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A b s t r a c t  

Pyrolysis mass spectrometry (PyMS) was used to gain high dimensional (150 m / z  values) biochemical fingerprints from 
Begonia semperflorens Summer Rainbow, Campanula carpatica White Gem, Lobelia erinus White Fountain, and Lobelia 
erinus White Lady plant seeds. Rather than homogenizing the seeds and analysing the extracts, the sample preparation of the 
seeds in this study was novel and merely involved crimping the metal foil sample carrier around the seeds. Compared to 
extractive procedures the technique exploited in this study will give a fair representation of the seed, is rapid and thus amenable 
to the analysis of a high volume of samples. To observe the relationship between these seeds, based on their spectral finger- 
prints, it was necessary to reduce the dimensionality of these data by unsupervised feature extraction methods. The neural 
computational pattern recognition techniques of self organising feature maps (SOFMs) and auto-associative neural networks 
were therefore employed and the clusters observed compared with the groups obtained from the more conventional statistical 
approaches of principal components analysis (PCA) and canonical variates analysis (CVA). When PCA was used to analyze 
the raw pyrolysis mass spectra replicate samples were not recovered in discrete clusters; CVA, which minimises the within- 
group variance and maximises the between-group variance, therefore had to be employed. Although B. semperflorens and C. 
carpatica seeds were recovered separately and away from the L. erinus plant seeds, the two types of L. erinus seeds could 
still not be discriminated between using this approach. CVA uses a priori information on which spectra are replicates; we 
therefore encoded this information by employing a novel preprocessing regime where the triplicate mass spectra from each 
of the seeds were averaged in pairs to produce three new spectra; these were then used by each of the unsupervised methods. 
PCA still failed to separate the two L. erinus; however, auto-associative neural networks could be used successfully to dis- 
criminate them. It is likely that this was due to their ability to perform non-linear mappings and hence approximate non-lin- 
ear PCA. SOFMs could also be used to separate all four seeds unequivocally. To obtain quantitative information regarding 
the similarity of these seeds from their pyrolysis mass spectra, SOFMs were trained with different numbers of nodes in the 
Kohonen output layers. The results observed from this procedure are often difficult to report in tables or visualise using topo- 
logical contour maps; to simplify the graphical representation of the similarity between the seeds we therefore performed the 
novel construction of a dendrogram from the various SOFMs analyses. This study demonstrates the potential of PyMS for 
discriminating plant seeds at the genus, species and sub-species level. Moreover the clusters observed were a true reflection 
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of the known taxonomy of these plants. This approach will be invaluable to the plant taxonomist in representing biological 
relationships among plant taxa or in describing genomic relationships without the need for cultivation of the propagule. 

Keywords: Neural networks; Auto-associative neural networks; Feature extraction; Pyrolysis mass spectrometry; Seed typing; Self organis- 
ing feature maps 

1. Introduction 

Morphological diversity is not an obvious prop- 
erty of many plant seeds. To examine the relation- 
ships between plants or to effect their identification, 
without recourse to lengthy cultivation periods it is 
necessary to type the propagule directly. If the typing 
procedure were rapid and automated it would be pos- 
sible to use such an approach for the screening of 
large populations of plant seeds. Such a method could 
be exploited by the plant taxonomist for representing 
biological relationships among plant taxa or in de- 
scribing genomic relationships without the need for 
the cultivation of the seeds. If cultivation were not 
feasible for whatever reason then such a procedure 
could also be employed for the classification of plants 
from their non-viable seeds. We therefore sought to 
assess whether such a method might have the appro- 
priate discrimination. 

Pyrolysis mass spectrometry (PyMS) presents it- 
self as a tool capable of satisfying the above criteria. 
It is a rapid ( <  2 min per sample) automated instru- 
ment-based physico-chemical technique which can 
establish the biochemical composition of complex 
non-volatile material such as plant seeds; it requires 
minimal sample preparation, can analyze samples di- 
rectly and permits the acquisition of spectroscopic 
data from 300 or more samples per working day. Py- 
rolysis is the thermal degradation of complex mate- 
rial in an inert atmosphere or a vacuum. It causes 
molecules to cleave at their weakest points to pro- 
duce smaller, volatile fragments called pyrolysate 
[1,2]. A mass spectrometer can then be used to sepa- 
rate the components of the pyrolysate on the basis of 
their mass-to-charge ratio (re~z). Almost all biologi- 
cal materials will produce pyrolytic degradation 
products such as methane, ammonia, water, methanol 
and H2S, whose m / z  < 50, and fragments with m / z  
> 200 are rarely analytically important for complex 
non-volatile material such as bacteria [3] unless very 
special conditions are employed [4]; the analytically 

useful multivariate data are then constituted by a set 
of 150 normalised intensities versus m / z  in the range 
51 to 200. These data may be plotted to produce a 
pyrolysis mass spectrum [2], which can then be used 
as a 'chemical profile' or fingerprint of the complex 
material analyzed. 

Since PyMS measures the biochemical composi- 
tion of samples analyzed it has been exploited by mi- 
crobial systematics as a chemotaxonomic tool for the 
fine discrimination between bacteria and fungi at the 
genus, species and subspecies level [5-7]. PyMS is a 
very high-resolution technique because it is effec- 
tively studying the properties of a system in 150 di- 
mensions (here the m / z  values from 51-200) simul- 
taneously; therefore within the plant sciences PyMS 
has also been used to characterise small changes in 
the lignin content of genetically engineered tobacco 
stems [8], to study the developmental stages of maize 
somatic embryos [9], and for uncovering the bio- 
chemical differences between grasses with different 
levels of resistance to attack by Labops hesperius 
[lOl. 

Multivariate data, such as those generated by 
PyMS, consist of the results of observations of many 
different characters or variables ( m / z  or masses) for 
a number of individuals or objects (the seeds) [11]. 
Each mass may be regarded as constituting a differ- 
ent dimension, such that if there are n variables 
(where n = 150 masses) each object may be said to 
reside at a unique position in an abstract entity re- 
ferred to as n-dimensional hyperspace. This hyper- 
space is necessarily difficult to visualise, and an un- 
derlying theme of multivariate analysis is thus sim- 
plification [12,13] or dimensionality reduction, which 
usually means that we want to summarise a large 
body of data by means of relatively few parameters, 
preferably the two or three which lend themselves to 
graphical display, with minimal loss of information. 

Conventionally, at least within microbiology and 
biotechnology, because PyMS has been used as a 
taxonomic aid [5-7,14], the reduction of the multi- 
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variate data generated by the PyMS system is nor- 
mally carried out using principal components analy- 
sis. This type of analysis falls into the category of 
'unsupervised learning', in which the relevant multi- 
variate algorithms seek 'clusters' in the data [15]. 
This allows the investigator to group objects together 
on the basis of their perceived closeness in the n-di- 
mensional hyperspace referred to above. Such meth- 
ods, then, although in some sense quantitative, are 
better seen as qualitative since their chief purpose is 
merely to distinguish objects or populations. 

Recently there has been an interest in the use of 
neural computation methods which can also perform 
unsupervised learning on multivariate data; Wilkins et 
al. [16] have applied Kohonen [17] maps to multi-di- 
mensional flow cytometric data for the identification 
of seven species of fresh water phytoplankton, and we 
have also exploited these self-organising feature maps 
(SOFMs) successfully to carry out unsupervised 
learning, and hence the classification of canine Pro- 

pionibacterium acnes isolates [18] and P. acnes iso- 
lated from man [19]. Another neural network-based 
method for feature extraction called auto-associative 
neural networks [20-23] has been used to reduce the 
dimensionality of the infrared spectra of polysaccha- 
rides [24] and to detect plasmid instability using on- 
line measurements from an industrial fermentation 
producing a recombinant protein expressed by Es- 

cherichia coli [25]. 
The aim of this study was to use PyMS to exam- 

ine Begonia semperflorens, Campanula carpatica 
and two varieties of Lobelia erinus plant seeds. Pre- 
vious workers [26] have employed PyMS for the dif- 
ferentiation of seeds of three Triticeae species. This 
study, however, used an extremely tedious sample 
preparation method involving grinding the plant 
seeds, resuspending the powder in ethanol, sonicat- 
ing for 30 min, and centrifugation; the supematant 
was finally pipetted onto the sample carrier. Proce- 

dures of this nature are not only time consuming, and 
so not amenable to the analysis of a high volume of 
samples, but inevitably do not give a fair representa- 
tion of the seed since some of its constituents will 
have been lost during the process. The sample prepa- 
ration of the seeds in this study therefore merely in- 
volved crimping the metal foil sample carrier around 
the seeds. 

Once data were collected neural computation 
methods exploiting unsupervised learning, viz. Ko- 
honen's self organising feature maps and auto-as- 
sociative neural networks, were employed to cluster 
the spectral data. The results obtained were com- 
pared with the conventional approaches of principal 
components analysis and canonical variates analysis. 
The clusters seen by all methods were similar, al- 
though the neural network-based methods gave less 
subjective groups. Finally, the classifications ob- 
served were in agreement with the known taxonomy 
of these seeds. Whilst we recognise that the number 
of objects analyzed in the present study was rela- 
tively small, they served more than adequately to il- 
lustrate the principles of our approach. 

2. Experimental 

2.1. Seed types 

Details on the family, genus, species and variety 
of the four seed types that were used in this study are 
shown in Table 1. All seeds were purchased from Mr. 
Fothergill's Seeds, Kentford, Newmarket, Suffolk 
CB8 7QB, UK. 

2.2. Pyrolysis mass spectrometry 

Approximately 20 seeds were placed onto clean 
iron-nickel foils (Horizon Instruments, Ghyll Indus- 

Table 1 
Details of the plant seeds used in this study 

Family Genus Species Variety Identifier in 
multivariate analyses 

Begoniaceae Begonia semperflorens Summer Rainbow B 
Campanulaceae Campanula carpatica White Gem D 
Campanulaceae Lobelia erinus White Fountain A 
Campanulaceae Lobelia erinus White Lady C 
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trial Estate, Heathfield, E. Sussex TN21 8AW, UK), 
the foils were then crimped around the seeds using 
clean forceps. These samples were then inserted into 
clean pyrolysis tubes (Horizon Instruments) and 
pushed into the tube using a stainless steel depth 
gauge so as to lie 10 mm from the mouth of the tube. 
Finally, viton 'O'-rings (Horizon Instruments) were 
placed on the tubes. Each of the four seed types were 
run in triplicate, thereby yielding 12 spectral finger- 
prints. 

The pyrolysis mass spectrometer used in this study 
was the Horizon Instruments PYMS-200X. The sam- 
ple tube carrying the foil was heated, prior to pyroly- 
sis, at 100°C for 5 s. Curie-point pyrolysis was at 
530°C for 3 s, with a temperature rise time of 0.5 s. 
This pyrolysis temperature was chosen because it has 
been shown [27,28] to give a balance between frag- 
mentation from polysaccharides (carbohydrates) and 
protein fractions. The pyrolysate then entered a 
gold-plated expansion chamber heated to 150°C, 
whence it diffused down a molecular beam tube to the 
ionisation chamber of the mass spectrometer. To 
minimize secondary fragmentation of the pyrolysate 
the ionisation method used was low voltage electron 
impact ionisation (25 eV). These conditions were 
employed because it has been found that the stated 
expansion chamber temperature gives the most re- 
producible spectra [29], whilst the spectra from sam- 
ples ionised at 25 eV are much more robust to small 
changes in ionisation voltage than are those [2] ob- 
tained at lower ionisation voltages, whilst much 
higher ionisation voltages lead to excessive fragmen- 
tation. Non-ionised molecules were deposited on a 
cold trap, cooled by liquid nitrogen. The ionised 
fragments were focused by the electrostatic lens of a 
set of source electrodes, accelerated and directed into 
a quadrupole mass filter. The ions were separated by 
the quadrupole, on the basis of their mass-to-charge 
ratio, detected and amplified with an electron multi- 
plier [30]. The mass spectrometer scans the ionised 
pyrolysate 160 times at 0.2 s intervals following py- 
rolysis. Data were collected over the m / z  range 51 
to 200, in one tenth of a mass-unit intervals. These 
were then integrated to give unit mass. Given that the 
charge of the fragment was unity the mass-to-charge 
ratio can be accepted as a measure of the mass of py- 
rolysate fragments. The IBM-compatible PC used to 
control the PYMS-200X, was also programmed 
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Fig. 1. Representative pyrolysis mass spectra of (A) Lobelia eri- 
nus White Fountain seeds and of (B) Lobelia erinus White Lady 
seeds. 

(using software provided by the manufacturers) to 
record spectral information on ion count for the indi- 
vidual masses scanned and the total ion count for each 
sample analyzed. 

Prior to any analysis the mass spectrometer was 
calibrated using the chemical standard perfluoro- 
kerosene (Aldrich), such that the abundance of m / z  

181 was one tenth of that of m / z  69. 
The data from PyMS may be displayed as quanti- 

tative pyrolysis mass spectra (e.g. as in Fig. 1). The 
abscissa represents the m / z  ratio whilst the ordinate 
contains information on the ion count for any partic- 
ular m / z  value ranging from 51-200. Data were 
normalised to percentage total ion count to remove 
the influence of sample size per se. 
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2.3. Principal components analysis 

Principal components analysis (PCA) is a multi- 
variate statistical technique which can be used to 
identify correlations amongst a set of variables (in 
this case 150 m / z  intensities) and to transform the 
original set of variables to a new set of uncorrelated 
variables called principal components (PCs). For the 
present purpose, PCA can be thought of as finding a 
set of orthogonal axes in 150-dimensional space; 
these new axes (or PCs) are linear combinations of 
the original variables and are derived in decreasing 
order of importance; therefore the first PC accounts 
for the maximum variation among the samples, and 
subsequent PCs are chosen to account for progres- 
sively decreasing variance [ 11 - 13,15,31-33]. 

The objective of PCA is to see if the first few PCs 
account for most of the variation in the original data. 
If they do reduce the number of dimensions required 
to display the observed relationships, then the PCs 
can be plotted and 'clusters' may be found in the data. 
PCA is a variable-directed technique and therefore 
does not use any a priori knowledge of the groupings 
within samples (objects) in the data set, that is to say 
it is unsupervised; thus plots of PCs are thought to 
display the natural relationships between the sam- 
pies. 

To effect PCA the normalised data were pro- 
cessed with the GENSTAT package [34] run under 
Microsoft DOS 6.2 on an IBM-compatible PC; this 
has been previously described by MacFie and Gut- 
teridge [35] and Gutteridge et al. [31]. 

2.4. Canonical variates analysis 

Canonical variates analysis (CVA) is also a multi- 
variate statistical technique, here carried out using the 
GENSTAT package. Before CVA is employed PCA 
is used to reduce the dimensionality of the data and 
only those principal components (PCs) whose eigen- 
values accounted for more than 0.1% of the total 
variance are used. After the first few PCs, the axes 
generated will usually be due to random 'noise' in the 
data; these PCs can be ignored without reducing the 
amount of useful information representing the data, 
since each PC is now independent of (uncorrelated 
with) any other PC. 

CVA then separated the objects (samples) into 
groups on the basis of the retained PCs and the a pri- 
ori knowledge of the appropriate number of group- 
ings [36,37]; this is achieved by minimising the 
within-group variance and maximising the between- 
group variance. 

The principle of CVA is similar to PCA, but be- 
cause the objective of CVA is to maximise the ratio 
of the between-group to within-group variance, a plot 
of the first two canonical variates (CVs) displays the 
best 2D representation of the group separation. 

2.5. Non-linear principal components analysis 

The method of analysing these pyrolysis mass 
spectral data by non-linear principal components 
analysis (NLPCA) was by using auto-associative ar- 
tificial neural networks [20]. All ANN analyses were 
carried out under Microsoft Windows NT on an 
IBM-compatible PC. Data were normalised prior to 
analysis using the Microsoft Excel 4.0 spreadsheet. 
The back propagation neural network simulation pro- 
gram employed was WinNN version 0.93. (Dr. Yaron 
Danon, 14 Beman Lane, Troy New York 12180, 
USA. The program is available via ftp: f t p : / /  
sunsite.doc.ic.ac.uk/packages/windows3 / 
programr/, the most recent file name to down load 
is winnn97.zip.) 

The structure of the ANN used in this study to an- 
alyze pyrolysis mass spectra consisted of 5 layers 
containing processing nodes (neurons or units) made 
up of the 150 input nodes (normalised pyrolysis mass 
spectra), 150 output nodes (normalised pyrolysis 
mass spectra), and three 'hidden' layers containing 8, 
2 and 8 nodes respectively; this may be represented 
as a 150 -8 -2 -8 -150  architecture (Fig. 2). This ANN 
can be referred to as a fully interconnected feedfor- 
ward multilayer perceptron where each of the layers 
of nodes was connected to the next (hidden) layer us- 
ing abstract interconnections (connect ions or 
synapses). Connections each have an associated real 
value, termed the weight, that scale signals passing 
through them. Nodes in the hidden layers and output 
layer sum the signals feeding to them and output this 
sum to each driven connection scaled by a 'squash- 
ing' function ( f )  with a sigmoidal shape: 

f =  1 / (1  + e-X), (1) 

where x = F, inputs, 
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MS Input Mapping Bottle-neck De-Mapping MS output 
layer layer layer layer layer 

Fig. 2. Architecture of an auto-associative neural network consist- 
ing of 5 layers. In the architecture shown, adjacent layers of the 
network are fully interconnected. The input and output layer are 
presented with identical PyMS data (in this figure there are 24 
nodes in these layers; in the present work the number of nodes was 
actually 150 inputs/masses). A key feature of the auto-associative 
network is the data compression in the middle (third) bottle-neck 
layer of 2 nodes. The second and fourth layers each consisted of 8 
nodes and these map and de-map the mass spectra allowing fea- 
ture extraction in the bottle neck layer; this is equivalent to non- 
linear principal components analysis. 

These signals are then passed to the next layer 
which sums them and in turn squashed by the sig- 
moidal activation function (for a diagrammatic repre- 
sentation see Fig. 3); the product of the final layer of 
nodes was then fed to the 'outside world'. In previ- 
ous studies [38-42] we have used back-propagation 
ANNs for the quantification and identification of bi- 
ological systems from their PyMS spectra. The 
topology of these ANNs was 150-8-x  (where x is 

~ ' ~  output signal 

~ .: 

h ~ O1 

h f ~ O. 

Fig. 3. The information processing by a node in one of the hidden 
layers or output layer. An individual node sums its input (the Y, 
function) from nodes in the previous layer, including the bias (O), 
transforms them via a 'sigmoidal' squashing function, and outputs 
them to the next node to which it is linked via a connection weight. 

the number of determinants). Rather than 8 nodes be- 
ing chosen randomly it was found that by altering the 
number of nodes, 8 was normally found to give opti- 
mum generalisation. Therefore, in this study 8 nodes 
were chosen for the mapping and demapping layers 
of our 1 5 0 - 8 - 2 - 8 - 1 5 0  ANNs. It is possible that if 
more samples were to be analyzed by these auto-as- 
sociative ANNs, then more nodes may be needed to 
have enough degrees of freedom. Another study us- 
ing auto-associative ANNs for the classification of 
animal cell-lines was also successful when 8 nodes 
were used [43]. 

Before training commenced the values applied to 
the input and output nodes were normalised across the 
whole mass range such that the lowest ion count was 
set to 0 and the highest to 1. Finally, the connection 
weights were set to small random values (typically 
between - 0.0001 and + 0.0001). 

The algorithm used to train the neural network was 
the standard back-propagation (BP) [44-46]. For the 
training of the ANN each input (i.e., normalised py- 
rolysis mass spectrum) is paired with a desired out- 
put (i.e., the same pyrolysis mass spectrum); together 
these are called a training pair (or training pattern). 
An ANN is trained over a number of training pairs; 
this group is collectively called the training set. The 
input is applied to the network, which is allowed to 
run until an output is produced at each output node. 
The differences between the actual and the desired 
output, taken over the entire training set are fed back 
through the network in the reverse direction to signal 
flow (hence back-propagation) modifying the weights 
as they go. This process is repeated until a suitable 
level of error is achieved. 

In the present work, we used a learning rate of et 
= 0.05 and a momentum of 0.9. The reason a rela- 
tively small ot was employed was because when the 
learning rate was larger, typically 0.1 < et < 0.2, 
these auto-associative ANNs failed to learn. When the 
connection weights between the layers were exam- 
ined it was found that the back-propagation algo- 
rithm had set them to either very large positive or 
very large negative values. This saturation on the 
weights meant that the ANNs had got stuck and could 
not learn. The same phenomenon was found when the 
initial random weights were set > +0.0001; this is 
why these extremely small starting weights were em- 
ployed. 
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Each epoch represents the connection weight up- 
datings and a recalculation of the average root mean 
squared (rms) error between the true and desired out- 
puts (mass spectra) over the entire training set. 

average rms error 

,observed expecte , ) 
(2) 

where n = number of objects in training set, and m 
= number of determinants in output layer (for these 
ANNs m = 150). 

During training a plot of the error versus the num- 
ber of epochs represents the 'learning curve', and 
may be used to estimate the extent of training. Train- 
ing may be said to have finished when the network 
has found the lowest error. Provided the network has 
not become stuck in a local minimum, this point is 
referred to as the global minimum on the error sur- 
face. In the present experiment we trained the auto- 
associative neural network until the rms error was 
0.005; this took approximately 3 × 10 4 epochs. 

After training each of the pyrolysis mass spectra 
were applied in turn to the input layer and the activa- 
tion on the two nodes in the 'bottle-neck' layer cal- 
culated. The compression of the 150 inputs through 
only two nodes in the middle layer allows NLPCA to 
be performed; a biplot of the activations of the first 
node in the 'bottle-neck' layer against the second 
node's activations therefore allow 'clusters' to be 
found in the data. For a more detailed account of this 
data compression through the 'bottle-neck' layer 
please refer to Kramer [20]. 

2.6. Kohonen artificial neural networks 

All self-organizing feature maps (SOFMs) analy- 
ses were run under Microsoft Windows NT on an 
IBM-compatible PC using software written by Dr. 
Mark Neal (Institute of Biological Sciences, Univer- 
sity of Wales, Aberystwyth, Dyfed SY23 3DA, 
Wales, UK) in Microsoft Visual C ÷ ÷ according to the 
general principles outlined by Kohonen [17]. 

KANNs provide a way of classifying data through 
self-organising networks of artificial neurons. The 
SOFMs used in this work consisted of a two-dimen- 
sional network of neurons arranged on a square or 

MS Input layer 

Fig. 4. A simplified Kohonen artificial neural network. Nodes in 
the two-dimensional Kohonen layer are interconnected with each 
other, such that an activation node tends to activate surrounding 
nodes also. The PyMS data are applied to the input layer (repre- 
sented here by 24 nodes; in the present work the number of nodes 
was actually 150 inputs/masses)  which activates a node or group 
of neighbouring nodes in the Kohonen layer (represented here as 
having 4 X 4 nodes; the number of nodes was varied to allow 
quantitative information to be extracted). 

rectangle grid (Fig. 4). Each neuron was connected to 
its eight nearest neighbours on the grid. The neurons 
store a set of weights (a weight vector) each of which 
corresponds to one of the inputs in the data. Thus, for 
PyMS data consisting of 150 ion counts each node 
stores 150 weights in its weight vector. Upon presen- 
tation of a mass spectrum (represented as a vector 
consisting of the 150 ion counts) to the network each 
neuron calculates its 'activation level'. A node's acti- 
vation level is defined as 

~ L  (weight/ input/ ( ) 
)5. 

3 
i=0  

This is simply the Euclidean distance between the 
points represented by the weight vector and the input 
vector in n-dimensional space. Thus a node whose 
weight vector closely matches the input vector will 
have a small activation level, and a node whose 
weight vector is very different from the input vector 
will have a large activation level. The node in the 
network with the smallest activation level is deemed 
to be the 'winner' for the current input vector. 

During the training process the network is pre- 
sented with each input pattern in turn, and all the 
nodes calculate their activation levels as described 
above. The nodes included in the set which are al- 
lowed to adjust their weights are said to belong to the 
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'neighbourhood' of  the winner. The winning node 
and some of the nodes around it are then allowed to 
adjust their weight vectors to match the current input 
vector more closely by an amount depending upon the 
distance from the most active node, the current size 
of  the neighbourhood and the current value of  a .  This 
is the usual triangular shape [47]; thus if the neigh- 
bourhood size is 2 then the winning node can update 
its weights by 1 X o~, and the surrounding 8 nodes by 
0.5 X a ;  likewise if the neighbourhood size is 3 then 
the winning node can update its weights by 1 X cx, 
and the surrounding 8 nodes by 0.66' X o~, and the 16 
outer nodes by 0.33' X oL. The size of  the winner's 
neighbourhood is varied throughout the training pro- 
cess. Initially all of the nodes in the network are in- 
cluded in the neighbourhood of  the winner, but as 
training proceeds the size of  the neighbourhood is 
decreased linearly after each presentation of  the 
complete 'training set' (all the mass spectra being 
analyzed), until it includes only the winner itself. The 
amount by which the nodes in the neighbourhood are 
allowed to adjust their weights is also reduced lin- 
early through the training period. 

The factor which governs the size of  the weight 
alterations is known as the learning rate and is repre- 
sented by ~x. The adjustments to each item in the 
weight vector (where ~w is the change in the weight) 
are made in accordance with the following: 

B w  i = - o~( w e - i i ) .  (4) 

This is carried out for i = 1 to i = n where in this 
case n = 150. The initial value for c~ is 1 and the fi- 
nal value is 0. 

The effect of  the 'learning rule' (weight update 
a lgor i thm) is to distribute the neurons  evenly  
throughout the region of  n-dimensional space popu- 
lated by the training set [17,48,49]. This effect is dis- 
played in Fig. 5 which shows the distribution of  a 
square network over an evenly populated two-dimen- 
sional square input space. The neuron with the weight 
vector closest to a given input pattern will win for that 
pattern and for any other input patterns that it is clos- 
est to. Input patterns which allow the same node to 
win are then deemed to be in the same group, and 
when a map of their relationship is drawn a line en- 
closes them. By training with networks of  increasing 
size a map with several levels of groups or 'con- 
tours' can be drawn. These contours, however, may 

J 
w 

Increasing number of presentations or time 

N NII  
Increasing number of presematio~ or time 

Fig. 5. Provided the input data (mass spectra) are evenly popu- 
lated then after training the input space will be evenly covered with 
nodes in the Kohonen layer; thus as training proceeds the input 
space is mapped. This is represented here as a projection into 
two-dimensional space of a 24 X 24 square SOFM distributed 
across an evenly distributed input space (i.e., the samples evenly 
populate the input data). The weights to 24 × 24 output nodes from 
two input nodes (i and j) change as the number of presentations 
increases and a feature map is formed. The abscissa represents the 
value of the weight from input i and the ordinate represents the 
value of the weight from input j. Line intersections specify the two 
weights from each node. Lines connect weights for nodes that are 
nearest neighbours. 

sometimes cross - -  this appears to be due to failure 
of the SOFM to converge to an even distribution of  
neurons over the input space [50]. 

Construction of  these maps allows close examina- 
tion of  the relationships between the items in the 
training set, which in this case consisted of  the 12 
normalised pyrolysis mass spectra derived from the 
seeds. Networks on grids of 1 X 1, 1 × 2, 2 X 2, 3 x 
3, 4 × 4, 5 × 5, 6 X 6 and 7 X 7 nodes were trained 
for 750 epochs and used to group the samples. The 
SOFMs were allowed to 'wrap around' so that they 
formed toroidal structures; this was in order to avoid 
the edge effects which would otherwise tend to cor- 
rupt very small networks of this type. Although us- 
ing toroidal KANNs means that the maximum topo- 
logical distance for a N x N SOFM is decreased from 
N to N / 2 .  This does not limit the discriminatory 
ability because a succession of  larger KANNs was 
employed to assign quantitative differences and hence 
clustering. Indeed, it is true to say that it is very dif- 
ficult to assign quantitative meaning to a single 
KANN. 
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3 .  R e s u l t s  a n d  d i s c u s s i o n  

After the collection of pyrolysis mass spectra the 
first stage was to perform the unsupervised learning 
method (linear) principal components analysis (PCA), 
as described above, using the GENSTAT package to 
establish the n a t u r a l  relationships between the spec- 
tra of  the twelve samples. The resulting PCA plot is 
shown in Fig. 6; the first two principal components 
(PCs) are displayed and they account for 53.5% and 
17.9% (71.4% total) of  the total variation respec- 
tively. In this figure it can be seen that the replicate 
spectra do not group together well; in particular, 
replicates from L. e r i n u s  White Fountain (A) and C. 
c a r p a t i c a  (D) are disperse and overlap other sam- 
pies. PCA alone could therefore not be used to ana- 
lyze these data and additional methods are needed. 

Classically when PyMS has been used to discrim- 
inate between bacteria, PCA is first used as a linear 
dimensionality reduction step, which is thought to re- 
move any collinearity or noisy variables (masses), 
After PCA those PCs whose eigenvalues accounted 
for more than 0.1% of the total variance are used by 
the canonical variates analysis (CVA) procedure to- 
gether with knowledge of  which samples are repli- 
cates. CVA separates the samples into groups by 
minimising the within-group variance and maximis- 
ing the between-group variance. This procedure was 
performed on our data set using the first six PCs; al-  
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by GENSTAT showing the relationship between the four seed 
types. The first two principal components are displayed and they 
account for 53.5% and 17.9% (71.4% total) of the total variation 
respectively. A = L. erinus White Fountain, B = B. semperflorens 
Summer Rainbow, C = L. erinus White Lady, and D = C. carpat- 
ica White Gem; the 1, 2 and 3 represent the replicates. 
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Fig. 7. Canonical variates analysis biplot based on the first 6 prin- 
cipal components (those whose eigenvalues accounted for more 
than 0.1% of the total variance, the total variance accounted for in 
these 6 PCs was 97.6%) based on PyMS data analyzed by GEN- 
STAT showing the relationship between the four seed types. A = 
L. erinus White Fountain, B = B. semperflorens Summer Rain- 
bow, C = L. erinus White Lady, and D = C. carpatica White Gem; 
the 1, 2 and 3 represent the replicates. 

though this dimensionality reduction was from 150 to 
only six, 97.6% of the total (linear) variance was 
preserved. Next new canonical variates (CVs) were 
calculated and plotted (Fig. 7). In this ordination plot 
the replicates now cluster together allowing the true 
differences between the seeds to be observed. As one 
might expect from the known taxonomy of these 
plants three groups are observed; B. s e m p e r f l o r e n s  

(B) and C. c a r p a t i c a  (D) are recovered separately 
from the closely related L. e r i n u s  plants (A and C). 
On closer inspection of this plot L. e r i n u s  White 
Fountain (A) and L. e r i n u s  White Lady (C) might 
appear to be discriminated. However, CVA results 
can be interpreted statistically to discriminate popu- 
lations based on the 95% tolerance region con- 
structed around each population mean by the X- 
squared distribution on two degrees of  freedom 
[18,51]. This area can be represented by drawing a 
circle of  radius 2.448 canonical variates (CV) units, 
which means that group means must be separated by 
more than 4.9 CV units. That A and C were sepa- 
rated by only 2.05 CVs indicates that the separation 
of  these groups is not statistically valid. 

The next stage was to attempt to use unsupervised 
learning methods based on artificial neural networks 
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to cluster the pyrolysis mass spectra of the seeds. 
Kohonen neural networks (KANNs) and non-linear 
principal components analysis (NLPCA) (the latter 
calculated using auto-associative neural networks) 
were applied to the 12 spectra. The results showed 
(data not shown) that the three replicate spectra from 
each of the plant seeds failed to group together; 
moreover the clusters obtained were similar to the 
results from PCA (Fig. 6). KANNs, NLPCA, and 
PCA are based on unsupervised methods, where the 
system is shown a set of inputs (i.e., mass spectra) 
and the relevant multivariate algorithms seek 'clus- 
ters' in the data [15], thereby allowing one to group 
objects together on the basis of their perceived close- 
ness. Thus the chief purpose of such methods is 
merely to distinguish objects or populations in an 
un-biased way. Since PCA also failed to give the 
correct clustering, rather than a failure of the unsu- 
pervised clustering by neural networks these results 
may have arisen because of spectral variation; this 
was attributed either to spectral drift, which is un- 
likely given the rather short analysis time, or more 
likely noise associated with the lower intensity 
masses. 

To account for the spectral variation seen above so 
as to observe the differences between the seeds (and 
not the differences between the replicate samples), we 
can, like CVA, use the a priori information on which 
spectra are replicates. Therefore the triplicate spectra 
from each of the seeds were averaged in pairs to pro- 
duce three new spectra. That is to say, for replicate 
spectra 1, 2 and 3 new spectra are generated from the 
average (1, 2), average (1, 3) and average (2, 3). 

After this preprocessing step the new spectra were 
first analyzed by PCA using the GENSTAT package. 
The first three PCs are displayed as a pseudo-3D plot 
in Fig. 8 and they account for 64.8%, 17.6% and 7.9% 
(90.3% total) of the total variation, respectively. In 
contrast with PCA on the raw spectra (Fig. 6), but in 
agreement with CVA (Fig. 7), three groups are seen; 
the B. semperflorens (B) and C. carpatica (D) are 
recovered separately from the two L. erinus (A and 
C). These two L. erinus species cluster closely and 
can only really be separated when a priori informa- 
tion is at hand, that is to say there is a human subjec- 
tive bias. This PCA plot reflects the taxonomy of 
these plants and demonstrates that the preprocessing 
has allowed the relationships between the seeds to be 
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Fig. 8. Pseudo-three-dimensional principal components plots based 
on PyMS data analyzed by GENSTAT showing the relationship 
between the four seed types after the mass spectra had been aver- 
aged, as detailed in the text. The first three principal components 
are displayed and they account for 64.8%, 17.6% and 7.9% (90.3% 
total) of  the total variation respectively. A = L. erinus White 
Fountain, B = B. semperflorens Summer Rainbow, C = L. erinus 
White Lady, and D = C. carpatica White Gem; the 1, 2 and 3 rep- 
resent the replicates. 

elucidated. It is noteworthy that before preprocessing 
the first two PCs accounted for 71.4% of the total 
variance and 82.4% after processing; it is likely that 
this is because the noise associated with the low in- 
tensity masses is removed partially (or wholly) by the 
averaging procedure. 

One problem with PCA and CVA is that these 
clustering algorithms (a) rely on linear (orthogonal) 
transformations of the raw multivariate data and so 
cannot provide the truly best analytical discrimina- 
tions for systems that contain non-linearities, and (b) 
are subjective because they rely on the interpretation 
of complicated scatter plots. The next stage was 
therefore to investigate new neural computational 
methods based on auto-associative neural networks 
which calculate non linear PCA, and Kohonen's 
self-organising feature maps which have the poten- 
tial to group pyrolysis mass spectra both automati- 
cally and relatively objectively [18,19]. 

The architecture of the auto-associative neural 
networks employed  was 1 5 0 - 8 - 2 - 8 - 1 5 0  (il- 
lustrated in Fig. 2), the training pairs consisted of the 
same normalised pyrolysis mass spectrum, and the 12 
spectra were then applied in turn to the 150 input and 
150 output nodes. These multi-layered perceptrons 
were trained as described above until the rms error 
was 0.005; this took approximately 3 × 10 4 e p o c h s .  

After training to this point each of the pyrolysis 
mass spectra were applied to the input layer of the 
auto-associative ANN and the activation on the two 
nodes in the 'bottle-neck' layer calculated. Fig. 9 is a 
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Fig. 9. Non-linear principal components plot based on PyMS data 

analyzed by the 1 5 0 - 8 - 2 - 8 - 1 5 0  auto-associative neural network 

showing the relationship between the four seed types. The activa- 

tions of the two nodes in the bottle-neck layer are shown. A = L. 

erinus White Fountain, B = B. semperflorens Summer Rainbow, 
C = L. erinus White Lady, and D = C. carpatica White Gem; the 

1, 2 and 3 (which are virtually superimposed) represent the repli- 

cates. ANNs were trained using the standard-back propagation al- 
gorithm, to a RMS error of 0.005 which typically took 3 X 104 

epochs. 

plot of the activations of the first node against the ac- 
tivations of the second node for each of the 12 spec- 
tra. It can be seen that the three replicates for each 
seed now superimpose and that all four seeds are 
easily discriminated. This NLPCA plot also high- 
lights that the two L. erinus seeds A and C are closely 
related and different from the B. semperflorens (B) 

and the C. carpatica (D) seeds. This result demon- 
strates that PyMS and auto-associative neural net- 
works can be used to classify these plant seeds. 

The next stage was to use KANNs to cluster the 
seeds based on their mass spectra. Provided that the 
training conditions for SOFMS are kept constant, then 
KANNs can be used to create automatic grouping of 
data, thereby removing any human (which may be 
potentially biased) interpretation. Although a single 
KANNs provides no truly quantitative information 
about the similarity of samples within groups, they do 
provide qualitative information about the groups pre- 
sent. By using Kohonen layers of increasing sizes, 
finer discriminations may be sought and therefore 
some quantitative information can be gained [18,19]. 
As described above, networks with Kohonen layers of 
1X1 ,  1X2 ,  2 X 2 ,  3 X 3 ,  4 X 4 ,  5 X 5 ,  6 x 6  and 
7 X 7 nodes were used to group the samples. These 
SOFMS were trained for 750 epochs and details of 
the clusters formed at the eight different discrimina- 
tion levels are given in Table 2. 

In the past the clusters formed using SOFMs have 
been displayed either tabulated as detailed in Table 2, 
or as a rather complex 'topological contour map' 
shown in Fig. 10. When analysing many spectra these 
contour maps are often difficult to interpret and it is 
therefore necessary to display the results in a more 
simplified graphical representation. It is evident from 
Table 2 and Fig. 10 that quantitative information on 

Table 2 
Groups produced by self-organizing feature maps trained on pyrolysis mass spectral data of the plant seeds 

Plant seed type Groups formed at the following Kohonen layer sizes a 

1 x 1  1 x 2  2 x 2  3 x 3  4 x 4  5 x 5  6 x 6  7 x 7  

Lobelia W F  A 1 1 1 1 1 1 1 1 1 
A2 1 1 1 1 1 2 2 2 

A3 1 1 1 1 1 3 3 3 

Begonia B 1 1 2 2 2 2 4 4 4 
B2 1 2 2 2 2 4 5 5 

B3 1 2 2 2 2 4 6 6 

Lobelia W E  C 1 1 1 1 3 3 5 7 7 
C2 1 1 1 3 3 6 7 8 

C3 1 1 1 3 4 7 8 9 

Campanula D 1 1 2 3 4 5 8 9 10 
D2 1 2 3 5 6 9 10 11 
D3 1 2 3 5 7 10 1 l 12 

a The identifiers indicate which spectra were described by the same node in the Kohonen layer, hence which pyrolysis  mass spectra group 

together. 
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Fig. 10. Topological contour map of groups from SOFMs trained 
with PyMS data of the plant seeds. A = L. erinus White Fountain, 
B = B. semperflorens Summer Rainbow, C = L. erinus White 
Lady, and D = C. carpatica White Gem; the 1, 2 and 3 represent 
the replicates. The map is correct only in topology. 

seed relationships can be elucidated, therefore it 
should be possible to depict these details in a den- 
drogram format. 

The construction of the dendrogram (Fig. 11) be- 
gins when only a single node is used in the Kohonen 
layer and all 12 spectra necessarily group together; 
this is drawn as a single line in the 1 × 1 size of Ko- 
honen layer zone. The information in Table 2 tells us 
that when two nodes are employed spectra from A 
and C group together in a single group and B and D 
form another discrete cluster (this is also displayed in 
Fig. 10); therefore in the dendrogram the single line 
in the 1 X 1 zone can be split into two in the 2 X 1 
size of Kohonen layer region. The first line contains 
all the spectra from A and all the spectra from C, 

likewise the second line contains all the spectra from 
B and D. Next the number of nodes is increased to 
four, the two L. erinus seeds (A and C) still cluster 
together but the B. semperflorens (B) and C. carpat- 
ica (D) seeds are now separated (Table 2, Fig. 10); 
in the dendrogram this information is depicted as the 
line from the A and C spectra staying together and the 
line from the B and D spectra splitting in the 2 X 2 
zone. Only when the number of nodes in the Koho- 
nen layer is increased to nine (3 X 3 zone in Fig. 11) 
can the two L. erinus seeds be discriminated. By 
progressively increasing the number of nodes in the 
output layer of the SOFM more detailed discrimina- 
tions are found, these are shown in the dendrogram 
(Fig. 11) and the contour map, (Fig. 10), as well as 
in Table 2. Finally, when the number of nodes in the 
output layer was 49 all the spectra were recovered 
separately. 

It was interesting to observe the rather peculiar 
behaviour of C1 and C2; in the dendrogram (Fig. 10) 
these spectra were recovered separately with KANNs 
using 16 and 25 nodes, however when 36 nodes are 
used they clustered together and then ungrouped 
when 49 nodes are used. One could speculate as to 
possible reasons that this behaviour occurs: (1) dif- 
ferent weight randomisations, this is unlikely be- 
cause the behaviour observed was reproducible; al- 
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Fig. 11. Dendrogram produced using self organizing feature maps 
trained with PyMS data showing the relationship between the four 
seed types. Networks on grids of 1 X 1, 1 X 2, 2 X 2, 3 x 3, 4 x 4, 
5 x 5, 6 x 6 and 7 X 7 nodes were trained for 750 epochs. Details 
of how the dendrogram was constructed are given in the text. 
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ternatively it could be due to (2) different input order 
of objects, (3) an improper variation of the learning 
rate a ,  and finally (4) an insufficient training period. 
A combination of the above four reasons could cause 
the odd behaviour of C1 and C2, by contrast this 
could just be a data dependent phenomenon. 

The construction of this dendrogram is novel in 
that it is the first demonstration of the visual simpli- 
fication of the groups from employing a range of 
SOFMs with different Kohonen layers for the analy- 
sis of pyrolysis mass spectra. Furthermore, results of 
feature extraction depicted in dendrograms are easier 
to interpret than either tabulated results or topologi- 
cal contour maps. 

This results clearly show that PyMS and neural 
networks, carrying out unsupervised learning, can be 
employed to discriminate between plant seeds at the 
genus and species level and that the classification 
observed is congruent with the known plant taxon- 
omy. Furthermore, it was encouraging that our very 
simple, albeit crude, method of sample preparation 
allowed the seeds to be classified successfully, with- 
out recourse to the laborious protocol used by other 
workers [26], which only analyses part of the plant 
seed. 

4. Concluding remarks 

Artificial neural network pattern recognition tech- 
niques based on unsupervised learning were com- 
pared with the statistical approaches of principal 
components analysis and the supervised method of 
canonical variates analysis (also referred to as dis- 
criminant analysis) for the analysis of the pyrolysis 
mass spectra of Lobelia erinus White Fountain, Lo- 
belia erinus White Lady, Begonia semperflorens 
Summer Rainbow, and Campanula carpatica White 
Gem plant seeds. 

When PCA was used on the raw pyrolysis mass 
spectra replicate samples were not recovered in dis- 
crete clusters; CVA, which minimises the within- 
group variance and maximises the between-group 
variance, had to be employed. Although B. semper- 
florens and C. carpatica seeds were recovered sepa- 
rately and away from the L. erinus plant seeds, the 
two sub-species of L. erinus seeds could still not be 
discriminated between using CVA. 

CVA uses a priori information on which spectra 
are replicates; we therefore encoded this information 
by preprocessing the mass spectra prior to analysis by 
each of the unsupervised methods; the triplicate 
spectra from each of the seeds were averaged in pairs 
to produce three new spectra. PCA still failed to sep- 
arate the two L. erinus; however, auto-associative 
neural networks could be used successfully to dis- 
criminate them. It is likely that this was due to their 
ability to perform non-linear mappings and hence ap- 
proximate non-linear PCA [20]. 

Self-organizing feature maps could also be used to 
separate all four seeds unequivocally; by increasing 
the size of the Kohonen output layer, and the novel 
construction of a dendrogram, quantitative informa- 
tion regarding the similarity of this group of seeds 
was elucidated. 

This study demonstrates the potential of PyMS for 
discriminating plant seeds down to the sub-species 
level. Moreover the clusters observed were a true re- 
flection of the known taxonomy of these plants, we 
feel therefore that this approach will be valuable to 
the plant taxonomist in representing biological rela- 
tionships among plant taxa or in describing genomic 
relationships without the need for cultivation of the 
seed. Indeed, if cultivation were not possible then this 
approach could still be used to type the non-viable or 
dormant plant. 

The major advantages that PyMS offers over more 
conventional methods are its speed, sensitivity and 
the ability to analyze many hundreds of samples per 
day. This study also analysed the whole seed without 
recourse to lengthy sample preparation procedures, 
therefore, one could employ this technique to screen 
larger populations of plant seeds. We conclude that 
the combination of PyMS and ANNs can provide an 
objective, rapid and accurate discriminatory tech- 
nique for plant seed typing. 

Acknowledgements 

We thank Dr. Mark Neal for very useful discus- 
sions. We are also grateful to the reviewers for their 
useful comments on this paper. R.G. is funded as a 
research fellow by the Wellcome Trust grant number 



82 R. Goodacre et al. / Chemometrics and Intelligent Laboratory Systems 34 (1996) 69-83 

0 4 2 6 1 5 / Z / 9 4 / Z .  D.B.K. thanks the Chemicals and 
Pharmaceuticals Directorate of the UK BBSRC for 
financial support under the terms of the LINK scheme 
in Biochemical Engineering, in collaboration with 
Horizon Instruments, Neural Computer Sciences and 
Zeneca Bioproducts plc. 

References 

[1] W.J. Irwin, Analytical Pyrolysis: A Comprehensive Guide 
(Marcel Dekker, New York, 1982). 

[2] H.L.C. Meuzelaar, J. Haverkamp and F.D. Hileman, Pyroly- 
sis Mass Spectrometry of Recent and Fossil Biomaterials 
(Elsevier, Amsterdam, 1982). 

[3] R.C.W. Berkeley, R. Goodacre, R.J. Helyer and T. Kelley, 
Lab. Pract. 39 (1990) 81-83. 

[4] P.B. Smith and A.P. Snyder, J. Anal. Appl. Pyrolysis 24 
(1993) 199-210. 

[5] J.T. Magee, Whole-organism fingerprinting, in: Handbook of 
New Bacterial Systematics, ed. M. Goodfellow and A.G. 
O'Donnell (Academic Press, London, 1993) pp. 383-427. 

[6] A.P. Snyder, P.B.W. Smith, J.P. Dworzanski and H.L.C. 
Meuzelaar, Pyrolysis-gas chromatography-mass spectrometry 
- detection of biological warfare agents, ACS Symposium 
Series, Vol. 541 (1994) pp. 62-84. 

[7] R. Goodacre, Microbiol. Enr. 2 (1994) 16-22. 
[8] C. Halpin, M.E. Knight, G.A. Foxon, M.M. Campbell, A.M. 

Boudet, J.J. Boon, B. Chabbert, M.T. Tollier and W. Schuch, 
Plant J. 6 (1994) 339-350. 

[9] A.M.C. Emons, M.M. Mulder and H. Kieft, Acta Bot. Need. 
42 (1993) 319-339. 

[10] W. Windig, H.L.C. Meuzelaar, B.A. Haws, W.F. Campbell 
and K.H. Asay, J. Anal. Appl. Pyrolysis 5 (1983) 183-198. 

[I 1] H. Martens and T. N~es, Multivariate calibration (John Wi- 
ley, Chichester, 1989). 

[12] C. Chatfield and A.J. Collins, Introduction to Multivariate 
Analysis (Chapman and Hall, London, 1980). 

[13] I.T. Jolliffe, Principal Component Analysis (Springer-Verlag, 
New York, 1986). 

[14] C.S. Gutteridge, Methods Microbiol. 19 (1987) 227-272. 
[15] B.S. Everitt, Cluster Analysis (Edward Arnold, London, 

1993). 
[16] M.F. Wilkins, L. Boddy and C.W. Morris, Binary Comput. 

Microbiol. 6 (1994) 64-72. 
[17] T. Kohonen, Self-Organization and Associative Memory 

(Springer-Verlag, Berlin, 1989). 
[18] R. Goodacre, M.J. Neal, D.B. Kell, L.W. Greenham, W.C. 

Noble and R.G. Harvey, J. Appl. Bacteriol. 76 (1994) 124- 
134. 

[19] R. Goodacre, S.A. Howell, W.C. Noble and M.J. Neal, Zen- 
tralbl. Bakteriol. (1996), in press. 

[20] M.A. Kramer, AIChE J. 37 (1991) 233-243. 
[21] M.A. Kramer, Comput. Chem. Eng. 16 (1992) 313-328. 
[22] J.A. Leonard and M.A. Kramer, IEEE Expert Intelligent Sys- 

tems Appl. 8 (1993) 44-53. 
[23] D.R. Kuespert and T.J. McAvoy, Chem. Eng. Commun. 130 

(1994) 251-264. 
[24] S.P. Jacobsson, Anal. Chim. Acta 291 (1994) 19-27. 
[25] G. Montague and J. Morris, Trends Biotechnol. 12 (1994) 

312-324. 
[26] R. Valcarce, G.G. Smith, D.N. Stevenson and K.H. Asay, 

Chemom. Intell. Lab. Syst. 9 (1990) 95-105. 
[27] W. Windig, P.G. Kistemaker, J. Haverkamp and H.L.C. 

Meuzelaar, J. Anal. Appl. Pyrolysis 2 (1980) 7-18. 
[28] R. Goodacre, Ph.D. thesis, University of Bristol (1992). 
[29] W. Windig, P.G. Kistemaker, J. Haverkamp and H.L.C. 

Meuzelaar, J. Anal. Appl. Pyrolysis 1 (1979) 39-52. 
[30] J.R. Chapman, Practical Organic Mass Spectrometry (Wiley 

and Sons, New York, 1993). 
[31] C.S. Gutteridge, L. Vallis and H.J.H. MacFie, Numerical 

methods in the classification of microorganisms by pyrolysis 
mass spectrometry, in: Computer-assisted Bacterial Systemat- 
ics, ed. M. Goodfellow, D. Jones and F. Priest (Academic 
Press, London, 1985) pp. 369-401. 

[32] D.R. Causton, A Biologist's Advanced Mathematics (Allen 
and Unwin, London, 1987). 

[33] B. Flury and H. Riedwyl, Multivariate Statistics: A Practical 
Approach (Chapman and Hall, London, 1988). 

[34] J.A. Nelder, Genstat Reference Manual, Scientific and Social 
Service Program Library, University of Edinburgh (1979). 

[35] H.J.H. MacFie and C.S. Gutteridge, J. Anal. Appl. Pyrolysis 
4 (1982) 175-204. 

[36] H.J.H. MacFie, C.S. Gutteridge and J.R. Norris, J. Gen. Mi- 
crobiol. 104 (1978) 67-74. 

[37] W. Windig, J. Haverkamp and P.G. Kistemaker, Anal. Chem. 
55 (1983) 81-88. 

[38] R. Goodacre, A.N. Edmonds and D.B. Kell, J. Anal. Appl. 
Pyrolysis 26 (1993) 93-114. 

[39] R. Goodacre and D.B. Kell, Anal. Chim. Acta 279 (1993) 
17-26. 

[40] R. Goodacre, S. Trew, C. Wrigley-Jones, G. Saunders, M.J. 
Neal, N. Porter and D.B. Kell, Anal. Chim. Acta 313 (1995) 
25-43. 

[41] R. Goodacre, M.J. Neal and D.B. Kell, Anal. Chem. 66 (1994) 
1070-1085. 

[42] R. Goodacre and D.B. Kell, Current Opinion Biotechnol. 7 
(1996) 20-28. 

[43] R. Goodacre, D.J. Rischert, P.M. Evans and D.B. Kell, Cy- 
totechnology, (1996) in press. 

[44] Y. Chauvin and D.E. Rumelhart, ed., Backpropagation: The- 
ory, Architectures, and Applications (Erlbaum, Hove, 1995). 

[45] D.E. Rumelbart, J.L. McClelland and The PDP Research 
Group, Parallel Distributed Processing, Experiments in the 
Microstructure of Cognition, Vol. I and II (MIT Press, Cam- 
bridge, MA, 1986). 

[46] P.J. Werbos, The roots of back-propagation: from ordered 
derivatives to neural networks and political forecasting (John 
Wiley, Chichester, 1994). 



R. Goodacre et al. / Chemometrics and Intelligent Laboratory Systems 34 (1996) 69-83 83 

[47] J. Zupan and J. Gasteiger, Neural Networks for Chemists: An 
Introduction (VCH Verlagsgesellschaft, Weinheim, 1993). 

[48] R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, MA, 
1990). 

[49] J. Hertz, A. Krogh and R.G. Palmer, Introduction to the The- 
ory of Neural Computation (Addison-Wesley, CA, 1991). 

[50] E. Erwin, K. Obermayer and K. Schulten, Biol. Cybernetics 
67 (1992) 47-55. 

[51] W.J. Krzanowski, Principles of Multivariate Analysis: A 
User's Perspective (Oxford University Press, Oxford, 1988). 


