of 
the target (Y) variables are regressed onto this decomposed 
X matrix. PLS, however, performs a simultaneous and 
interdependent PCA decomposition in both X and Y matrices, 
in such a way that the information in the Y matrix is used 
directly as a guide for the optimal decomposition of the X 
matrix, and then performs regression of the latent variables 
on Y. It is considered that PLS usually handles several 
covarying Y variables better than does PCR and is superior 
for the simultaneous modelling of several intercorrelated target 
 variable^.^^^^ 

In this study, using PyMS, we therefore analyzed mixtures 
of lysozyme in glycogen, as representative of complex proteins 
and carbohydrates and the nucleic acids DNA or RNA in 
glycogen, and exploited ANNs, PLS, and PCR to estimate 
the amount of the determinands lysozyme, DNA or RNA in 
“unknown” (i.e.,unseen) spectra. Finally, the three approaches 
were used to estimate the amounts of different bacteria in a 
tertiary mixture of Bacillus subtilis, Escherichia coli, and 
Staphylococcus aureus. We conclude that accurate quan- 
titative analysis of the pyrolysis mass spectra of binary and 
tertiary mixtures is easily possible using all three numerical 
techniques but that ANNs give more accurate predictions 
than do either PLS or PCR. We believe that this is the first 
study to compare directly neural networks and the linear 
regression techniques of PCR and PLS for the quantification 
of the pyrolysis mass spectra of complex mixtures. We also 
found that scaling the individual nodes on the input layer of 
ANNs significantly decreased the time taken for the ANNs 
to learn quantitatively to analyse the mass spectra from the 
binary mixtures. Removing masses of low intensity, which 
perhaps mainly contributed noise to the pyrolysis mass spectra, 
had little effect on the accuracy of the ANN predictions, 
though could dramatically speed up the learning process (by 
more than 100-fold) and slightly improved the accuracy of 
PLS calibrations. 

EXPERIMENTAL SECTION 
Preparation of the Binary Mixtures. Binary mixtures were 

prepared such that 5 pL of a solution contained 0-100 pg of 
either the determinand lysozyme (from chicken egg white, 
Sigma), ribonucleic acid (diethylaminoethanol salt type IX 
from torula yeast, Sigma), or deoxyribonucleic acid (sodium 
salt from salmon testes, Sigma; in steps of 5 pg) in 20 pg of 
glycogen (oyster type 11, Sigma). 

Preparation of the Tertiary Mixtures of Bacteria. The 
bacteria used were Staphylococcus aureus NCTC657 1, 
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Table 1. Percentage Amounts of Bacterla Uwd In Preparlng the 
Unknown Terllary Mlxture Set 
sample % S.  % e. % E .  sample % S. % B.. % E .  
no. aureus subtrlis colr no. aureus subtrlrs colr 

50 25 1 25 75 0 9 25 
25 25 2 25 0 75 10 50 

3 0 25 75 11 66 17 17 
4 75 25 0 12 17 66 17 
5 75 0 25 13 17 17 66 
6 0 75 25 14 15 42.5 42.5 
7 33 33 33 15 42.5 15 42.5 
8 25 25 50 16 42.5 42.5 15 

Bacillus subtilis DSM10, and Escherichia coli W3110. All 
strains were grown in 4 L of liquid media (glucose (BDH), 
10.0 g; peptone (LabM), 5.0 g; beef extract (LabM), 3.0 g; 
HzO, 1 L) for 16 h at 37 OC in a shaker. After growth the 
cultures were harvested by centrifugation and washed in 
phosphate buffered saline (PBS). The dry weights of the 
cells were estimated gravimetrically and used to adjust the 
weight of the final slurries using PBS to approximately 40 
mg/mL. Two sets of mixtures were then made. The training 
set consisted of x% S.  aureus, y% B. subtilis, and z% E. coli, 
where x ,  y ,  and z were varied in units of 10; this set comprised 
66 samples (Figure 9A). The second, “unknown” test set 
consisted of 16 samples whose quantities are shown in Table 
1 and Figure 9A. 

Sample Preparation for Pyrolysis Mass Spectrometry. 
Clean iron-nickel foils (Horizon Instruments Ltd., Ghyll 
Industrial Estate, Heathfield, E. Sussex, TN21 8BR, U.K.) 
were inserted, using clean forceps, into clean pyrolysis tubes 
(Horizon Instruments), so that 6 mm was protruding from 
the mouth of the tube. Aliquots (5 pL) of the mixtures were 
evenly applied to the protruding foils. The samples were oven 
dried at 50 OC for 30 min, then the foils were pushed into the 
tube using a stainless steel depth gauge so as to lie 10 mm 
from the mouth of the tube. Finally, viton O-rings (Horizon 
Instruments) were placed on the tubes. Samples for the binary 
mixture analysis were replicated four times, samples for 
tertiary mixtures were replicated three times. 

Pyrolysis Mass Spectrometry. The pyrolysis mass spec- 
trometer used in this study was the Horizon Instruments 
PYMS-ZOOX, as initially described by Aries et al.71 The 
sample tube carrying the foil was heated, prior to pyrolysis, 
at 100 “C for 5 s. Curie-point pyrolysis was at 530 OC for 
3 s, with a temperature rise time of 0.5 s. This pyrolysis 
temperature was chosen because it has been s h o ~ n ’ ~ . ~ ~  to give 
a balance between fragmentation from polysaccharides (car- 
bohydrates) and protein fractions. The pyrolysate thenentered 
a gold-plated expansion chamber heated to 150 OC, whence 
it diffused down a molecular beam tube to the ionization 
chamber of the mass spectrometer. To minimize secondary 
fragmentation of the pyrolysate, the ionization method used 
was low-voltage electron impact ionization (25 eV). Non- 
ionized molecules were deposited on a cold trap, cooled by 
liquid nitrogen. The ionized fragments were focused by the 
electrostatic lens of a set of source electrodes, accelerated, 
and directed into a quadrupole mass filter. The ions were 

~~ 
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Figure 1. Normalized pyroiysls mass spectra of 20 pg of glycogen (A), 20 pg of iysozyme (B),20 pg of RNA (C), and 20 pg of DNA (D). Experiments 
were performed exactly as described in the Experimental Section. 

separated by the quadrupole, on the basis of their mass-to- 
charge ratio, and detected and amplified with an electron 
multiplier. The mass spectrometer scans the ionized pyrolysate 
160 times at 0.2-s intervals following pyrolysis. Data were 
collected over the m / z  range 51-200, in one-tenth of a mass 
unit intervals. These were then integrated to give unit mass. 
Given that the charge of the fragment was unity the mass- 
to-charge ratio can be accepted as a measure of the mass of 
pyrolysate fragments. The IBM-compatible PC used to 
control the PYMS-200X was also programmed (using software 
provided by the manufacturers) to record spectral information 
on ion count for the individual masses scanned and the total 
ion count for each sample analyzed. 

Prior to any analysis, the mass spectrometer was calibrated 
using the chemical standard perfluorokerosene (Aldrich), such 
that m / z  181 was one-tenth of m / z  69. 

Data Analysis. The data from PyMS may be displayed as 
quantitative pyrolysis mass spectra (e.g., as in Figure 1). The 
abscissa represents the m / z  ratio, while the ordinate contains 
information on the ion count for any particular m / z  value 
ranging from 5 1 to 200. Data were normalized as a percentage 
of total ion count to remove the influence of sample size per 
se. 

For analysis of the pyrolysis mass spectra by ANNs, PLS, 
or PCR, on the binary mixtures, the training data (ANNs) 
or the Xvariables (PLS and PCR) were the four normalized 
replicate pyrolysis mass spectra derived from the mixtures 
containing 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 pg 
of determinand, with the output (ANN) or Y variables (PLS 
and PCR) being the actual (true) amount of determinand in 
the mixtures. In the analysis of the mixtures of the three 
bacteria the data used to make the models were the normalized 
triplicate pyrolysis mass spectra derived from mixtures 
containing x% S. aureus (A), y% B. subtilis (B), and z% E.  
coli (C), where x + y + z = 100 and where the amounts were 
zero or wholly divisible by 10. 

Artificial Neural Networks. All ANN analyses were carried 
out using a user-friendly, neural network simulation program, 
NeuralDesk (version 1.2, Neural Computer Sciences, Lul- 
worth Business Centre, Nutwood Way, Totton, Southampton, 
Hants, SO1 OJR, U.K.), which runs under Microsoft Windows 
3.1 on an IBM-compatible PC. To ensure maximum speed, 
an accelerator board for the PC (NeuSprint) based on the 
AT&T DSP32C chip, which effects a speed enhancement of 
some 100-fold, permitting the analysis (and updating) of some 
400 000 weightsls, was used. Data were also processed prior 
to analysis using the Microsoft Excel 4.0 spreadsheet. 

The algorithm used was standard back-propagation (Bp)33~’~ 
running on the accelerator board. This algorithm employs 
processing nodes (neurons or units), connected using abstract 
interconnections (connections or synapses). Connections each 
have an associated real value, termed the weight, that scale 
signals passing through them. Nodes sum the signals feeding 
to them and output this sum to each driven connection scaled 
by a “squashing” function v) with a sigmoidal shape, typically 
the function f = 1/(1 + e-”), where x = Zinputs. 

For the training of the ANN each input (Le., normalized 
pyrolysis mass spectrum) is paired with a desired output (i.e., 
the amount of determinand); together these are called a 
training pair (or training pattern). An ANN is trained over 
a number of training pairs; this group is collectively called the 
training set. The input is applied to the network, which is 
allowed to run until an output is produced at each output 
node. The differences between the actual and the desired 
output, taken over the entire training set are fed back through 
the network in the reverse direction to signal flow (hence back- 
propagation) modifying the weights as they go. This process 
is repeated until a suitable level of error is achieved. In the 
present work, we used a learning rate of 0.1 and a momentum 
of 0.9. 
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The structure of the ANN used in this study to analyse 
pyrolysis mass spectra therefore consisted of three layers 
containing 159 nodes made up of the 150 input nodes 
(normalized pyrolysis mass spectra), 1 output node (amount 
of determinand), and one “hidden” layer containing 8 nodes 
(Le., a 150-8-1 architecture). Each of the 150 input nodes 
was connected to the 8 nodes of the hidden layer which in turn 
were connected to the output node. In addition, the hidden 
layer and output node were connected to the bias, making a 
total of 12 17 connections, whose weights will be altered during 
training. Before training commenced, the values applied to 
the input and output nodes were normalized between 0 and 
+1, and the connection weights were set to small random 
values.38 In some cases, the output layer was scaled to exploit 
less than the full range of the normalized scale between 0 and 
1 .29 Each epoch represented 1217 connection weight updatings 
and a recalculation of the root-mean-squared (rms) error 
between the true and desired outputs over the entire training 
set. A plot of therms error vs the number of epochs represents 
the “learning curve” and was used to estimate the extent of 
training. Finally after training, all pyrolysis mass spectra of 
the binary mixtures (0-100 pg) and all mass spectra of the 
tertiary mixtures (66 knowns and 16 unknowns) were used as 
the “unknown” inputs (test data); the network then output its 
estimate (best fit) in terms of the amounts of determinands 
in the mixtures. 

Principal Component Regression and Partial Least-Squares 
Analyses. All PCR and PLS analyses were carried out using 
the program Unscrambler I1 Version 4.0 (CAM0 AIS, Olav 
Tryggvasonsgt. 24, N-7011 Trondheim, Norway; and see ref 
8) which runs under Microsoft MS-DOS on an IBM- 
compatible PC. Data were also processed prior to analysis 
using the Microsoft Excel 4.0 spreadsheet which runs under 
Microsoft Windows 3.1 on an IBM-compatible PC. 

The first stage is the preparation of the data. This is 
achieved by presenting the “training set” as two data matrices 
to the program: X, which contains the normalized quadru- 
plicate pyrolysis mass spectra, and Y, which represents the 
amount or percentage content of the determinand(s). For 
the binary mixtures the Y matrix contains one Y variable of 
0-100 pg (in steps of 10 pg) of lysozyme, RNA or DNA 
mixed in 20 pg of glycogen (i.e., 44 objects representing 11 
quadruplicate concentrations). The Y matrix for the analysis 
of pyrolysis mass spectra from tertiary mixtures contains three 
variables describing the percentage of S.  aureus, B. subtilis, 
and E.  coli (Le., 198 objects representing 66 triplicates). 
Unscrambler I1 also allows the addition of “start noise” (i.e., 
noise to the X data); this option was not used. Finally, the 
X data were scaled in proportion to the reciprocal of their 
standard deviations. 

The next stage is the generation of the calibration model; 
this first requires the user to specify the appropriate algorithm. 
The Unscrambler I1 program has one PCR algorithm and 
two PLS algorithms; PLSl which handles only one Yvariable 
at a time, and PLS2 which will model several Y variables 
simultaneously.8 For the analysis of the pyrolysis mass spectra 
from binary mixtures, predicting only one Yvariable (amount 
0-100 pg of lysozyme, RNA or DNA mixed in 20 pg of 
glycogen), the PCR and PLSl algorithms were used. In 
addition to these two algorithms, we also employed the PLS2 

algorithm for the prediction of the percentages of bacteria in 
the tertiary mixture. 

The method of validation used was full cross-validation, 
via the leave-one-out method. This technique sequentially 
omits one sample from the calibration; the PCR or PLS model 
is then redetermined on the basis of this reduced sample set. 
The amount (micrograms) or percentage of the omitted sample 
is then predicted with the use of the model. This method is 
required to determine the optimal size of the calibration model, 
so as to obtain good estimates of the precision of the 
multivariate calibration method (Le., neither to under- nor 
over-fit predictions of unseen data).8.75-77 Unscrambler also 
has reasonably sophisticated outlier detection methods; al- 
though these were employed, we did not find it necessary to 
delete any of the objects from the calibration models formed. 

Cross-validation can indicate the optimal number of 
principal components (PCs) or PLS factors to use in predictions 
after the model is calibrated. To establish the accuracy of the 
suggestions produced by Unscrambler, we therefore calculated 
the rms error between the true and desired concentrations 
over the entire calibration model, both for the known and 
unknown mass spectra, and plotted these rms errors vs the 
number of PCs or PLS factors used in predictions. We also 
generated plots of the rms error of the test set vs the error in 
the training set to assist in determining the calibration model 
that best generalized. Using this approach, after calibration, 
to choose the optimal number of PCs or PLS factors to use 
in the prediction, all pyrolysis mass spectra of the binary 
mixtures (0-100 pg) and all mass spectra of the tertiary 
mixtures (66 knowns and 16 unknowns) were used as the 
“unknown” inputs (test data); themodel then gave its prediction 
in terms of the amount or percentage of determinand(s) in the 
three binary and one tertiary mixture. 

RESULTS AND DISCUSSION 
Binary Mixture Analyses. Examples of the pyrolysis mass 

spectra obtained from the analysis of binary mixtures are 
shown in Figure 1. These materials were chosen to be 
representative of the various classes of compounds found in 
biological samples; glycogen is representative of carbohydrates, 
lysozyme of proteins, and RNA and DNA of nucleic acids. 
Although the mass spectra of glycogen and lysozyme are fairly 
complex there are some distinguishing peaks: these were 
notably m / z  60, 69, 8 5 ,  97, 128, and 144 for glycogen 
(previously seen to be characteristic by Goodacre et aLZ9), 
and for lysozyme m / z  54,69,83,97, 11 1, 117, and 154. The 
relatively less complex pyrolysis mass spectra of RNA (Figure 
1 C) and DNA (Figure 1 D) show a characteristic cyclic shape 
with the centre of the peaks at m l z  58,72,87, 102, and 117 
for RNA and m / z  53,70,8 1, and 98 for DNA. It is noteworthy 
that the pyrolysis mass spectra of RNA shows five major 
peaks and for DNA only four; it is possible that this was 
because the fifth mean peak center for DNA was less than 
m / z  51 and hence was not detected because only the mass 
range 5 1-200 was used. The difference (in m / z )  between the 
centers of the major peaks between the mass spectra of DNA 
and RNA were 19,17,21, and 19 m / z  (average 19 m / z ) ,  this 
is relatively stableand it seems that the pyrolysis mass spectrum 

(75) Haaland, D. M.; Thomas, E. V. Anal. Chem. 1988,60, 1193-1202. 
(76) Brown, P. J. Chemom. 1992, 6, 151-161. 
(77) Seasholtz, M. B.; Kowalski, B. A w l .  Chim. Acra 1993, 277, 165-177. 
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of DNA was in essence the same as that of RNA but shifted 
by 19 amu. This may be due to the different nucleic acid salts 
supplied (RNA as the (diethy1amino)ethanol salt and DNA 
as the sodium salt), which may have led to chemical ionization. 
However, for present purposes the detailed interpretation of 
the individual mass spectra is not significant, and will be 
elaborated elsewhere. It is worthwhile remarking that these 
pyrolysis mass spectra (Figure l) ,  especially of RNA (Figure 
1 C) and lysozyme (Figure 1 B), are significantly different from 
those displayed in the well-known compendium and atlas of 
Meuzelaar and  colleague^.^ This is because the mass spec- 
trometric conditions used were significantly different; in 
particular, we used an ionizing voltage of 25 eV, while the 
spectra in the atlas were obtained with an ionizing voltage of 
14 eV; the pyrolysis conditions also differ. In addition, 
different salts of the RNA were almost certainly used; in this 
study we used the diethylaminoethanol salt while Meuzelaar 
et al.3 used RNA “from bakers yeast” (salt unspecified). 

The three binary mixtures were analysed by PyMS. Data 
from each of the binary mixtures were split into two sets. The 
training set contained the normalized quadruplicate ion 
intensities from the pyrolysis mass spectra from 0, 10,20, ..., 
90, and 100 pg of either lysozyme, RNA, or DNA in 20 pg 
of glycogen, while the test set contained both the training set 
and the 10 “unknown” pyrolysis mass spectra (5, 15,25, 35, 
45, 55, 65, 75, 85, and 95 pg of determinand in 20 pg of 
glycogen). The next stage was to use ANNs, PCR, and PLS, 
as outlined above, to predict the amount of determinand in 
all three binary mixtures. 

We therefore trained ANNs, using the standard back- 
propagation algorithm, with the normalized PyMS data from 
the training sets as the inputs and the amount of determinand 
(0-100 pg) mixed in 20 pg of glycogen as the output, the 
latter being scaled between -50 and 150. The effectiveness 
of training was expressed in terms of the rms error between 
the actual and desired networkoutputs; using lysozyme mixed 
in glycogen as an example this “learning curve” is shown in 
Figure 2A (open circles). The “learning curve” of the test 
data (closed circles) is also shown in Figure 2A; it can be seen 
that whereas the learning curve of the training set continues 
to decrease during training, the test set’s learning curve initially 
decreases for approximately 1 O4 epochs and then increases. 
This indicates that the ANN was being overtrained, and it is 
important not to overtrain ANNs since (by definition) the 
network will not generalize This overtraining appears 
even more marked when therms error of the test set is plotted 
against the rms error of the training set (Figure 2B); the 
minimum rms error in the test set was reached (1.36%) when 
therms error of the training set was 0.5% and optimal training 
had occurred. The ANN was then interrogated with the 
training and test sets and a plot of the network‘s estimate 
versus the true amount of lysozyme in 20 pg of glycogen (Figure 
3) gave a linear fit which was indistinguishable from the 
expected proportional fit (i.e.,y = x ) .  It was therefore evident 
that the network’s estimate of the quantity of lysozyme in the 
mixtures was very similar to the true quantity, both for spectra 
that were used as the training set and, most importantly, for 
the “unknown” pyrolysis mass spectra. 

In other studies ANNs were set up using the standard 
back-propagation algorithm with the same architecture as 
that used above except that the output node was scaled from 

0.001 
I 1 1 d  & I lllld 

100 IO’ 102 103 104 105 106 

Number of Epochs 
0 Training set (data used to train ANNs) 

4 Test set (data not shown to the ANNs) 

10 

0.001 0.01 0.1 1 10 

% RMS error of the training set 

Figure 2. Typlcal learning curves for the ANN, using the standard back 
propagation algorithm and with one hkiden layer consisting of elght 
nodes, trained to estimate the amount of lysozyme (micrograms) in 20 
pg of glycogen (A). The open circles represent the percentage rms 
error of the data used to train the neural network (the training set) and 
the closed circles the data from the test set. A plot of the percentage 
rms error of the test set versus the percentage rms error of the training 
set (6) shows that optimal training occurred at 0.5% rms error: the 
number of epochs (and hence extent training) increases from rlght to 
left. 

40 

20 

0 
0 20 40 60 80 100 

Lysozyme (ILg) 
0 Results fiom &la used to train the ANN 
0 Results Bom unseen data 

- Expected proportional fit 

Figure 3. Estimates of trained 150-8-1 neural networks vs the true 
amount of lysozyme (0-100 pg In 20 pg of glycogen). Networks were 
trained uslng the standard back propagation algorlthm, to 0.5 % rms 
error (the point at which Figure 2 had indicated that optimal training 
took place). Data points are the averages of the quadruplicate pyrolysls 
mass spectra. Open circles represent spectra that were used to train 
the network and closed ckcles indicate “unknown” spectra which 
were not in the training set. Error bars show standard deviation. The 
expected proportional fit is shown. 

0 to 100. The network was still able to converge, but took 
longer (7.6 X lo4 epochs) to reach an rms error of 0.5% in 
the training set. However, the network did not generalize as 
well; after training to the same rms error in the training set 
(0.5%) therms error in the test set was 5.27% compared with 
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Table 2. Camparkon d Arttfklal Neural Network Callbratlon wlth Prlnclpal Componenl Regresoion and Partlal Leaa Squarer In the 
Analysis d Pyrolyrlr Mas8 Spectra from Binary Mlxturer 

artificial neural networks 

no. of test 
architecture epochsa set error 

150-8-1' 75000 5.27 
150-8-ld 9870 1.36 
150-ld 238000 1.76 

artificial neural networks 

no. of test 
architecture epochsa set error 

150-&lc 461150 5.50 
150-&ld 103000 1.16 
150-ld >1P 1.76 

artificial neural networks 

Lysozyme (0-100 jtg) Mixed in 20 pg of Glycogen 
partial least squares 1 

PLS factors training set test set 
% rms error of no. of 

3b 4.97 5.89 
5 3.19 4.20 
7 1.86 3.71 

10 0.96 4.15 

RNA (0-100 jtg) Mixed in 20 jtg of Glycogen 
partial least squares 1 

PLS factors training set test set 
% rms error of no. of 

3b 3.59 4.62 
5 2.46 4.03 
7 1.45 4.09 

10 0.72 4.38 

DNA (0-100 pg) Mixed in 20 wg of Glycogen 
partial least squares 1 

principal component regression 
% rms error of no. of 

PCS training set test set 

36 
5 
7 
10 
15 
20 
25 
30 
35 
40 
43(max) 

6.89 
5.24 
4.92 
3.77 
3.22 
2.92 
2.46 
2.13 
1.44 
1.14 
0.00 

8.07 
5.68 
5.23 
5.80 
4.96 
4.53 
4.24 
3.81 
4.19 
4.43 
4.71 

principal component regression 
5% rms error of no. of 

PCS training set test set 

3b 
5 
7 

10 
15 
20 
25 
30 
35 
40 
43(max) 

5.83 
3.35 
3.28 
3.23 
2.77 
2.34 
1.57 
1.35 
0.75 
0.41 
0.00 

6.63 
4.91 
4.80 
4.60 
4.37 
3.57 
4.04 
4.19 
4.51 
4.92 
4.55 

principal component regression 

no. of test 
architecture epochs" set error 

150-8-1' 136200 5.53 
150-8-ld 36000 2.49 
150-ld 163000 2.77 

% rms error of no. of 
PLS factors training set test set 

36 4.25 8.08 
5 2.18 5.78 
7 1.27 5.68 

10 0.72 5.74 

no. of 
PCS 

36 
5 
7 

10 
15 
20 
25 
30 
35 
40 
43(max) 

% r m  error of 
training set test set 

6.84 8.03 
4.43 7.96 
3.63 6.82 
2.68 5.78 
2.07 6.30 
1.57 6.10 
1.42 5.67 
1.29 5.96 
1.06 5.43 
0.47 5.73 
0.00 5.93 

0 When the error of the training set was 0.5%. Optimal number of factors, predicted by Unscrambler 11. Output node was scaled from 
0 to 100. d Output node was scaled from -50 to 150. e Trained. to an rms error of 0.538% I 

1.36% obtained previously. This result was not perhaps 
surprising since it has been shown previously29 that increasing 
the scaling range on the output layer for quantification of 
binary mixtures increases the accuracy of the network's 
predictions, because it minimizes the influence of the sigmoidal 
activation function used to squash the signal passed through 
the output layer. 

Further studies were set up using direct linear feedthrough; 
this is where in addition to the 150-8-1 architecture the input 
and output layers are also connected directly, which is 
analogous to including the linear terms in a polynomial 
e x p a n ~ i o n . ~ ~ ~ ~ ~  The output node was scaled from -50 to 150. 
The network was able to converge but took twice as many 

(78) Wcrbos, P. J. Proc. IEEE 1990, 78, 1550-1560. 
(79) Wilson, E.; Rock, S. M. Proc. World Congress on Neural Networks 1993,3, 

157-162. 

epochs (typically 2.0 X lo4) as did the 150-8-1 ANN to reach 
an rms error of 0.5% in the training set. The network did 
generalize well and the error of the test set was usually 1.2'36, 
not significantly better than the 150-8-1 ANNs (1.36% error 
of the test set). This result was not suprising since the output 
scaling which was used on the 150-8- 1 ANNs was not between 
0 and 1 but a more restricted range (giving a buffer of &SO%) 
and so already has a strong linearizing function. Further, a 
number of workerssgd3 have shown mathematically that a 
neural network consisting of only one hidden layer, albeit 
with an arbitrarily large number of nodes, can learn any, 
arbitrary (and hence nonlinear) mapping of a continuous 
function to an arbitrary degree of accuracy. 

Finally, in addition to these ANNs others were employed 
using the standard back-propagation algorithm with no hidden 
layer and in which the output node was scaled from -50 to 
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Figure 4. PCR scores plot based on PyMS data for RNA of the stated number of mlcrograms mlxed with 20 pg of glycogen (A). The first two 
PCR factors account for 72 and 20% of the total variation, respectively. (B) PCR loadings plot showing all 150 masses; a reduced number of 
masses are also shown (C); these masses are representatlve of RNA (m/r 58, 72, 87, 102, and 117) and glycogen (mlr 60, 69, 85, 97, 128, 
and 144). Effect of the number of principal components on the PCR calibration models formed to estimate the amount of RNA (mlcrograms) 
in 20 rg of glycogen (D). The open circles represent the percentage rms error of the data used to create the model (the training set) and the 
closed circles the data from the test set. (E) A plot of the percentage rms error of the test set versus the percentage rms error of the training 
set; the optlmal calibration model was formed using 20 principal components, and the number of latent varlables used in predictions increases 
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150. Networks with no hidden layer are unable to separate 
objects in different classes unless such classes are linearly 

separable.*O Thesenetworkstookover 2 X 105epochs toreach 
0.5% rms error in the training set but had converged well and 
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the rms error in the test set was typically 1.8%. It was 
interesting to observe that these networks also generalized 
well, indicating that the differences in pyrolysis mass spectra 
due to the addition of lysozyme to glycogen could be fitted 
in a linear model in 150-dimensional space. 

Neural networks of the above types were also used to 
estimate the amount of RNA or DNA mixed in 20 pg of 
glycogen, with the results shown in Table 2. Both groups of 
the mass spectra of the binary mixtures were found to be 
quantified accurately by ANNs; in addition, the effects of 
different network architectures were similar to those found 
in the lysozyme/glycogen case described above. 

PCR was also used as outlined above to create calibration 
models, using the training sets, to predict the amount of 
determinand (0-100 pg) mixed in 20 pg of glycogen. The 
example used is the mixture of RNA in glycogen. After the 
model was created the first two PCR factors for the training 
sets were plotted (Figure 4A). The first two PCR factors 
accounted for the majority of the variance in the samples, viz. 
72% and 20%, respectively. It is evident (Figure 4A) that the 
first PCR factor largely served to account for (or describe) 
the difference between the spectra of pure glycogen and 
samples containing RNA, while the second PCR factor largely 
accounted for the difference in the amount of RNA in the 
glycogen backgrounds. To ascertain which masses contributed 
positively to the formation of the PCR model their loadings 
may be viewed (Figures 4B,C). Figure 4B is the PCR (mass) 
loadings plot of all 150 masses. This shows that all masses 
were influential on the model formed because no masses plot 
at the origin. Also, all the masses have approximately the 
same influence on the model because they are equidistant 
from the origin; presumably this is simply due to the 
normalization procedure used (where the masses were scaled 
as a percentage of the total), such that if a given mass is 
relatively greater in a particular spectrum then all of the other 
masses are necessarily relatively lower. When only the masses 
that predominate in the mass spectra of glycogen ( m / z  60, 
69,85,97,128, and 144) and RNA (m/ z  58,72,87,102, and 
117) are plotted (Figure 4C) they form two distinct groups 
which map opposite each other; this implies, as one should 
expect, that these two sets of masses are negatively correlated. 
Finally, when the mass loadings plot (Figure 4C) is overlaid 
on the factor plot (Figure 4A) the masses that predominate 
the spectra of glycogen and RNA lie in the same area as the 
samples from pure glycogen and 100 pg of RNA in 20 pg of 
glycogen respectively; this shows that these masses are indeed 
influential in the discrimination between the two species. 

To assess the accuracy of the predictions after the model 
was calibrated, a varying number of latent variables was used 
in the predictions, and the rms error between the true amount 
of determinand and the predicted amount for both the training 
and test set was calculated (Table 2) and plotted against the 
number of PCs used to form the calibration model (Figure 
4D). The open circles represent the percentage rms error of 
the data used to create the model (the training set) and the 
closed circles the data from the test set. It can be seen that 
the error in the training set continues to decrease with 
increasing number of latent variables but that the lowest value 
of rms error for the test set, indicating optimal calibration, 

(80) Minsky, M. L.; Papert, S. A. Percepfrons; MITPress: Cambridge, MA, 1969. 
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RNA ( w )  
0 Results €rom data used lo calibrate model 
0 Results from unseen data 
- Expected proportional f i t  

Figure 5. PCR predictions plotted against the true amount of RNA 
(0-100 bg in 20 bg of glycogen), using 20 principal components In the 
calibration model (the point at which Figure 4 had indicated that the 
optimal model was formed). Data points are the averages of the 
quadruplicate pyrolysis mass spectra. Open circles represent spectra 
that were used to calibrate the PCR model and closed circles indicate 
“unknown” spectra which were not in the training set. Error bars show 
standard deviation. The expected proportional fit is shown. 

was formed using 20 PCs and was 3.57%; the error in the 
training set at this point was 2.34%. This can also be clearly 
seen in Figure 4E which is a plot of the percentage rms error 
of the test set versus the percentage rms error of the training 
set. This was perhaps surprising because Unscrambler I1 
stated that the optimal model should be formed using only 
three PCs; at this point the percentage rms error in the training 
and test sets were 5.83 and 6.63, respectively (Table 2), and 
one would have presumed that using more than three factors 
would cause overfitting (Le., inaccurate predictions on the 
test data). The model’s predictions were then made using 20 
PCs and a plot of the PCRs  predictions versus the true amount 
of RNA mixed in glycogen is shown in Figure 5 .  This graph 
also gave a proportional fit (i.e., y = x). It was therefore 
evident that the PCR calibration model’s predictions of the 
quantity of RNA in the mixtures was very similar to the true 
quantity, both for spectra that were used as the training set 
and for the “unknown” pyrolysis mass spectra. 

PCR models were also formed to estimate the amount of 
lysozyme or DNA mixed in 20 pg of glycogen and the results 
are shown in Table 2. Both groups of the mass spectra of 
these binary mixtures were found to be predicted accurately 
using PCR. 

Finally, the pyrolysis mass spectra of the three binary 
mixtures were analyzed using PLS as outlined above. The 
example illustrated is from the spectra of 0-100 pg of DNA 
mixed in 20 pg of glycogen. After the model was created the 
first two PLS factors for the training sets were plotted (Figure 
6A). Again the majority of the variation was preserved, in 
that the first two PLS factors accounted for 56 and 31% of 
thevariance, respectively. It was again evident that the major 
difference was between the spectra of pure glycogen and 
samples containing DNA; a combination of the first and second 
PLS factors accounted for the difference in the amount of 
DNA in the glycogen backgrounds. Figure 6B is the PLS 
(mass) loadings plot of all 150 masses; as with the PCR model 
of RNA in glycogen, this plot shows that all masses were 
again approximately equally influential in forming the PLS 
model. When only the masses that predominate in the mass 
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Figure 6. PLS scores plot based on PyMS data for DNA of the stated number of micrograms mixed with 20 c ~ g  of glycogen (A). The flrst two 
PLS factors account for 50 and 31% of the total variation, respectively. (B) PLS loadings plot showing all 150 masses: a reduced number of 
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model was formed using seven PLS factors, and the number of latent variables used in predictions Increases from right to left. 

spectra of glycogen (mlz 60, 69, 85, 97, 128, and 144) and 
DNA ( m / z  53, 70, 8 1, and 98) are plotted (Figure 6C) they 

form two distinct groups (although mlz 69 and 97 from 
glycogen group with the masses from the spectrum of DNA) 
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Flour0 7. PLSl predictions plotted against the true amount of DNA 
(0-100 yg in 20 pg of glycogen), using five PLS factors in the calibration 
model (the point at which Figure 6 had Indicated that optimal calibration 
took place). Data point8 are the averages of the quadruplicate pyrolysis 
mass spectra. Open ckcles represent spectra that were used to caiibrate 
the PLSl model and closed circles Indicate “unknown” spectra which 
were not in the training set. Error bars show standard deviation. The 
expected proportional fit Is shown. 

which map opposite each other, implying that these two sets 
of masses are mainly negatively correlated. Finally, when 
the mass loadings plot (Figure 6C) is overlaid on the factor 
plot (Figure 6A), it may be seen that the masses that 
predominate the spectra of glycogen and DNA lie in the same 
area as the samples from pure glycogen and 100 pg of DNA 
in 20 pg of glycogen, respectively. 

To assess the accuracy of the predictions after the model 
was calibrated, different numbers of latent variables were 
used in the predictions, and the rms error between the true 
amount of determinand and the predicted amount for both 
the training and test set was calculated (Table 2) and plotted 
against the number of PLS factors used to form the calibration 
model (Figure 6D). The open circles represent the percentage 
rms error of the data used to create the model (the training 
set) and the closed circles the data from the test set. It can 
be seen that the error in the training set very rapidly decreases 
to below 1% with the first 10 latent variables and then gradually 
continues to decrease to 0%. The error in the test set, however, 
decreases rapidly to 5.68% with the first seven PLS factors 
and then does not decrease any further. The optimal 
calibration model therefore appears to be formed using only 
seven PLS factors; this is also clearly seen when the percentage 
rms error of the test set is plotted against the percentage rms 
error of the training set (Figure 6E). (Unscrambler in fact 
stated that optimal calibration occurred using only three 
factors; from the values of rms error it could be seen that this 
was not the case (Table 2).) Once again it is presumably to 
be considered that when more than three latent variables were 
used in predictions, this would cause overfitting (i.e,, give 
inaccurate predictions on the test data) and may be due to 
influences of %oisen in the training data. A plot of the PLS 
predictions using seven latent variables versus the true amount 
of DNA mixed in glycogen is shown in Figure 7. It can be 
seen that the pyrolysis mass spectra of the training set (open 
circles) were accurately predicted and that the estimates for 
the “unknownn spectra were also predicted well with the 
exception of 5 ,  75, and 85 pg of DNA mixed in 20 pg of 
glycogen which were estimated to be 12, 83, and 94 pg of 

DNA respectively. When ANNs and PCR were calibrated 
to predict the amount of DNA, the 75- and 80-pg mixes were 
still inaccurately predicted as 83  and 94 pg of DNA, 
respectively; however, the 5-pg mix was accurately estimated. 
Rather than these inaccuracies being a failure of the 
multivariate methods to quantitate the pyrolysis mass spectra 
of DNA mixed in glycogen, it is more likely to be due to 
erroneous experimental measurements since when DNA was 
mixed in water, it formed a very viscous colloid, and it was 
difficult to prepare concentrations above 12 pg pL-l. In any 
event, Figure 7 shows a proportional fit (i.e., y = x ) ,  and it 
was evident that the PLS calibration model’s predictions of 
the quantity of DNA in the mixtures was in most cases very 
similar to the true quantity. 

PLS models were also formed to estimate the amount of 
lysozyme or RNA mixed in 20 pg of glycogen and the results 
are shown in Table 2. Both groups of the mass spectra of 
these binary mixtures were found to be predicted accurately 
using PLS. 

Table 2 gives the percentage rms error on the predictions 
produced by ANNs, PCR, and PLS on both the training and 
test sets for all three sets of binary mixtures. The number of 
hidden nodes, scaling on the output layer, and the number of 
latent variables used are also given. It can be seen in all 
instances the number of PCs used to give optimal calibration 
models in PCR was higher than the number of PLS factors 
needed but that the percentage rms error on prediction was 
approximately the same, typically between 1 and 2% for the 
training set and 3.5 and 6% for the “unknownn mass spectra 
in the test set. In addition, optimal calibration models were 
produced using more latent variables than Unscrambler stated 
should give optimal predictions; this usually implies that there 
are nonlinear relationships within the pyrolysis mass spectral 
data.s When ANNs were trained to analyze the pyrolysis 
mass spectra of the binary mixtures the results were more 
accurate, and it is likely that this method was indeed mapping 
nonlinear relationships in the data. The best estimates were 
obtained when ANNs were trained using the standard back- 
propagation algorithm, with one hidden layer of eight nodes 
(150-8-1), and the output node scaled between -50 and 150. 
ANNs of the same architecture but containing no hidden 
layers (1 50-1) were also trained until an rms error between 
the desired and true output in the training set of 0.5% was 
reached. ANNs of this type should map linearly and therefore 
possibly to the same degree of accuracy as PCR and PLS. 
Although training was significantly slower (in terms of the 
number of epochs) and not quite as accurate as for the 150- 
8-1 ANNs, the estimates obtained were still more accurate 
than the best predictions produced by the PCR and PLS 
calibration models. In conclusion, these results indicate that 
ANNs, which can be used to uncover nonlinear as well as 
linear properties in data, produced superior results as compared 
to the linear mapping techniques of PCR and PLS, in terms 
of the ability to quantitate the pyrolysis mass spectra of either 
0-100 pg of lysozyme, RNA or DNA mixed in 20 pg of 
glycogen. 

In other studies ANNs and PLS were set up using data 
that were scaled differently. Previously data from each 
pyrolysis mass spectrum were scaled across the whole mass 
range such that the lowest ion count was set to 0 and the 
highest to 1 .  In this set of studies the mass spectra were 
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Table 9. Comparbon d Artlfklal Neural Network Callbration to the Analyrk d Pyrolyrk Mas# Spectra from Binary YMurra. 
each input node was scaled and mass values 

lower than those below were set to zeroc scaling 
used in 
Table 2b 0 32 65 130 650 

Protein (0-100 pg) Mixed in 20 pg of Glycogen 
no. of epochs 9870 7809 5986 17833 7008 1252 
% time takend 100 79.12 60.65 180.68 71.00 12.68 
% rms error of training set 0.50 0.26 0.25 0.10 0.25 1.00 
% rms error of test set 1.36 1.11 1.33 1.49 1.83 4.62 

RNA (0-100 pg) Mixed in 20 pg of Glycogen 
no. of epochs 103000 11624 7166 952 7689 22349 
% time takend 100 11.29 6.94 0.92 7.47 21.70 
% rms error of training set 0.50 0.25 0.50 1.00 0.75 0.75 
% rms error of test set 1.16 1.36 1.90 1.88 1.69 1.58 

DNA (0-100 pg) Mixed in 20 pg of Glycogen 
no. of epochs 36000 18539 2113 1080 219 2684 
% time takend 100 51.50 5.87 3.00 0.61 7.46 
% rms error of training set 0.50 0.10 0.50 0.75 1.00 1.00 
% rms error of test set 2.49 2.57 2.77 3.16 3.56 3.01 

The architecture used was 150-8-1, employing the back-propagation algorithm, with the out ut node scaled from -50 to 150. Two scaling 
methods were used on the in ut layer and some masses removed from the analysis to assess wtether generalization &proved. The values 
shown are from optimum A&N generalization. This was judged as the point at which the lowest % rma error in the teat set was obtained. 
The numbers shown are the averages of three ANN training runs. * The input layer was scaled across the whole mass range such that the 
lowest mass was set to 0 and the highest mass to 1. c The masses that were removed from the analyses (by setting the values to 0) were chosen 
to reflect a percentage of the total ion count (29; 0 was the control where no masses were removed, 32 was equivalent to 0.06 %, 65 to 0.1 %, 
130 to 0.2 %, and 650 was equivalent to 1 % of the total ion count. The in ut layer was scaled for each input node such that the lowest mass 
was set to 0.4 and the highest mass to 0.6. Based on the number of epoc& needed to train ANN8 which were scaled across the whole mass 
range. 

scaled for each mass such that the lowest mass was set to 0.4 
and the highest mass to 0.6. This alternative scaling had no 
effect on PLSl calibrations (data not shown); this was not 
surprising because before calibration the X data were scaled 
in proportion to the reciprocal of their standard deviations 
(and so were scaled for each mass anyway). This method of 
scaling did however have a very marked effect on the neural 
net analyses; most notable was the decrease in the time required 
to train the networks to a particular rms error (Table 3). The 
network was trained and the extent of training monitored by 
calculating the percent rms error in the test set (data not 
shown, but for an example see Figure 2); when this error had 
reached a minimum the network was said to have reached 
optimal generalization. For the analysis of protein mixed in 
glycogen, the time taken was less than 80% compared to the 
scaling method previously used, and in addition to this increase 
of speed the network also generalized (to the test set) better, 
viz., to 1 .1  1% rms error in the test compared to 1.36% obtained 
earlier. For RNA and DNA mixed in glycogen the time taken 
was 1 1.3% and 5 1.5%, respectively, although the error in the 
test set was slightly greater than the values previously observed. 

It is known in some cases that removing “unimportant” X 
data can significantly improve both the speed of learning and 
of g e n e r a l i ~ a t i o n . ~ ~ . ~ ~  In addition to employing the above 
“individual” method of scaling, therefore, masses were removed 
to ascertain the effects both on network generalization and 
on the speed of training required to obtain the optimal 
calibration models for both ANNs and PLS1. The masses 
were removed from the analyses by setting their values to 0 
and were chosen to reflect a percentage of the total ion count. 
The pyrolysis mass spectra were initially normalized so that 
the total ion count was 216; 0 therefore represents the control 
where no masses were removed, then masses of value 32 or 
less were removed which is equivalent to 0.05% of the total 
ion count, 65 or less (0.1%), 130 (0.2%), and masses less than 
or equal to 650 were set to 0 which represented 1% of the 

total. The results of such ANN analyses are shown in Table 
3, where it can be seen that in general the minimal percent 
rms error of the test set increases when more masses are 
removed. It is noteworthy that although this error rises, it is 
however not as bad as the error level found when PLSl or 
PCR were used to analyze the three mixtures (Table 2). Also 
with the exception of removing mass values of 65 or less for 
protein in glycogen the time taken to train the ANN is 
significantly more rapid than ANNs using all the masses. In 
fact, when masses whose values are lower than 65 and 130 
were removed for the analysis of the binary mixtures of RNA 
and DNA respectively the time taken is sofast that it is less 
than I %  of the total time to train the ANNs using all the 
masses and scaled across the entire mass range. 

The same masses were removed from calibration models 
formed with the PLSl algorithm using Unscrambler. The 
models were calibrated using 1, 2, 3, ..., 10, and 20 latent 
variables, and to assess the accuracy of the calibrations the 
numbers of latent variables used in the three sets of predictions 
were plotted against the percent rms error between the true 
amount of determinand and the predicted amount for the test 
set (Figure 8). For the analysis of the mixture of protein and 
glycogen it can be seen in Figure 8A that better calibration 
models were formed when some masses were removed from 
the analyses. When no masses were removed the lowest percent 
rms error of the test was 3.71% which was formed with seven 
factors; however, when mass intensities of 0.05% (132) of the 
total or lower were removed the lowest error found was 3.42% 
with seven factors, and an error level of 3.71% was found 
when five factors were used in the predictions. A further 
reduction in information by removing 65 (SO. 1 %) masses were 
studied and the best model was formed using only three latent 
variables and was 3.62%. The models then deteriorated when 
more masses were removed (Figure 8A). Theseresultsstrongly 
imply that PLS models are not very robust to noise and that 
removing small amounts of data improves calibration as 
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Masses with ion counts of less than or equal to the 
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Figure 8. Effect of the number of PLS factors and the effectbe number 
of masses used on the percentage rms error of the test sets for the 
calibration models formed for the quantification of 0-100 pg of proteln 
(A), RNA (B), or DNA (C) In 20 pg of glycogen. Masses were removed 
from the analyses (by setting the values to 0) if the ion count (after 
normalization of the total Ion count to 65 536, Le., 2‘9 was less than 
or equal to 0 (thls was the control where no masses were removed), 
32(equbalentto0.05% of thetotalioncount), 65(0.1%), 130(0.2%), 
or 650 (1 % of the total). 

indicated by the lower error levels found in the test set and, 
perhaps more importantly, fewer latent variables were used.77 
When the pyrolysis mass spectra of RNA mixed in glycogen 
were analyzed with PLS (Figure 8B) similar, but less obvious, 
results were seen and the best model was formed when mass 
intensities of 0.1% (165) of the total ion count or lower were 
removed: an rms error of 3.99% was found when five factors 
were used compared with 4.03% with five factors when all of 
the data were used in calibrations. For the quantification of 
0-100 pg of DNA in 20 pg of glycogen the best calibration 
using all the masses was formed with seven factors in the 
prediction and was 5.68% rms error of the test set. It was 
mentioned above that when large number of latent variables 
are used in the calibration model it implies that the model 
formed was overfitting the data and may be influenced by 
noise in the data. It was therefore very significant that when 

masses of intensity of 51% of the total (650) were removed 
from PLS analyses, the best calibration model was formed 
using only three factors and the rms error in the test set was 
5.77%. 

In conclusion, it was observed that removing low-intensity 
masses when calibration models were formed using the PLS 
algorithm gave better results because lower (or at least very 
similar) error levels in the pyrolysis mass spectra of the test 
sets were formed when predictions were made using fewer 
latent variables. Removing data for ANN analyses did neither 
improve network generalization nor cause a significant 
deterioration in calibrations (and was still superior to PLS 
calibration). However, scaling each input node (as compared 
to scaling across the mass range) did speed up network training 
significantly. This may well be due to the premature 
saturations1 of the nodes associated with very large and very 
small peaks in the spectra; scaling for each node individually 
reduces the likelihood of the initial (random) weights leading 
the nodes to be saturated (fully on or fully off). 

Analysis of a Tertiary Mixture. The three-way mixture of 
S. aureusNCTC6571, B.subtilisDSM10,andE. coliW3110 
were analyzed by PyMS. The spectral data were split into 
two sets. The training set contained the normalized triplicate 
ion intensities from the pyrolysis mass spectra from tertiary 
mixtures describing the percentage of S. aureus, B. subtilis, 
and E. coli (Le., 198 objects representing 66 triplicates, and 
see Figure 9A). The test set contained both the training set 
and the 16 ”unknown” pyrolysis mass spectra (Table 1 and 
Figure 9A). The next stage was to use ANNs, PCR, and 
PLS, as outlined above, to predict the proportional amount 
of bacteria in the three-way mixture. 

We therefore initially trained three ANNs using the 
standard back-propagation algorithm, with PyMS data nor- 
malized to 216 from the training sets as the inputs (and scaled 
across the whole mass range such that the lowest mass was 
set to 0 and the highest mass to 1) and the percentage amount 
of the three bacteria as the outputs, the latter were scaled 
between -50 and 150. The training set therefore consisted of 
198 objects each with 150 variables (masses) and training 
was consequently very slow. ANNs were therefore trained 
for 1 X lo5 epochs (this was equivalent to approximately 12 
h of training time). After training, the test data were applied 
to the network‘s input nodes and the predictions are shown 
in Figure 9B where it can be seen that both the training (closed 
circles) and test sets (closed crosses) were accurately estimated. 
This plot may be difficult to interpret so plots of the network’s 
estimates versus the true percentage amounts of bacteria are 
shown in Figure 10. All three plots gave a proportional fit 
(i.e., y = x ) ,  although the estimates of 75% B. subtilis in the 
binary mixtures with S. aureus or E.  coli were rather inaccurate 
as judged by the large error bars. The rms error in the three 
networks were for S.aureus 2.42%, B. subtilis 5.24% and for 
E. coli 1.51% (Table 4), and it was therefore evident that the 
network‘s estimate of the percentage of the three bacteria was 
very similar to the true quantity, both for spectra that were 
used as the training set and for the “unknown” pyrolysis mass 
spectra. 

In other studies ANNs were set up to estimate the 
percentage of all three bacteria simultaneously. The same 

(81) Lee, Y.; Oh, S.-H.; Kim M. W .  Neural Networks 1993, 6. 719-728. 
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Flgure B. Expected (A) and actual results (B) of the estimates of 
150-8-1 neural networks trained to anaiyse the tertiary mixtures of S. 
aureus, B. subtilis, and E. coli. Closed circles represent spectra that 
were used to train the network and crosses indicate "unknown" spectra 
which were not in the training set. 

training and test sets were used, the network employed the 
standard back-propagation algorithm and the output layer of 
three nodes was scaled from -50 to 150. This network trained 
very slowly so was trained for 2.5 X lo5 epochs (training took 
about 36 h). The ANN was then interrogated and the percent 
rms error of the training and test set calculated (Table 4). 
From Table 4 it can be seen that this network had not 
generalized as well as the three 150-8-1 ANNs, although 
these network's estimates were reasonably accurate. Arguably 
the main problem is that in trying to teach fully interconnected 
feedforward networks more than one thing at a time conflicting 
error messages are back-propagated from the output layer 
during the learning pr0cess.~~,~3 That is to say, the error that 
is fed back from one of the three output nodes is fed to all 
eight nodes in the preceding hidden layer, which also contains 
information pertinent to learning the other two targets; if one 
target is failing to be learned and thus sends the algorithm off 
in a different direction in weight space, it will inevitably hinder 
the learning of the other targets. 

(82) Jordan, M. I. J .  Marh. Psychol. 1992, 36, 396-425. 
(83) Jordan, M. I.; Rumelhart, D. E. Cognit. Sci. 1992, 16, 307-354. 
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Figure 10. Estimates of trained 150-8-1 neural networks against the 
true percentage of S. aureus (A), B. subtllls (B), and E. cdi (C) in 
mixures of the three organisms. ANNs were trained using the standard- 
back propagation algorithm for 1 X lo5 epochs (which took about 12 
h). Data points are the averages of the triplicate pyrolysis ma88 spectra. 
Open circles represent spectra that were used to train the network 
and closed circles indicate "unknown" spectra which were not in the 
training set. Error bars show standard deviation. The expected 
proportional flts are shown. 

The next stage was to evaluate the accuracy of the analysis 
of the tertiary mixture using PCR and PLS. Both PCR and 
PLS were set up as detailed above and models calibratedusing 
the same training data as used for ANNs analyses. In the 
first instance PCR and PLS were calibrated to predict only 
the percentage of one of the bacteria (Le., calibrated using 
one variable in the Y matrices); in separate calibrations, all 
three Yvariables were used for in model callibration using the 
PCR and PLS2 algorithms. Table 4 gives the percentage rms 
error on the predictions produced by PCR (calibrated using 
one or three Yvariables) and PLS 1 and -2 on both the training 
and test sets for the tertiary mixture. It can be seen that PCR 
and PLS can be used to gain quantitative information from 
the tertiary mixture whether models are formed to predict 
one or three variables in the Y matrix. For PCR optimal 
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Table 4. Comparkon of ArtHlclal Neural Network Callbratlon with Prlnclpal Component Regrer#rlon and Partial Least Squares In the 
Analydr of Pyrolyrk M a u  Spectra from Tertlary Mixtures 

Percentage of Staphylococcus aureus 

artificial neural networks partial least squares 1 

% rms error of no. of % rms error of 
no. of training test PLSl or 2 training test 

architecture epochs set set factors set set 

150-8-la 100OOO 0.50 2.42 3c 2.19 5.76 
150-8-8 250000 2.18 6.99 4d 1.81 4.85 

5 1.29 5.31 
7 0.83 5.75 

10 0.59 5.98 

PLS2 
% rms error of 
training test 

set set 

2.16 6.14 
2.10 5.44 
1.43 4.52 
0.98 5.77 
0.80 5.86 

Percentage of Bacillus subtilis 

artificial neural networks partial least squares 1 

architecture 

% rms error of no. of 
no. of training test PLSl or 2 

epochs set set factors 

150-&1° 100OOO 0.67 5.24 3' 
15-8-3' 250000 2.25 6.52 4d 

5 
7 

10 

% rms error of 
training test 

set set 

2.42 4.83 
2.00 3.84 
1.59 4.67 
1.28 4.59 
1.00 4.85 

PLS2 
% rms error of 
training test 

set set 

3.15 6.83 
2.09 3.86 
2.09 3.88 
1.57 4.54 
1.16 4.85 

principal component regression 

1 Y variable 
calibrated using calibrated using 

all 3 Y variables 
% rms error of 

no. of training test training test 
PCS set set set set 

3 4.57 13.29 4.57 13.29 
46 2.32 5.56 2.32 5.56 
5 1.95 4.75 1.95 4.75 
7 1.63 5.27 1.63 5.27 

10 1.02 5.90 1.02 5.90 
15 0.88 5.70 0.88 5.70 
20 0.82 5.81 0.82 5.81 
40 0.69 5.92 0.69 5.92 
79 (mas) 0.51 5.76 0.51 5.76 

% rms error of 

principal component regression 

1 Y variable 
calibrated using calibrated using 

all 3 Y variables 
% rms error of 

no.of training test training test 
PCS set set set set 

3 5.98 14.18 5.98 14.18 
4b 2.41 3.97 2.41 3.97 
5 2.35 3.78 2.35 3.78 
7 1.78 4.59 1.78 4.59 

10 1.46 4.50 1.46 4.50 
15 1.41 4.67 1.41 4.67 
20 1.35 4.93 1.35 4.93 
40 1.13 4.36 1.13 4.36 
79 (mas) 0.93 4.80 0.93 4.80 

5% rms error of 

Percentage of Escherichia coli 
principal component regression 

artificial neural networks partial least squares 1 
% rms error of no. of % rms error of 

no.of training test PLSl or 2 training test 
architecture epochs set set factors set set 

150-8-1' 100000 0.58 1.51 3c 2.65 3.70 
160-8-3' 250000 2.78 3.73 4d 2.35 3.87 

5 1.93 2.71 
7 1.53 3.21 

10 1.16 2.86 

PLS2 
% rms error of 

calibrated using calibrated using 
all 3 Y variables 1 Y variable 

% rms error of % rms error of 
training test 

set set 

3.31 3.24 
2.75 3.73 
2.26 3.16 
1.62 3.21 
1.29 2.79 

no. of 
PCS 

3 
4b 
5 
7 

10 
15 
20 
40 
79 (mas) 

training test 
set set 

3.26 3.15 
2.87 3.82 
2.78 3.44 
2.43 3.06 
1.69 3.21 
1.65 2.88 
1.57 2.84 
1.35 3.36 
1.02 2.78 

training teat  
set set 

3.26 3.15 
2.87 3.82 
2.78 3.44 

.2.43 3.06 
1.69 3.21 
1.65 2.88 
1.57 2.84 
1.35 3.36 
1.02 2.78 

Output node was scaled from -50 to 150. 0 timal number of principal components, redicted by Unscrambler 11. c Optimal number of 
factors using PLS1, predicted by Unscrambler If Optimal number of factors using PLf2, predicted by Unscrambler 11. 

calibration occurs for S. aureus and for B. subtilis when five 
latent variables are used, the percent rms error of the test set 
was 4.75% and 3.78%, respectively. It is not surprising that 
it does not matter if the latent variables from the X matrix 
were regressed onto one or three variables in the Y matrices, 
this is because there is no reduction of the Y matrix in PCR 
analysis and whether three different matrices or one matrix 
containing all the Y data were used, the model regresses onto 
each of the Y variables separately. For E .  coli when five 
principal components were used in the prediction models, the 
rms error of the test set was 2.7 1%; however, models employing 
20 latent variables gave optimal estimation of the 2.34% rms 
error of the test set. Very similar percent rms error values 
were also seen when PLSl and -2 were used to create 

calibration models (Table 4). In this instance because PLS 
forms a reduction on the Y matrix and then regresses the 
latent variables from the X matrix on to the reduced Y matrix, 
better predictions occurred when the Y matrix contained only 
one variable. It is therefore evident that although the test set 
error was higher than the error from ANN analyses, these 
linear regression methods could also be used to analyse three- 
way mixtures. In fact PCR and PLS assessed the pyrolysis 
mass spectra in terms of the amount of B. subtilis in a more 
accurate fashion than did either 150-8-1 or 150-8-3 ANNs. 

The training sets used above used 198 pyrolysis mass spectra 
(66 samples triplicated) because it was found previously29 
that for the quantitative analysis of binary mixtures the 
concentration range of any determinand was advantageously 
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Table 5. Comparlron of Artklal  Neural Network CaUbratlon 
wlth Partial Squares In the Analysis of Pyrolysts Mass Spectra 
from Tertiary Mixtures. 

Percentage of Staphylococcus aureus 
artificial neural networks partial least squares 2 

re1 error of no. of re1 error af 
no. of training test PLS2 training test 

architecture epochsb set set factors set set 

150-8-3c 2700 0.56 4.63 2 8.74 14.00 
150-3' 5410 0.65 4.35 3d 2.01 7.59 
150-8-1' 5460 0.50 5.11 4 1.32 6.19 
150-lC 7470 0.50 4.44 5 0.57 6.57 

Percentage of Bacillus subtilis 
artificial neural networks partial least sauares 2 

re1 error of 
no.of training test PLS2 training test 

architecture epochsb set set factors set set 

150-8-3' 2700 0.41 5.65 2 6.86 11.18 
150-3' 5410 0.37 5.05 3d 3.51 7.73 
150-8-1' 2080 0.50 5.50 4 1.20 4.56 
150-1' 3130 0.50 4.93 5 0.89 4.77 

re1 error of no. of 

Percentage of Escherichia coli 
artificial neural networks partial least sauares 2 

re1 error of no. of re1 error of 
no. of training test PLS2 training test 

architecture epochsb set set factors set set 

150-8-3' 2700 0.52 5.95 2 3.36 5.50 
150-3' 5410 0.43 3.77 3d 2.12 4.10 
150-8-1' 1170 0.50 7.07 4 1.13 4.30 
150-1' 5050 0.50 4.12 5 1.06 4.37 

Average of All Three Predictions 
partial least sauares 2 artificial neural networks 

re1 error of no. of re1 error of 
no. of training test PLS2 training test 

architecture epochsb set set factors set set 

150-8-3' 2700 0.50 5.44 2 6.70 10.82 
150-3' 5410 0.50 4.42 3d 2.64 6.69 
150-8-1' 1170-5460 0.50 5.95 4 1.22 5.09 
150-1' 3130-7470 0.50 4.51 5 0.87 5.33 

a All models were calibrated using only the spectra of axenic 
suspensions of S. aureus, B. subtilis, and E. coli. Relative errors are 
given in 5% rms. * When the error of the training set was 0.5% rms. 
c Output node was scaled from -50 to 150. Optimal number of PLS2 
factors, predicted by Unscrambler 11. 

split into 10 equal parts (i.e., 0, 10, 20, ..., 100%) in order to 
get such neural networks to generalize well. To collect the 
pyrolysis mass spectra of 198 samples takes 5 h (198 X 1 min 
50 s) and this is obviously not desirable. Thequestion therefore 
arises as to whether fewer exemplars would produce accurate 
calibration models. 

PLSZ with three variables in the Y matrix, and ANNs of 
architectures 150-8-3, 150-3, 150-8-1, and 150-1 were 
therefore calibrated with only the spectral data from the axenic 
(pure) bacterial suspensions of S. aureus, B. subtilis, and E.  
coli. The results, evaluated by calculating the rms error 
between the model's estimates and the true amount of 

determinand, for both the training and test sets for the 
individual bacteria and the average of all three predictions, 
are shown in Table 5 .  This table also includes the number 
of epochs needed to train the ANNs to 0.5% rms error in the 
training set, and not surprisingly after the great reduction in 
exemplars used to train the ANNs there was a huge decrease 
in training time. It can be seen that the percent rms error in 
the test sets were comparable for both ANNs and PLS2 and 
that although this error was higher than those observed from 
using all 66 samples (Table 4) ANNs and PLSZ could be used 
to give relatively accurate but very rapid estimates of the 
percentage amounts of S. aureus, B. subtilis, and E.  coli 
present in the tertiary mixture. 

In summary, we have shown that the combination of PyMS 
with multivariate analyses of ANNs and the linear regression 
methods of PLS and PCR were able quantitatively to analyze 
the PyMS of three binary mixtures of the protein lysozyme, 
RNA or DNA in glycogen, and accurately to predict the 
amounts of S .  aureus, B. subtilis, and E. coli in a tertiary 
mixture. ANNs gave consistently better predictions than did 
the linear regression methods, presumably due to their ability 
to uncover nonlinear as well as linear relationships in pyrolysis 
mass spectral data. These nonlinearities may have arisen 
because during pyrolysis intermolecular reactions may have 
taken place in t h e p y r o l y ~ a t e . ~ ~ . ~ ~  It was also found that scaling 
the input layer on ANNs had a very marked effect on the time 
taken for the network to reach optimal generalization and 
that the preferred method for the quantitative analysis of the 
mass spectra from binary mixtures is to scale each input node 
individually so that the minimum and maximum values lay 
between 0.4 and 0.6. Finally, removing low-intensity masses 
had little effect on the accuracy of ANN predictions (but a 
substantial effect on the speed of learning) and slightly 
improved the ability of PLS calibrations. This implies that 
there was some noise in the mass spectral data to which the 
ANNs were robust but which the linear regression analyses 
must have incorporated into their calibration models. 

We conclude that the combination of PyMS and ANNs 
constitutes a powerful and exciting methodology for the rapid 
analysis of mixtures and would be applicable to assessing the 
concentrations of appropriate substrates, metabolites, and 
products in biochemical processes generally. 
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