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Abstract 

In pure form indole, when subjected to pyrolysis mass spectrometry @MS), gave a pattern of peaks at m/z 117, 
90,89 and a murmur at 63. Significant differences in the magnitudes of these peaks were observed between strains of 
Escherichia coli which were grown on nutrient agar and which differed solely in whether a transposon had been 
inserted into the tryptophanase gene or elsewhere within the genome. We applied artificial neural networks (ANNs) 
to the deconvolution of pyrolysis mass spectra. The combination of ANNs and PyMS was able quantitatively to detect 
the component indole when a single strain of E. coli, containing the tryptophanase gene, was grown on a minimal 
supplemented salts medium incorporating various amount of tryptophan, in the range O-253 mg/l. This approach 
constitutes a novel, powerful and interesting technology for the analysis of the concentrations of appropriate 
substrates, metabolites and products in chemical and bioprocesses generally. 
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Pyrolysis is the thermal degradation of com- 
plex material in an inert atmosphere or a vac- 
uum. It causes molecules to cleave at their weak- 
est points to produce smaller, volatile fragments 
called pyrolysate [1,2]. A mass spectrometer can 
then be used to separate the components of the 
pyrolysate on the basis of their mass-to-charge 
ratio (m/z) so as to produce a pyrolysis mass 
spectrum, which can then be used as a “chemical 
profile” or fingerprint of the complex material 
analysed. 

Within microbiology, this technique, called py- 
rolysis mass spectrometry @MS), has largely 
been applied to the characterisation of bacterial 
systems (for reviews see Refs. 3-5). In particular, 
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PyMS, because of its high discriminatory ability, 
has been successfully applied to the inter-strain 
comparison of a wide range of bacterial species 
and groups, including: Bacillus [6], Corynebuc- 
tetim [3], Escherichiu coli [7,8], Legionella 191, 
mycobacteria [ 10-121, salmonellae [13] and strep- 
tococci [141, highlighting the usefulness of this 
technique in the detection of small differences 
between microbial samples. Furthermore, one of 
the major advantages that PyMS has over other 
diagnostic methods, such as ELISA [15] and nu- 
cleic acid probing [16], is that it is rapid, both for 
a single sample and with respect to the (auto- 
mated) throughput of samples. Typical sample 
time is less than 2 min. 

PyMS of complex organic mixtures can be ex- 
pressed in subpattems of spectra describing the 
pure components of the mixtures and their rela- 
tive concentrations [17]; here the authors success- 
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fully used factor and discriminant analyses [l&19] 
to uncover the concentration of components (ex- 
pressed in the form of “variance diagrams”) from 
various sets of simulated mixtures (biopolymers, 
lignites and grass leaves). It is plausible that such 
an approach would be successful in estimating 
the concentrations of biochemical components 
from pyrolysis mass spectra of microorganisms 
(simply another form of complex mixture). 

Chemometrics is the discipline concerned with 
the application of statistical and mathematical 
methods to chemical data, typically via the trans- 
formation of multivariate spectral inputs into the 
concentrations of target determinands [20,21]. A 
related approach is the use of (artificial) neural 
networks (ANNs), which are, by now, a well- 
known means of uncovering complex, nonlinear 
relationships in multivariate data. ANNs can be 
considered as collections of very simple “compu- 
tational units” which can take a numerical input 
and transform it (usually via summation) into an 
output (see Refs. 22-27 for excellent introduc- 
tions). The relevant principle of supervised learn- 
ing in ANNs is that the ANNs take numerical 
inputs (the training data) and transform them 
into desired predetermined outputs. The input 
and output nodes may be connected to the “ex- 
ternal world” and to other nodes within the net- 
work. The way in which each node transforms its 
input depends on the so-called “connection 
weights” (or “connection strength”) and “bias” 
of the node, which are modifiable. The output of 
each node to another node or the external world 
then depends on both its weight strength and bias 
and on the weighted sum of all its inputs, which 
are then transformed by a (normally) nonlinear 
weighting function referred to as its activation 
function. For present purposes, the great power 
of neural networks stems from the fact that it is 
possible to “train” them. Training is effected by 
continually presenting the networks with the 
“known” inputs and outputs and modifying the 
connection weights between the individual nodes 
and the biases, typically according to some kind 
of back-propagation algorithm [28], until the out- 
put nodes of the network match the desired out- 
puts to a stated degree of accuracy. The network, 
the effectiveness of whose training is usually de- 

termined in terms of the root mean square (RMS) 
error between the actual and the desired outputs 
averaged over the training set, may then be ex- 
posed to “unknown” inputs and will then im- 
mediately” output the globally optimal best fit to 
the outputs. 

The reason this method is so attractive for the 
quantitative analysis of PyMS data is that it has 
been shown mathematically [29-311 that a neural 
network consisting of only one hidden layer, with 
an arbitrarily large number of nodes, can learn 
any, arbitrary (and hence nonlinear) mapping to 
an arbitrary degree of accuracy. ANNs are also 
considered to be robust to noisy data, such as 
those which may be generated by PyMS. 

In this study the combination of PyMS and 
ANNs was evaluated for the possible use of these 
techniques quantitatively to analyse biological 
samples for the presence of unknown concentra- 
tions of determinands. Although ANNs have been 
applied to analyses for the presence of functional 
groups in the mass spectra of purified compounds 
[32], we believe this to be the first demonstration 
of the ability of ANNs quantitatively to analysis 
pyrolysis mass spectra in terms of the concentra- 
tions of target determinands. 

EXPERIMENTAL 

Bacterial strains 
The three strains used in this study were E. 

coli W3110, a laboratory strain [33], EC0861 and 
EC0883. EC0861 and EC0883 have the com- 
mon E. coli parent strain EC080, a nalidixic 
acid-resistant mutant of a natural isolate from 
chicken litter, EC070 1341, into which the trans- 
poson Tn1732 1351 was inserted [36]. In the case 
of EC0883, Tn1732 was inserted into the trypto- 
phanase gene (tnaA), inactivating the gene, thus 
making this strain indole-negative. In EC0861, 
Tn1732 was inserted into another chromosomal 
region and the strain remained an indole pro- 
ducer. Strains were maintained on nutrient agar 
slopes (LabM) at 4°C. 

Growth conditions 
For the preliminary analyses of strains by PyMS 

cultures were grown on nutrient agar (LabM) for 
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16 h at 37°C. In the experiment investigating the 
production of indole, strains were grown for 16 h 
at 37°C on a minimal salts supplemented media 
[MSSM: &PO, (BDH), 7.0 g; KH,PO, (BDH), 
3.0 g; (NH&SO, (BDH), 1.0 g; sodium citrate 

(BDH), 0.5 g; Mgso,S7~,~ (BDH), 0.25 8; 
casamino acids (D&o), 5.0 g; glucose (BDH), 4.0 
g; agar (Oxoid), 16.5 g; H,O, 1 11 with increasing 
amounts of DL-tryptophan (BDH) incorporated, 
ranging from 0 to 253 mg/l (0, 19, 38, 56, 74, 92, 
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Fig. 1. Pyrolysis mass spectra of (A) 15. cofi EC0861, (B) E. coli EC0883, (C) and indole. 
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109,127,143,160,176,192,208,223,238 and 253 
mg/l). 

Sample preparation for pyrolysis mass spectrom- 

etry 
Clean iron-nickel foils (Horizon Instruments, 

Heathfield) were inserted, using clean forceps, 
into clean pyrolysis tubes (Horizon Instruments), 
so that 6 mm was protruding from the mouth of 
the tube. After incubation, bacteria were picked 
up carefully from the top of one or more well-iso- 
lated colonies, avoiding the plate surface, by 
means of disposable plastic loops and smeared on 
5 mm of a protruding foil to give a thin uniform 
surface coating. The samples were dried by vac- 
uum desiccation for 20 min, then the foils were 
pushed into the tube using a stainless steel depth 
gauge so as to lie 10 mm from the mouth of the 
tube. Finally, viton ‘O’rings (Horizon Instru- 
ments) were placed on the tubes. Cultures to be 
analysed were grown in duplicate and two sam- 
ples were prepared from each, giving four repli- 
cates for each culture. The samples were then 
analysed immediately. For the analysis of indole 
by PyMS: indole was dissolved in warm (SO’C) 
distilled water, to an unknown concentration, and 
a 5 ml aliquot applied to a pyrolysis foil. 

Pyrolysis mass spectrometry 
The pyrolysis mass spectrometer used in this 

study was the Horizon Instruments PYMS2OOX 
as described by Aries et al. [37]. The pyrolysate 
was generated in a vacuum by the heating of a 
ferro-magnetic foil carrying the sample. Heating 
was achieved by passing a radiofrequency current 
for 3 s through a pyrolysis coil which surrounds 
the sample-coated alloy foil. The foil and sample 
heated rapidly, 0.5 s, to the temperature corre- 
sponding to the Curie-point of the iron-nickel 
foil. At this temperature, 53O”C, the alloy ceased 
to exhibit ferro-magnetic properties and heating 
finished; on cooling below the Curie-point, induc- 
tive heating resumed, so that the foil-pyrolyser 
system acted as a thermostatic switch maintaining 
the sample at the Curie-point, until current ceased 
to flow through the pyrolysis coil. The pyrolysate 
then entered a gold-plated expansion chamber 
heated to 15O”C, whence it diffused down a 

molecular beam tube to the ionisation chamber 
of the mass spectrometer. 

The pyrolysate was bombarded with low en- 
ergy electrons (25 eV) producing both molecular 
and fragment ions (because low energy was used 
the majority carried only a single positive charge). 
Non-ionised molecules were deposited on a cold 
trap, cooled by liquid nitrogen. The ionised frag- 
ments were focussed by the electrostatic lens of a 
set of source electrodes, accelerated and directed 
into a quadrupole mass filter. The ions were 
separated by the quadrupole, on the basis of their 
mass-to-charge ratio, and detected and amplified 
with an electron multiplier. The mass spectrome- 
ter scans the ionised pyrolysate 160 times at 0.2 s 
intervals following pyrolysis. Data were collected 
over the m/z range 51 to 200, in one tenth of a 
mass-unit intervals. These were then integrated 
to give unit mass. Given that the charge of the 
fragment was unity the mass-to-charge ratio can 
be accepted as a measure of the mass of py- 
rolysate fragments. The IBM-compatible PC used 
to control the PYMS-200X, was also programmed 
(using software provided by the manufacturers) to 
record spectral information on ion count for the 
individual masses scanned and the total ion count 
for each sample analysed. 

Data analysis 
The data from PyMS may be displayed as 

quantitative pyrolysis mass spectra (Fig. 1). The 
x-axis represents the m/z ratio and the y-axis 
contains information on the ion count for any 
particular m/z value ranging from 51 to 200. 
Data were normalised to a total ion count of 216. 

All ANN analyses were carried out using a 
user-friendly, neural network simulation pro- 
gram, NeuralDesk (Neural Computer Sciences, 
Southampton), which runs under Microsoft Win- 
dows/3.1 on an IBM-compatible PC. To ensure 
maximum speed, an accelerator board for the PC 
(NeuSprint) based on the AT&T DSP32C chip, 
which effects a speed enhancement of some lOO- 
fold, permitting the analysis (and updating) of 
some 400000 weights per second, was used. Data 
were also manipulated prior to analysis using the 
Microsoft Excel 4.0 spreadsheet. 

For training the ANN, the inputs were the 
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averages of the four normalised replicate pyroly- 
sis mass spectra derived from E. coli W3110 
grown on MSSM containing tryptophan at con- 
centrations of 0, 38, 74, 109, 143, 176, 208, 238 
and 253 mg/l, with the output nodes being the 
actual (true) initial tryptophan concentration. 

The primary algorithm used was standard 
back-propagation (BP) [28], running on the accel- 
erator board. As indicated above this algorithm 
employs processing nodes (neurons or units), con- 
nected using abstract interconnections (connec- 
tions or synapses). The format (topology) of the 
network is that of a directed acyclic graph. Con- 
nections each have an associated real value, 
termed the weight, that scale signals passing 
through them. Nodes sum the signals feeding to 
them and output this sum to each driven connec- 
tion scaled by a “squashing” function with a 
sigmoidal shape. 

The training of the network consists of the 
preparation of a set of pairs of patterns where 
one half of the pair is input to the network and 
the other represents the known or expected re- 
sponse. The stimulus pattern is applied to the 
network, which is allowed to run until an output 
is produced at each output node. The differences 
between the actual output and that expected, 
taken over the entire set of patterns are fed back 
through the network in the reverse direction to 
signal flow (hence back-propagation) modifying 
the weights as they go. This process is repeated 
until a suitable level of error is achieved. 

For any given network, set of weight values, 
and set of training patterns there exists an overall 
RMS error value. If one dimension in a multidi- 
mensional space is put aside for each weight, and 
one more for the F&IS error, one can construct 
an error surface. The BP algorithm performs 
gradient descent on this error surface by modify- 
ing each weight in proportion to the gradient of 
the surface at its location. Two parameters, feum- 
ing rate and momentum, control this process. 
Learning rate scales the size of the step down the 
error surface taken each iteration, and momen- 
tum acts like a low pass filter, smoothing out 
progress over small bumps in the error surface. 

It is known that gradient descent can cause the 
network to get “stuck” in a depression in the 

INPUT HIDDEN 
IAER LAER(s) i%EY 

Fig. 2. A neural network consisting of 10 inputs (data herein 
actually consisted of 150 inputs/masses) and 1 output (tryp- 
tophan concentration) connected to each other by 1 hidden 
layer consisting of 8 nodes. In the architecture shown, adja- 
cent layers of the network are fully interconnected, although 
other architectures are possible. 

error surface should such a depression exist. 
These are termed “local minima” 124,261. How- 
ever, it has been found empirically that these are 
seldom problematic for larger networks, since the 
chances of encountering a multidimensional de- 
pression that is bounded in every dimension are 
small. 

The structure of the ANN used in this study 
therefore consisted of 3 layers containing 159 
nodes made up of the 150 input nodes (normal- 
ised pyrolysis mass spectra), 1 output node (initial 
tryptophan concentration), and one “hidden” 
layer containing 8 nodes. Each of the 150 input 
nodes was connected to the 8 nodes of the hidden 
layer which in turn were connected to the output 
node. In addition, the hidden layer and output 
node were connected to the bias, making a total 
of 1217 connections, whose weights will be al- 
tered during training (for a diagrammatic repre- 
sentation see Fig. 2). Before training commenced 
the input and output nodes were normalised be- 
tween 0 and + 1, and the connection weights 
were set to small random values, except the bias 
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which was always set to + 1 [24]. Each epoch (one 
complete calculation in the network) represented 
1217 connection weight updatings and a recalcu- 
lation of the root mean squared (RMS) error 
between the true and desired outputs over the 
entire training set. A plot of the RMS error vs. 
the number of epochs represents the “learning 
curve”, and was used to estimate the extent of 
training. Finally during training, all the 16 spectra 
(the averages of the four normalised replicate 
spectra) from E. coli W3110 grown on MSSM 
containing tryptophan (O-253 mg/l) (a mixture of 
seen and unseen data) were used as the “un- 
known” inputs (test data); the network then out- 
put its estimate (best fit) in terms of the initial 
tryptophan concentrations. 
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Pyrolysis mass spectral fingerprints of E. coli 

EC0861, E. coli EC0883 and indole are shown 
in Fig. 1. When indole was analysed by PyMS, 
peaks at m/z 117, 90, 89 and a “murmur” at 63 
can be seen (Fig. 10 These we designate the 
“indole peaks”. The analysis of an indole-produc- 
ing strain of E. cd, EC0861, showed that these 
“indole peaks” were present in its pyrolysis mass 
spectrum (Fig. lA), but were absent, or at least 
marginal, in spectra from EC0883, an indole- 
negative strain (Fig. 1B). 

Fig. 3. Subtraction spectrum of the normalised average of four 
E. coli EC0883 pyrolysis mass spectra from the average of 
four E. coli EC0861 spectra, showing the masses that are 
more intense in E. coli EC0861 (positive ha10 and EC0883 
(negative half). 

The significance of these changes is clear from 
Fig. 3 which shows a simple subtraction of the 
normalised averages of four spectra of EC0883 
from EC0861. The positive half of the graph 
indicates the peaks that are more intense in 
EC0861 and shows many similarities to the py- 
rolysis mass spectrum of pure indole (Fig. 10. 
EC0861 and EC0883 are genotypically very simi- 
lar; they both arise from the same EC080 parent 
strain and both have the Tn1732 transposon in- 
serted, so they contain the same DNA. Genotypi- 
tally they differ only in that EC0861 has an 
active tryptophanase gene (when this strain is 
cultivated on tryptophan-containing media it has 
the indole-positive phenotype), which in EC0883 
has been inactivated by insertion of Tn1732, giv- 
ing an indole-negative phenotype. 

This demonstrates that the presence of the 
single cellular component indole gives a large and 
clearly visible spectral change. It is plausible that 
indole gives such an easily detectable signal be- 
cause it is preferentially vaporized on pyrolysis. 
Indole boils at 253°C without decomposition, a 
temperature which is lower than the Curie-point 
used (530°C). When indole was introduced by 
evaporation into the mass spectrometer without 
pyrolysis (a blank tube, with no foil, was loaded 
with 5 ~1 of indole solution, which will “sublime” 
when exposed to a vacuum) the same spectrum as 
that shown in Fig. 1C was observed (data not 
shown). Since the molecular weight of indole is 
117.15, the peak at m/z 117 corresponds to the 
molecular ion. The peaks at m/z 90, 89 and 63 
are likely to be produced by electron impact 
fragments, but the structures of these ions have 
not been elucidated. 

The relationship between the relative amount 
of indole produced from E. coli EC0861, 
EC0883 and W3110, as an effect of altering the 
amount of tryptophan in MSSM from 0 to 253 
mg/l is shown in Fig. 4. This is a plot of the 
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Fig. 4. Graph showing the percentage of the 3 major “indole 
peaks” (masses 117,90 and 89) for E. coli EC0861, EC0883 
and W3110 when grown on minimal media with increasing 
concentrations of tryptophan. 

relative percentage of the indole peaks in the 
pyrolysis mass spectra, i.e., the ion counts at m/z 
89 + 90 + 117 (63 was omitted because of its low 
intensity) over the total ion count against the true 
tryptophan concentration. It can be seen that 
increasing the amount of tryptophan in the 
medium has no effect on the indole-negative E. 
coli EC0883 strain, but in the stated representa- 
tion (Fig. 4) gives an S-shaped curve with both E. 
coli EC0861 and W3110. In the region from 0 to 
50 mg/l added tryptophan no indole was appar- 
ently produced, either because the tryptophanase 
gene had not yet been activated or (more likely) 
because the tryptophan was being used by the 
bacteria in biosynthetic processes. At greater val- 
ues of added tryptophan the tryptophanase gene 
appears to be induced and indole was produced 
in an amount approximately linear with respect to 
the amount of tryptophan added, until at about 
175 mg/l tryptophan the graph levelled off, show- 
ing that indole production had reached a maxi- 
mum. This phenotypic change in E. coli EC0861 
and W3110 can be attributed to the production of 
indole from tryptophan-containing medium, since 
these bacteria possess the tryptophanase gene. It 
is clear that alterations in the amount of trypto- 
phan in the growth medium can cause measur- 
able phenotypic changes in these bacteria. 

As described above, the neural network was 
then trained with the various spectral inputs and 
the effectiveness of training determined in terms 
of the RMS error between the actual and the 

desired outputs; this “learning curve” is shown in 
Fig. 5. Training was effected five times; because 
the five curves were found to superimpose, de- 
spite the randomised starting connection weights, 
it is clear that training was executed in a rather 
reproducible manner. At various points during 
training, the network was interrogated both with 
spectra that were used to train the network (closed 
circles) and with “unknown” spectra (open cir- 
cles) which were not in the training set; these are 
displayed in Fig. 6. Each plot consists of the five 
replicate trainings of Fig. 5 (although the initial 
random weightings on the connections in the 
network will have been different), shown as an 
average with standard error bars. 

These experiments display some very interest- 
ing neurodynamics. It can be seen in the learning 
curve (Fig. 5) that the network very quickly 
reached a plateau after 100 epochs and between 
this time and some 2-3 X lo4 epochs training 
appeared to have finished. When the network 
was interrogated in the middle of this plateau, a 
plot of the network’s estimate vs. the true output 
(the initial concentrations of tryptophan) (Fig. 
6A) gave a sigmoidal plot, and it was evident that 
although the network had made some sort of 
estimate of the tryptophan concentration, train- 
ing was not yet finished, i.e. (Fig. 51, the net 
appeared to have found a very flat area in weight 
space. When the network was left to train a bit 
further the RMS error rather “suddenly” and 
reproducibly decreased (between 3 x lo3 and 2 x 

0.8 

loo 101 101 1iY 10’ l@ 

Number of epochs 
Fig. 5. The learning curve(s) for the neural network using the 
standard-back propagation algorithm with 1 hidden layer con- 
sisting of 8 nodes. For details see text. 
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lo4 epochs) to approximately 0.005 and there was 
an approximately flat area until the error slowly 
diminished to 0.001 (Fig. 5). At an RMS error of 
0.005 (Figs. 5 and 6B) the network’s estimate of 
initial tryptophan concentration was very similar 

to the true concentrations, both for spectra that 
were used as the training set and the “unknown” 
spectra. If training was allowed to proceed fur- 
ther to an RMS error of 0.001, however, a differ- 
ent trend was seen: the network’s estimate of the 
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Fig. 6. Results of the estimates of trained neural network against true initial tryptophan concentration, at interrogation points A, B 
and C from Fig. 5; points are the average of five trainings. Closed circles represent spectra that were used to train the network and 
open circles indicate “unknown” spectra which were not in the training set. Error bars show standard deviation. The best linear fits 
were calculated using all data. 
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training set is very good, whilst the “unknown” 
spectra (test set) are not nearly as well estimated. 
This indicated that the network had now been 
over-trained. 

That optimal training was achieved when an 
RMS error of 0.005 was reached is most impor- 
tant for studies of the present type. For ANNs 
accurately to learn the concentrations of determi- 
nands in biological systems the network must be 
trained to the correct point (and must be trained 
with the appropriate number of standards [38]. 
Therefore it is imperative that ANNs should be 
trained several (perhaps many) times to ascertain 
whether they reproducibly converge, in concert 
with appropriate multivariate statistical tech- 
niques such as “leave-one-out” [39]. 

In other studies ANNs were set up with the 
same architecture as the ones used above except 
that they contained fewer, including no, hidden 
layers. It was interesting to observe that the net- 
works were still able to converge, i.e. they were 
successfully trained (data not shown), indicating 
in the boundary case that the differences due to 
indole in these pyrolysis mass spectra were lin- 
early separable in 150-dimensional space. 

In summary, we have shown that the combina- 
tion of PyMS and ANNs was able quantitatively 
to detect the component indole, which in pure 
form gave a pattern of peaks at m/z 117, 90, 89 
and a murmur at 63, and was important in the 
detection of a single genotypic difference, at- 
tributed to tryptophanase, between E. coli 
EC0861 and EC0883. It was also demonstrated 
that varying the amount of tryptophan in a mini- 
mal supplemented salts medium gave a measur- 
able phenotypic change in indole-positive strains. 
It should be obvious that this approach might be 
exploited, inter alia, for the analysis of any fer- 
mentation or biotransformation of interest, and 
that the combination of PyMS and ANNs consti- 
tutes a novel, powerful and interesting technology 
for the analysis of the concentrations of appropri- 
ate substrates, metabolites and products in chem- 
ical processes generally. 

We thank Roger Berkeley for his help with 
PyMS, Mark Bale for providing the EC0 strains, 
and Andy Edmonds for constructive criticism of 

the manuscript. This work is supported under the 
terms of the UK SERC LINK scheme in Bio- 
chemical Engineering, in collaboration with Hori- 
zon Instruments, ICI Biological Products and Fine 
Chemicals, and Neural Computer Sciences. 

Note added in proof 

D. Lloyd et al. [40] have observed the trypto- 
phan-enhanced production of indole by Tri- 
chomonas vaginulis, using membrane-inlet elec- 
tron impact mass spectrometry and with a mass 
spectrum very similar to that shown in Fig. 1C. 
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