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Pyrolysis mass spectrometry is a rapid and high-resolution 
method for the analysis of otherwise non-volatile material and 
has been widely applied for discriminating between closely 
related microbial strains. Recent advances in statistical and 
neural network methods based on supervised learning have 
now permitted exploitation of pyrolysis mass spectrometry 
in the quantitative analysis of many diverse samples of 
biotechnological interest; the technique may thus be regarded 
as an 'anything-sensor'. 
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Abbreviations 
ANN artificial neural network 
CVA canonical variates analysis 
ESl electrospray ionization 
HCA hierarchical cluster analysis 
MS mass spectrometry 
m/z mass-to-charge 
PCA principal components analysis 
PHB poly(3-hydroxybutyrate) 
PyGC/MS pyrolysis gas chromatography/MS 
PyMS pyrolysis MS 
RAPD random amplified polymorphic DNA 

I n t r o d u c t i o n  

"The ability [of pyrolysis mass spectrometry] to 
analyse small amounts of biological material with 
minimum sample preparations to obtain, in minutes, 
fingerprint data that can be used for identification 
and typing is unparalleled by other methods, 
including nucleic acid and fingerprinting methods." 

AT Bull, M Goodfellow and JH Slater, Annu Rev Microbiol 
1992, 46:219-252. 

The  above quote is from an excellent review on biodiver- 
sity as a source of innovation in biotechnology, highlighting 
the use of pyrolysis mass spectrometry (PyMS) as a 
technique for the rapid identification of micro-organisms. 
It is particularly noteworthy that at the time that review 
was published, PyMS had not been exploited for the 
quantitative analysis of biological material; this was soon 
to change with the application of artificial neural networks 

(ANNs). The  following review discusses the wide range of 
applications now available to the biotechnologist. 

The  development of rapid and efficient methods for 
screening biologically active metabolites from large num- 
bers of microbial cultures retains pre-eminence in drug 
discovery efforts [1,2",3]. Such metabolites can also 
provide new structural templates for synthetic programmes 
using rational methods of drug design through chemical 
synthesis, including combinatorial methods [4"]. It is 
imperative, therefore, that the concentration of the 
fermentation product (i.e. the determinand) is assessed 
accurately, both so that the most high-yielding strains 
are selected and to assist the subsequent optimization 
of the bioprocess. The  development of such monitoring 
methods is driven by economic and ecological needs and, 
more recently, by the requirements for better process 
documentation [5",6"]. 

An ideal method for the rapid, precise and accurate anal- 
ysis of the biochemical composition of fermenter broths, 
as well as of the characterization of the organisms that 
they contain, would permit the simultaneous estimation 
of multiple determinands, would have minimum sample 
preparation, would analyze samples directly (i.e. would not 
require reagents), and would be rapid, automated, accurate 
and (at least relatively) cheap. PyMS is a rapid, automated, 
instrument-based technique that permits the acquisition of 
spectroscopic data from 300 or more samples per working 
day. 

Although on-line tandem MS has been used to analyze 
fermentation broth extracts for flavones [7], the majority of 
MS applications to fermentations has been either for the 
analysis of gases and volatiles in the bioreactor headspace 
[8] or for the analysis of volatile compounds dissolved 
in the broths via a membrane inlet probe [9]. It is 
obvious, however, that more worthwhile information could 
be gained by measuring the non-volatile components of 
fermentation broths. 

The  focus of this review is to highlight PyMS as an 
approach for the rapid analysis and identification of 
bacteria and fungi. We also reflect on the recent advances 
in the application of novel statistical methods based on 
supervised learning, such as ANNs, which have allowed 
us and others both to effect the rapid and quantitative 
analysis of a variety of fermentations and to permit the 
rapid screening of microbial cultures for the over-produc- 
tion of metabolites of interest. An overview of the PyMS 
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technique has been published on the World Wide Web 
(http://gepasi.dbs.aber.ac.uk/roy/pymshome.htm). 

Pyrolysis mass spectrometry instrumentation 
The  first automated Curie-point pyrolysis mass spectrom- 
eter was built as far back as 1973 by Meuzelaar and 
Kistermaker (see [10]) specifically for the characterization 
of complex non-volatile biological samples such as micro- 
organisms. Even so, the only PyMS instrument presently 
available commercially is the RAPyD-400 manufactured 
by Horizon Instruments (Ghyll Industrial Estate, Heath- 
field, East Sussex, UK); it is arguably the availability of 
this instrument that has allowed this technology to become 
more accessible to biological chemists, and it is convenient 
to describe briefly its implementation of PyMS. 

The  first stage in the process is the preparation of samples. 
For microbial cultures, after incubation, bacteria or fungi 
are picked up carefully from the top of one or more 
well isolated colonies by means of disposable plastic 
loops, avoiding the plate surface, and smeared onto clean 
iron-nickel foils. Alternatively, if the sample to be analyzed 
is from a liquid culture, a few microlitres may be applied 
directly to the foil. The  samples are then oven-dried or 
vacuum-desiccated. The rest of the analysis is carried 
out by the pyrolysis mass spectrometer under the control 
of a personal computer. The  sample tubes are loaded 
sequentially and the pyrolysate generated in a vacuum 
by heating the sample. Heating is achieved by passing 
a radio-frequency current for 3s through a pyrolysis 
coil that surrounds the sample-coated ferro-magnetic foil. 
The  foil and sample heat rapidly, typically in <0.5s, 
to the temperature corresponding to the Curie-point of 
the iron-nickel foil. (530°C is a common temperature, 
because this gives a balance between fragmentation from 
polysaccharides and protein fractions, both of which are 
abundant in bacteria). The  pyrolysate then enters a 
gold-plated expansion chamber heated to 150"C, and 
diffuses down a molecular beam tube to the ionization 
chamber of the mass spectrometer. The  pyrolysate is then 
bombarded with low-energy electrons (typically in the 
region of 25 eV) producing both molecular and fragment 
ions (because low energy is employed, the majority will 
carry only a single positive charge). Non-ionized molecules 
are deposited on a cold trap, which is cooled by liquid 
nitrogen. The  ionized fragments are then focused by the 
electrostatic lens of a set of source electrodes, accelerated 
and directed into a quadrupole mass filter [11], separated 
on the basis of their mass-to-charge (m/z) ratio, and 
detected and amplified with an electron multiplier. 

Almost all biological materials will produce pyrolytic 
degradation products, such as methane, ammonia, water, 
methanol and hydrogen sulphide, whose m/z ratio is < 50; 
fragments with a m/z ratio >200 are rarely analytically 
important for bacterial discrimination [12]. The  analyti- 
cally useful data are thus constituted by a set of (150) 

normalized intensities versus m/z ratio in the range of 51 
to 200 (see Fig. 1). 

Identification using pyrolysis mass 
spectrometry and classic multivariate 
analyses 
Conventionally, at least within microbiology and biotech- 
nology, PyMS has been used as a taxonomic aid [13",14, 
15",16"]. To this end, the reduction of the multivariate data 
generated by the PyMS system has normally been carried 
out using principal components analysis (PCA). PCA is a 
well known technique for reducing the dimensionality of 
multivariate data whilst preserving most of the variance 
and so is an excellent technique for observing the natural 
relationships between samples. It neither takes account of 
any groupings in the data nor requires that the populations 
be normally distributed (i.e. it is a non-parametric 
method). (In addition, it permits the loadings of each 
of the m/z ratios on the principal components to be 
determined and thus enables the extraction of at least 
some chemically significant information.) The  closely 
related canonical variates analysis (CVA) technique then 
separates the samples into groups on the basis of the 
principal components and some a priori knowledge of 
the appropriate number of groupings. The  next stage 
involves the construction of a percentage similarity matrix 
by transforming the Mahalanobis' distance between a 
priori groups in CVA with the Gower similarity coefficient, 
SG. Finally, hierarchical cluster analysis (HCA) may be 
employed to produce dendrograms, using average linkage 
clustering. Provided that the data set contains 'standards' 
(i.e. type strains or centro-strains), it is evident that one can 
establish the closeness of any unknown isolate to a known 
organism and thus effect the identification of the former 
[13"]. 

Within the clinical laboratory this approach has been used 
for the identification of potentially pathogenic isolates 
[17",18,19"] and is now considered to be valuable for 
the rapid epidemiological typing of clinically significant 
pathogenic bacteria [14,16°]. Conventional typing systems 
are often slow and require specialized personnel; they also 
assay a rather restricted phenotype, often from only part of 
the bacterial cell (i.e. receptors located on the cell wall that 
bind to bacteriophage, antibodies or bacteriocins). PyMS, 
in contrast, analyzes the whole cell and so the pyrolysis 
mass spectrum contains all the relevant information. This 
technology has also been used for the analysis o f  causal 
agents of food spoilage [20"] and, within microbial ecology, 
for the characterization both of Pseudomanas spp. from 
estuarine environments [211 and of brown algae [22]. 
With regard to organisms of particular biotechnological 
interest, PyMS has been used for the detection of novel 
actinomycetes for pharmaceutical screening programs [23]. 

Because it is effectively studying the properties of a 
system in 150 dimensions (here, the m/z values range 
from 51 to 200) simultaneously, PyMS is a very high 
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Figure 1 

The use of PyMS in the 
characterization and quantification of 
biotechnology-related bioprocesses. 
(a) Normalized pyrolysis mass spectrum 
of Penicil/ium chrysogenum; this complex 
'fingerprint' can be used to type this 
organism. (b) Normalized pyrolysis mass 
spectrum of 200 lag pure penicillin G; this 
somewhat simpler 'biochemical profile' 
is one of many that can be obtained 
for the range of penicillins produced by 
Penicillium chrysogenum. 
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resolution technique and can easily discriminate between 
bacteria and fungi at the genus, species and subspecies 
levels. For example, this method has been used to analyze 
cell wall mutants of Saccharorayces cerevisae [24] and to 
characterize small changes in the lignin content of geneti- 
cally engineered tobacco stems [25]. Furthermore, PyMS 
is not limited to whole cell analysis and can be used to 
differentiate bacteria on the basis of their fatty acid methyl 
ester distributions [26°]. Other volatilization methods have 

also been applied to the mass spectrometric analysis of 
microbial constituents in intact cells [27"',28°,29",30,311. 

Pyrolysis methods are extremely well suited for studies 
of the constitution of polymers. For instance, much in- 
terest is focused on poly-hydroxyalkanoates as potentially 
biodegradable plastics. Thus, the mechanisms for the 
thermal degradation of the bacterial polyester poly-hydro- 
xybutyrates have been fervently discussed [32",33"], and 
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particular attention has been paid to the complete and 
partial pyrolysis of poly(3-hydroxybutyrate) (PHB) [32*] as 
well as the effect that varying the sample thickness has on 
the thermolysis of PHB [34"]. 

With the recent advances in molecular biology, notably 
methods to study the similarity between bacterial strains 
on the basis of DNA and 16S-rRNA sequence homologies 
[35"'], two schools of thought have developed as to 
how bacteria should be classified: some believe that 
the way forward is to study the bacterial genotype; 
others pursue phenetic classifications. The  pyrolysis mass 
spectrum of a bacterium contains a fingerprint of its total 
biochemical make-up and, therefore, is a measure of the 
bacterial phenotype. Thus, it is necessary to compare 
PyMS, and indeed other measures of phenotype, with a 
microorganism's genotypic characteristics to get the overall 
microbial make-up. 

A recent study comparing the ability of random ampli- 
fied polymorphic DNA (RAPD) method and PyMS in 
assessing the release of genetically engineered microor- 
ganisms in the environment investigated the survival of 
Bradyrhizobium japonicum in soil [36"]. Results indicated 
that both methods could be used to discriminate the 
rhizobial organism from other organisms in a similar 
fashion and were of value in studying the fate of the 
original inoculants. Congruence was also evident between 
the clusterings observed from PyMS and 16S rRNA 
sequence data in studies of the phenotypic and genotypic 
characteristics of several Clostridium acetobutylicum strains 
[37]. 

Given that any non-volatile biological material may be 
subjected to analysis by PyMS, it may be argued that 
this technique represents an 'anything sensor' for the 
analysis of any raw materials, intermediates or products 
of the bioprocess industries. Thus, the food industry 
has also exploited PyMS to confirm the authentication 
of orange juice [38] and scotch whisky [39"] as well 
as to detect the adulteration of virgin olive oil [40,41]; 
pyrolysis gas chromatography/MS (PyGC/MS) has been 
employed for the determination of the aspartame content 
in food products [42]. PyMS has also been exploited 
in the differentiation of beeswax products [43] and the 
characterization of Egyptian paint materials [44"]. 

Supervised versus unsupervised learning 
The  multivariate analyses used above (e.g. PCA, CVA and 
HCA) fall into the category of 'unsupervised learning', in 
which the relevant multivariate algorithms seek 'clusters' 
in the data [451-- although CVA may to some extent 
be considered a supervised me thod- - the reby  allowing 
the investigator to group objects together on the basis 
of their perceived closeness (Fig. 2a). Such methods, 
then, although in some sense quantitative, are better 
seen as qualitative because their chief purpose is merely 
to distinguish objects or populations. More recently, a 

Figure 2 
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Flow diagrams representing the difference between unsupervised and 
supervised learning. (a) When learning is unsupervised, the system 
is shown a set of inputs (spectra) and then left to cluster the spectra 
into groups. For multivariate analysis, this optimization procedure is 
usually simplification or dimensionality reduction. This means that a 
large body of data (the spectral inputs) are summarized by means of 
a few parameters, with minimal loss of information. After clustering, 
the results must then be interpreted. (b) When the desired responses 
(targets) associated with each of the inputs (spectra) are known, the 
system may be supervised. The goal of supervised learning is to find 
a model that will correctly associate the inputs with the targets; this 
is usually achieved by minimizing the error between the target and the 
model's response (output). 

variety of related, but much more powerful, methods, most 
often referred to within the framework of chemometrics 
[46"'], have been applied to the 'supervised' analysis 
of multivariate PyMS data. In these methods, of which 
multiple linear regression, partial least squares regression 
and principal components regression are the most widely 
used, one seeks to relate the multivariate spectral inputs to 
the concentrations of target determinands (i.e. to generate 
a quantitative analysis, essentially via suitable types of 
multidimensional curve fitting or regression analysis [47]). 
A related approach [48,49"], which has been used to 
model and control bioprocesses [50"], is the use of ANNs. 

ANNs are a well known means of uncovering complex, 
non-linear relationships in multivariate data, whilst still 



24 Analytical biotechnology 

being able to map the linearities. ANNs can be considered 
as collections of very simple 'computational units' that 
take a numerical input and transform it (usually via 
summation) into an output [51-53,54°',55",56"]. 

For a given analytical system, some patterns (e.g. mass 
spectra) have desired responses or values that are known 
(e.g. the concentration of target determinands). These  two 
types of data form pairs that are called inputs and targets. 
The  goal of supervised learning is to find a model or 
mapping that will correctly associate the inputs with the 
targets (Fig. 2b). 

The  relevant principle of 'supervised' learning in ANNs 
is thus that the ANNs take numerical inputs (the 
training data) and transform them into 'desired' (known or 
predetermined) outputs. The  input and output nodes may 
be connected to the 'external world' and to other nodes 
within the network (for a diagrammatic representation, 
see Fig. 3). The  way in which each node transforms 
its input depends on the so-called 'connection weights'  
(or 'connection strength') and 'bias' of the node, which 
are both modifiable. The  output of each node, either 
to another node or to the external world, then depends 
both on its weight strength and bias and on the weighted 
sum of all its inputs, which are then transformed by a 
(normally non-linear) weighting function referred to as 
its activation, or squashing function. The  great power of 
ANNs stems from the fact that they can be 'trained'. 
One can acquire sets of multivariate data (i.e. pyrolysis 
mass spectra) from standard materials of known identities 
and train ANNs using these identities as the desired 
outputs. Training is effected by continually presenting 
the networks with the 'known' inputs and outputs and 
modifying the connection weights between the individual 
nodes and the biases, typically according to some kind of 
back-propagation algorithm [51], until the output nodes of 
the network match the desired outputs to a stated degree 
of accuracy. The  trained ANNs may then be exposed to 
unknown inputs (i.e. spectra) when they will immediately 
provide the globally optimal best fit to the outputs. 

We [40,41] have provided the first demonstration of the 
ability of ANNs to discriminate successfully biological 
samples using pyrolysis mass spectra; in this work, which 
was performed double-blind such that the identities of 
the test set were not known to any of us, ANNs were 
trained with the spectra from 12 virgin olive oils and 12 
adulterated oils, which at the output node were coded 
I and 0, respectively. This permitted the rapid and 
precise assessment of the adulteration of extra virgin 
olive oils with various seed oils, a task that previously 
was labour-intensive and very difficult. It was most 
significant that the traditional 'unsupervised' multivariate 
analyses of PCA, CVA and HCA failed to separate the 
oils according to their virginity or otherwise but rather 
discriminated them on the basis of their cultivar. Yet, 
partial least square regression and principal components 
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A back-propagation ANN consisting of 24 input nodes, eight hidden 
nodes, and one output node. Each node in the hidden layer is 
connected to all the nodes in the input and output layers. The actual 
number of nodes in the PyMS input layer was 150 (one for each 
mass from 51 to 200). 

regression, which employ multivariate linear regression, 
were unable to effect the required distinction. This study 
thus demonstrated that 'supervised' learning methods that 
employ non-linear algorithms were needed for successful 
differentiation between virgin olive oils and adulterated 
olive oils. This combination of PyMS and ANNs has now 
been employed to effect the rapid identification of strains 
of EscheHchia [57"], Eubacterium [58"], MycobacteHum [59"], 
Propionibacterium spp. [60°'], and Streptomyces [61], whilst 
the t ime-dependent evolution of the PyMS has also been 
exploited to good effect [62"]. 

Quantification of biotechnological systems 
Perhaps the most significant application of ANNs to the 
analysis of PyMS data in the review period is to gain 
accurate and precise quantitative information about the 
chemical constituents of microbial (and other) samples. 
For example, it has been shown that it is possible using 
this method to follow the production of indole in several 
strains of Escherichia coli grown on media incorporating 
various amounts of tryptophan [63], to quantify the 
(bio)chemical constituents of complex biochemical binary 
mixtures of proteins and nucleic acids in glycogen, and 
to measure the concentrations of tertiary mixtures of cells 
of the bacteria Bacillus subtilis, E. coli and Staphylococcus 
aureus [64,65",66"]. We [66"'1 have also demonstrated that 
other supervised learning methods, such as partial least 
squares regression and principal components regression, 
could also be used to extract quantitative information from 
the spectra of the binary and tertiary mixtures. 

The  combination of PyMS and ANNs also has the 
potential for the screening and analysis of microbial 
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cultures producing recombinant proteins; for instance, 
this technique has permitted the amount of mammalian 
cytochrome b 5 expressed in E. coli to be accurately 
predicted [67°]. ANNs have also been applied to the 
quantitative analysis of the pyrolysis mass spectra of 
whole fermenter broths [68**]. Initially, a model system 
consisting of mixtures of the antibiotic ampicillin and 
either E. coli or S. aureus (to represent a variable biological 
background) was studied. It was especially interesting 
that ANNs trained to predict the amount of ampicillin in 
E. coli, having studied only mixtures of ampicillin and 
E. coli, were able to generalize so as to predict the 
concentration of ampicillin in a S. aureus background to 
+-5% of the observed value, illustrating the very great 
robustness of ANNs to rather substantial variations in 
the biological background. Samples from fermentations 
of a single organism in a complex production medium 
were also analyzed quantitatively for a drug of commercial 
interest [68°°]. It was found that the drug could also be 
quantified in a variety of mutant-producing strains culti- 
vated in the same medium, thus effecting a rapid screen 
for the high-level production of desired substances [68°°]. 
In a related study, Penicillium chrysogenum fermentation 
broths have been analyzed quantitatively for penicillins 
using PyMS and ANNs [69°']. Finally, we (R Goodacre, 
DAP Small, DB Kell, unpublished data) have also used 
this approach successfully to monitor Gibberella fujikuroi 
fermentations producing gibberellic acid (see Fig. 4). 

Drift and reproducibility 
The  major problem with PyMS is that long-term re- 
producibility (>30 days) is poor and the mass spectral 
fingerprints of the same material analyzed at two different 
times are different; this lack of reproducibility largely 
results from instrumental drift in the mass spectrometer 
(and is not confined to PyMS). Therefore, within clinical 
microbiology, PyMS has really been limited to the typing 
of short-term outbreaks where all microorganisms are 
analyzed in a single batch [16"1. For PyMS to be used 
both for the routine identification of microorganisms 
and in combination with ANNs to quantify biological 
systems (e.g. metabolites of interest in fermenter broths), 
new spectra must be comparable with those previously 
collected. 

We [Pl'*,70 *°] have found that ANNs can be used to 
correct for instrumental drift so that models created 
using old previously collected data can be employed to 
give accurate estimates of determinand concentration or 
bacterial identities from newly acquired spectra when 
calibrated with standards common to the two data sets. 
Calibration samples are run at the two times, and ANNs 
are set up in which the inputs are the 150 'new' calibration 
masses and the outputs are the 150 calibration masses 
from the 'old' spectra. Such autoassociative nets can 
thus be used as signal-processing elements to effect the 
transformation of data acquired one day to data that are 
acquired at a later date. Therefore, for the first time, PyMS 

Figure 4 

A trained 150-8-1 ANN estimate of the amount of gibberellic acid in 
a range of Zeneca Bioproducts plc fermentations (samples supplied 
by DAP Small) compared with known values; the gibberellic acid titre 
was established using high-pressure liquid chromatography. ANNs 
were trained on 17 spectra with the standard back-propagation 
algorithm, until the error was optimal, as judged by test set 
cross-validation. Data points are the averages of the five separate 
trainings. Open circles represent spectra that were used to train the 
network and closed squares indicate 'unknown' spectra that were not 
in the training set. Error bars show standard deviation. The best linear 
fit is shown; the slope of this line is 0.957. The expected proportional 
fit is also shown. 

can be used to acquire spectra that are comparable with 
those previously collected and held in a database. 

Conclusions 
Within biotechnology, PyMS is very useful for the 
discrimination of microorganisms at the genus, species 
and subspecies level. Compared with more conventional 
methods, PyMS offers the advantages of speed, sensitivity 
and the ability to analyze many hundreds of samples per 
day. 

The  exploitation of the novel multivariate analysis tech- 
nique employing A N N s - - a n d  indeed the methods of 
partial least squares regression and principal components 
regression--that  are based on supervised learning, rather 
than unsupervised methods, has permitted even better 
discrimination of industrially and medically important 
bacteria from their pyrolysis mass spectra and has al- 
lowed the rapid and quantitative analysis of microbial 
constituents. Within biotechnology, we may anticipate that 
the application of these powerful 'supervised' learning 
techniques, and the exploitation of other techniques of 
artificial intelligence [71"*], will allow mass spectroscopists 
working in diverse fields to effect the rapid, sensitive 
and simultaneous analyses of the concentrations of many 
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substrates, metabolites and products in fermentation 
processes. 
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