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Abstract 

For pyrolysis mass spectrometry (PyMS) to be exploited in areas such as the routine identification of microorganisms, for 
quantifying determinands in biological and biotechnological systems, and in the production of useful mass spectral libraries, it 
is paramount that newly acquired spectra be comparable to those previously collected and held in a central reference 
laboratory. Artificial neural networks (ANNs) and other multivariate calibration models have been used to relate mass spectra 
to the biological features of interest. However, calibration models developed on one mass spectrometer cannot be used with 
spectra collected on a second instrument, because of the differences between the instrumental responses of both instruments. 
We report here that an ANN-based drift correction procedure can be implemented so that newly acquired spectra can be used 
to challenge models constructed using mass spectra collected on diffeerent instruments. Calibration samples were run on three 
different PyMS machines, and ANNs set up in which the inputs were the 150 machine ‘a’ calibration masses and the outputs 
were the 150 calibration masses from the machine ‘b’ spectra. Such associative neural networks could thus be used as signal- 
processing elements to effect the transformation of data acquired on one machine to those which would have been acquired on 
a different instrument. Therefore, for the first time PyMS could be used to acquire spectra which could usefully be compared 
to those previously collected and held in a data-base, irrespective of the mass spectrometer used. The examples reported are 
for the quantitative assessment of the amount of lysozyme in a binary mixture with glycogen and the rapid identification down 
to the species level of bacteria belonging to the genus Eubacterium. This approach is not limited solely to pyrolysis mass 
spectrometry but is generally applicable to any analytical tool which is prone to deterioration in calibration transfer, such as 
IR, ESR, NMR and other vibrational spectroscopies, gas and liquid chromatography, as well as other types of mass 
spectrometry. 

Keywords: Artificial neural networks; Calibration transfer; Chemometrics; Multivariate calibration; Pyrolysis mass spectrometry; 

Standardization 

1. Introduction 
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has been widely applied to the discrimination of 
closely related microbial strains [3-51. Recent 
advances in artificial neural networks (ANNs) (see 
e.g. [6-14]), and other multivariate calibration meth- 
ods based on supervised learning, which perform 
linear regression, such as partial least squares regres- 
sion (PLS) and principal components regression 
(PCR) (see e.g. [15-201) have now permitted its ex- 
ploitation in the quantitative analysis of many samples 
of more (bio)chemical interest (see e.g. [5,21-251). 

Pyrolysis is the thermal degradation of a material in 
an inert atmosphere, and leads to the production of 
volatile fragments from non-volatile material. Curie- 
point pyrolysis is a particularly reproducible and 
straightforward version of the technique, in which 
the sample, dried onto an appropriate metal is rapidly 
heated (<0.5 s is typical) to the Curie point of the 
metal, which is usually chosen to be 530°C (although 
other temperatures exist, viz. 358, 480, 510, 610 and 
770°C). The volatile fragments or pyrolysate [l] 
resulting from the Curie-point pyrolysis may then 
be separated and analysed in a mass spectrometer 
[2], and the combined technique is then known as 
pyrolysis mass spectrometry or PyMS. 

spectra collected on a second instrument, because of 
the differences between their instrumental responses 
[28]. To keep those models and effect calibration 
transfer, it is essential to correct for those differences. 
This can be achieved by standardisation procedures, 
which often involve the estimation of the instrumental 
differences by measuring standardisation samples on 
both machines, and then correction of those differ- 
ences. Once developed it would be possible to transfer 
the calibration model to other instruments, so that old 
models can be used at the point of measurement rather 
than in the research laboratory [29]. 

Almost all biological materials will produce pyr- 
olytic degradation products such as methane, ammo- 
nia, water, methanol and H#, whose mass:charge 
(m/z) ratio ~50, and fragments with m/z ~200 are 
rarely analytically important [26], the analytically 
useful data are thus constituted by a set of (150) 
normalised intensities versus m/z in the range 5 l-200. 

The major problem with PyMS is that long-term 
reproducibility (>30 days) is poor, such that the mass 
spectral fingerprints of the same material analysed at 
two different times are different; this lack of reprodu- 
cibility is due largely to instrumental drift in the mass 
spectrometer (and is not confined to PyMS). There- 
fore, within clinical microbiology PyMS has really 
been limited to the typing of short-term outbreaks 
where all micro-organisms are analysed in a single 
batch [4,27]. For PyMS to be used (a) for the routine 
identification of micro-organisms and (b) combined 
with multivariate calibration to quantify biological 
systems (e.g. metabolites of interest in fermentor 
broths), new spectra must be able to be compared 
to those previously collected. 

The issue of calibration transfer has been studied by 
a number of researchers [30-331; particular attention 
has been paid to the standardization of near-infrared 
spectrometers [34,35], and a recent review describing 
different standardization methods has been given by 
de Noord [36]. Amongst those methods proposed for 
multivariate calibration transfer between infrared 
instruments, ‘piecewise direct standardization’ 
(PDS) has received a great deal of attention 
[31,34,37-391; other methods included locally 
weighted regression [40] while Bouveresse et al. 
[41] tested Shenk’s algorithm to transfer NIR calibra- 
tion models. Artificial neural networks with optimal 
associative memory (OAM) have been exploited for 
background correction of infrared spectra [42], and 
this approach has now incorporated fuzzy logic and 
has been extended to fuzzy OAM (FOAM) [43]. The 
later study demonstrated that multivariate calibrations 
were improved after analysis using FOAM, relative to 
the uncorrected spectra, for predicting low levels of 
glucose from infrared absorbance spectra of glucose in 
plasma matrices from single-beam data [43]. 

Smits et al. [44] have implemented a drift correction 
for pattern recognition using neural networks using 
simulated flow cytometry data. These data sets con- 
tained only two variables and the amount of drift was 
included in neural networks as an extra input variable 
(three input nodes in total). It is, however, often 
difficult to measure the amount of drift accurately 
in real systems, especially if the number of input 
variables is high (typically 150 with pyrolysis mass 
spectral data); a better method would be to transform 
the spectra collected ‘today’ to be like those collected 
previously. 

In addition, calibration models developed on a We have found that neural networks can be used 
particular mass spectrometer cannot be used with successfully to correct for instrumental drift on a 
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single mass spectrometer so that models created using 
old, previously collected data can be employed to give 
accurate estimates of determinand concentration or 
bacterial identities from newly acquired spectra when 
calibrated with standards common to the two data sets 
[45,46]. Calibration samples were run at the two times, 
and ANNs set up in which the inputs were the 150 
‘new’ calibration masses and the outputs were the 150 
calibration masses from the ‘old’ spectra. Such asso- 
ciative nets could thus be used as signal-processing 
elements to effect the transformation of data acquired 
one day to those which would have been acquired on a 
later date. 

The aim of the present study was to assess whether 
our neural network transformation procedure could be 
extended from correcting spectra taken on the same 
instrument at different times to allowing the operator 
to create calibration models on a ‘master’ machine and 
use newly acquired spectra from ‘slave’ instruments. 
The examples reported are for the quantitative assess- 
ment of the amount of lysozyme in a binary mixture 
with glycogen and for the rapid identification down to 
the species level of human bacterial oral isolates 
belonging to the genus Eubacterium. 

2. Experimental 

2.1. The quantification of lysozyme in 
glycogen data set 

Mixtures were prepared such that 5 ~1 of a solution 
contained O-100 ug (in steps of 5 ug) of lysozyme 
(from chicken egg white, Sigma), in 100-O p,g glyco- 
gen (oyster type II, Sigma); such that the total was 
always 100 pg; representative of percentage mixtures. 

Table 1 

Instruments used by the three participating laboratories 

The samples were then frozen at -20°C until they 
were analysed by PyMS. 

2.2. The identification of Eubacterium 
species data set 

Five Eubacterium groupsltaxa were analysed; five 
E, timidum, four Eubacterium Cl, five Eubacterium 
C2, five Eubacterium New 1 and five Eubacterium 
isolates from Saint Bartholomew’s Hospital (SBH). 
These isolates have been previously described [47,48] 
and studied by PyMS [49]; in the later study it was 
found that the SBH isolates belonged to the Eubacter- 
ium C2 taxon. Details of the 19 organisms analysed 
can be found in [49] and Table 7. 

Strains were cultured on Fastidious Anaerobe agar 
(Lab M Malthus, Bury UK) plus 5% sheep blood and 
incubated anaerobically in an anaerobic cabinet in an 
atmosphere of Ns 80% CO2 lo%, Hz 10% for 72 h. 
The bacteria were harvested with a nichrome wire loop 
and suspended in phosphate buffered saline to 
20 mg ml-‘. The samples were then frozen at 
-20°C until they were analysed by PyMS. 

2.3. Pyrolysis mass spectrometry (PyMS) 

Three different pyrolysis mass spectrometers were 
used in this study; two PYMS-200X instruments (one 
in Aberystwyth and one in Cardiff), and a RAPyD-400 
machine (Heathfield). Each of these PyMS instru- 
ments were constructed by Horizon Instruments 
(Heathfield, East Sussex, TN21 8AW, U.K.) and oper- 
ate on very similar principles; the relevant differences 
are given in Table 1. 

5 pl aliquots of the above samples were evenly 
applied onto iron-nickel foils to give a thin uniform 

Laboratory Machine Mass spectrometer Vacuum system 

University of Wales, 

Aberystwyth (UWA) 

Horizon 

Instruments (HI) 

Health Park, 

Card8 (PHLS) 

Machine l- 

PYMS-200x 

Machine 2- 

RAPyD-400 

Machine 3- 

PYMS-200x 

Quadrupole m/z 

Range 11-200 

Quadrupole m/z 

Range 11-400 

Quadrupole m/z 

Range 11-200 

Diaphragm pump 

+ turbo-drag pump 

Rotary pump + 
turbo-molecular pump 

Rotary pump + 
diffusion pump 
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Details of the two PyMS experiments studied to investigate instrument standardization and calibration transfer 

PyMS experiment design Pyrolysis mass spectra collected Time difference in days 

Machine A Machine B 

To quantify lysozyme in glycogen Machine 1 Machine 2 481 
To identify Eubacterium human isolates Machine 1 Machine 3 331 

surface coating. Prior to pyrolysis the samples were 
oven-dried at 50°C for 30 mm. Each sample was 
analysed in triplicate. Three pyrolysis mass spectro- 
meters used for the two experiments and details are 
given in Table 2. For full operational procedures see 
[23,25,50]. The sample tube carrying the foil was 
heated, prior to pyrolysis, at 100°C for 5 s. Curie- 
point pyrolysis was at 530°C for 3 s, with a tempera- 
ture rise time of 0.5 s. These conditions were used for 
all experiments. The data from PyMS were collected 
over the m/z range 51-200 and may be displayed as 
quantitative pyrolysis mass spectra (e.g. as in Fig. 1; 
here normalised to total ion count). The abscissa 
represents the mlz ratio whilst the ordinate contains 
information on the ion count for any particular m/z 
value ranging from 51-200. 

The pyrolysis mass spectra that collected were 
normalised so that the total ion count was 216 to 
remove the influence of sample size per se. 

Prior to any analysis the mass spectrometer was 
calibrated using the chemical standard perlluoroker- 
osene (Aldrich), such that m/z 181 was one tenth of 
mlz 69. 

2.4. Principal components analysis (PCA) 

To observe the natural relationships between 
samples the normalised data were then analysed 
by PCA [17,51-561, according to the NIPALS 
algorithm [57], using the program Matlab version 
4.2c.l (The MathWorks, Natick, MA, USA), which 
runs under Microsoft Windows NT on an IBM- 
compatible PC. 

PCA is a well-known technique for reducing the 
dimensionality of multivariate data whilst preserving 
most of the variance, and whilst it does not take 
account of any groupings in the data, neither does it 
require that the populations be normally distributed, 
i.e. it is a non-parametric method. Moreover, PCA can 
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Fig. 1. Normalized pyrolysis mass spectra of 5Opg lysozyme 
mixed with 5Opg glycogen, analysed on the PYMS-200X 
instrument (Machine 1) at University of Wales, Aberystwytb (A) 
and on the RAPyD-400 instrument (Machine 2) at Horizon 
Instruments, Healthfield (B). 

be used to identify correlations amongst a set of 
variables and to transform the original set of variables 
to a new set of uncorrelated variables called principal 
components (PCs). The objective of PCA is to see if 



R. Goodacre et al. /Analytica Chimica Acta 348 (1997) 51 I-532 515 

the first few PCs account for most (>90%) of the 
variation in the original data. If they do reduce the 
number of dimensions required to display the 
observed relationships, then the PCs can more easily 
be plotted and ‘clusters’ in the data visualized; more- 
over, this technique can be used to detect outliers. 

2.5. Partial least squares (PLS) for the quantification 

of lysozyme in glycogen 

PLS was used to quantify the levels of lysozyme in 
mixtures with glycogen. For calibrating PLS models 
so as to quantify the percentage of lysozyme the 
mixtures analysed on the PYMS-200X at UWA were 
divided into two sets; the training set consisted of n % 
lysozyme and y % glycogen, where x : y were 100 : 0, 
90: 80, 80: 20, 70: 30, 60:40, 50: 50, 40: 60, 
30 : 70, 20 : 80, 10 : 90, and 0 : 100. The second, 
‘unknown’ test set consisted of (x % lysozyme: y % 
glycogen) where x : y were 95 : 5, 85 : 15, 75 : 25, 
65 : 35, 55 : 45,45 : 55,35 : 65,25 : 75, 15 : 85, and 
5 : 95. 

All PLS analyses [15,17,18,58-601 were carried out 
using an in-house program, developed by Dr Alun 
Jones, which runs under Microsoft Windows NT on an 
IBM-compatible PC. Data were also processed prior 
to analysis using the Microsoft Excel 5.0 spreadsheet. 

The first stage was the preparation of the data. This 
was achieved by presenting the ‘training set’ as two 
data matrices to the program; X, which contains the 
normalised triplicate pyrolysis mass spectra, and Y 
which represents the percentage of lysozyme (i.e., 
determinand) in glycogen. The X-data were mean 
centred and scaled in proportion to the reciprocal of 
their standard deviations. 

The next stage was the generation of the calibration 
model using the PLSl algorithm from data obtained 
on Machine 1. The method of validation used was full 
cross-validation, via the leave-one-out method [ 171. 
This technique sequentially omits one sample from the 
calibration; the PLS model is then re-determined on 
the basis of this reduced sample set. The concentration 
of lysozyme of the omitted sample is then predicted 
with the use of the model. This method is required to 
determine the optimal size of the calibration model, so 
as to obtain good estimates of the precision of the 
multivariate calibration method (i.e., neither to under- 
nor over-fit predictions of unseen data) [16,17,61,62]. 

8 8 
E 

IA 6 

3 4 

2 

,.t 
0 10 20 30 

Latent variables 

-o- RMSEF * RMSEP 

Fig. 2. Effect of the number of PLSl factors on the accuracy of the 
PLS calibration models used to estimate the percentage lysozyme 
in glycogen. The open circles represent the Rh4S error of the data 
used to create the model (the training set) and the closed circles the 
RMS from the test set. The arrows indiciate that possible optima 
were found when 3, 6 or 8 latent variables were used to form the 
models. 

To choose the optimal number of latent variables 
(PLS factors) to use in predictions after the model was 
calibrated, the RMS error between the true and desired 
lysozyme concentrations over the entire calibration 
model was calculated for the known training set 
(RMSEF) and the cross-validation set (RMSEP). 
These RMS errors were then plotted vs. the number 
of latent variables (factors) used in predictions 
(Fig. 2). Using this approach, it can be seen that the 
first minimum is with 3 PLS factors, another minimum 
was at 6 factors whilst the global was at 8 factors. 
Therefore, after calibration, the number of PLS factors 
used in the predictions was 3, 6 and 8; all pyrolysis 
mass spectra from Machine 2 (before and after correc- 
tion) were used as the ‘unknown’ inputs (test data); the 
model then gave its prediction in terms of the percent 
lysozyme in glycogen. 

2.6. Canonical variates analysis (CVA) 

Canonical variates analysis (CVA) is a multivariate 
statistical technique, here carried out using the GEN- 
STAT package [63], running under MS-DOS 6.2 on an 
IBM-compatible PC. Before CVA was employed the 
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following numerical constraint was complied with for 
a statistically valid analysis [64]: 

N, < (Ns-Ns- 1) (1) 

where N, is the number of variables (masses) per 
samples, N, is the number of samples, and Ns is the 
number of groups. 

Therefore, for 57 samples representing four differ- 
ent groups or taxa this requirement involved reducing 
the mass spectrum from 150 masses to 51; this was 
achieved by selecting the 51 most important ones 
based on their characteristicities [65]. 

Characteristicity is closely related to the Fisher (F) 
ratio [66]: 

F = Between-group variance 

Within-group variance (2) 

and has been used to select relevant masses in PyMS 
spectra for multivariate analysis [2]. 

Characterisiticity was calculated as described by 
Eshuis et al. [65]. The first stage is the calculation of 
the following expressions: 

(A) inner variance or reproducibility (ri) [67]: 

1 n 
rr = - 

[ 1 c n Vd 
]=I 

where n is number of duplicate 
variance of peak i in sample j. 

samples and vcij) is 

(B) outer variance or specificity Csi) [681: 

(3) 

(4) 

where n is number of duplicate samples, m(ij) is mean 
of peak i in samplej, and mi is mean of m(ij) (i.e. mean 
for all samples of peak i). 

The ‘characteristicity’ (ci) is then calculated by the 
following [65]: 

q =s’. 
ri 

The mass intensities can then be ranked in order of 
their characteristicities; large values are more impor- 
tant, smaller ones less so. After this mass selection 
stage the first 51 most characteristic masses were 
analysed by CVA. 

CVA separated the objects (samples) into groups on 
the basis of the 51 masses and the a priori knowledge 
of the appropriate number of groupings [69,70]; this is 
achieved by minimising the within-group variance and 
maximising the between-group variance. The a priori 
groups used were the triplicate pyrolysis mass spectra 
from the five E. timidum, four Eubacterium C,, five 
Eubacterium C2 and five Eubacterium New 1 from 
data collected on Machine 1; the five Eubacterium 
isolates from St Bartholomew’s Hospital were used as 
an external cross-validation set. 

The principle of CVA is similar to PCA, but because 
the objective of CVA is to maximise the ratio of the 
between-group to within-group variance, a plot of the 
first two canonical variates (CVs) displays the best 2- 
D representation of the group separation. After CVA 
was performed on Machine 1 data the unknown test 
data from Machine 3 were projected into this CVA 
space. 

2.7. Artificial neural networks (ANNs) 

All ANN analyses were carried out with a user- 
friendly, neural network simulation program, Neu- 
Frame version l,l,O,O (Neural Computer Sciences, 
Totton, Southampton, Hams), which runs under 
Microsoft Windows NT on an IBM-compatible PC. 
In-depth descriptions of the modus operandi of this 
type of ANN analysis are given elsewhere [23,25,50]. 

The algorithm used was standard back-propagation 
(BP) [6,71] which employs processing nodes (neurons 
or units), connected using abstract interconnections 
(connections or synapses). Connections each have an 
associated real value, termed the weight, that scale 
signals passing through them. Nodes sum the signals 
feeding to them and output this sum to each driven 
connection scaled by a ‘squashing’ function (f, with a 
sigmoidal shape, typically the function cf> 

where x=Cinputs. 

For the training of the ANN each input (i.e. normal- 
ised pyrolysis mass spectrum from Machine 1) is 
paired with a desired output (i.e. normalised pyrolysis 
mass spectrum from Machine 2 or 3); together these 
are called a training pair (or training pattern). An ANN 
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is trained over a number of training pairs; this group is 
collectively called the training set. The input is applied 
to the network, which is allowed to run until an output 
is produced at each output node. The differences 
between the actual and the desired output, taken over 
the entire training set are fed back through the network 
in the reverse direction to signal flow (hence back- 
propagation) modifying the weights as they go. This 
process is repeated until a suitable level of error is 
achieved. In the present work, we used a learning rate 
of 0.1 and a momentum of 0.9. Learning rate scales the 
magnitude of the step down the error surface taken 
after each complete calculation in the network 
(epoch), and momentum acts like a low pass filter, 
smoothing out progress over small bumps in the 
error surface by remembering the previous weight 
change. 

In addition, the hidden layer (if present) and output 
layer were connected to the bias (the activation of 
which is always +l), whose weights will also be 
altered during training. Before training commenced 
the values applied to the input and output nodes were 
normalised between 0 and +l, and the connection 
weights were set to small random values [8]. 

2.8. Machine standardization using ANNs 

ANN-based methods of machine standardization 
were employed to transform pyrolysis mass spectra 
collected on Machine 2 or 3 into those collected 
previously using Machine 1. This procedure should 
then allow newly collected mass spectra on Machine 2 
or 3 to be directly compared with mass spectra col- 
lected using Machine 1 and held in a data base. 

Calibration spectra were chosen from the spectra 
collected on the two machines: (1) for the quantifica- 
tion of lysozyme in glycogen these were the replicate 
normalised pyrolysis mass spectra containing 0, 25, 
50, 75, and 100% lysozyme in glycogen; (2) for the 
identification of Eubacterium species these were the 
triplicate mass spectra from E. timidum ATCC 33093, 
Eubacterium Cl W1471, Eubacterium C2 SC142, and 
Eubacterium New 1 X68. 

The structure of the ANNs used to correct for drift 
in this study consisted of an input layer comprising 
150 nodes (normalised pyrolysis mass spectra from 
the calibration samples collected on Machine 2 or 3) 
connected to the output layer which comprised the 

mass spectra of the same calibration material analysed 
on Machine 1; via a single ‘hidden’ layer containing x 
nodes; these topologies can be represented as 150-x- 
150 (and see Fig. 3). Several ANNs architectures were 
used (details in Section 3) which varied in the number 
of nodes employed in the hidden layer; 0, 2,4, 8, 16, 
32 and 64 nodes were used. 

All ANNs employed the back-propagation algo- 
rithm. The input and output layers were scaled to 
lie between 0 and +0.9 across the 5 l-200 mass range; 
+0.9 was chosen as the maximum to allow masses of 
higher intensity than those used in the training set to be 
applied to the input layer. ANNs were trained until the 
average RMS error of 0.1% was reached; the ANNs 
were interrogated at various points along this training 
period to check for over-training. 

2.9. Machine standardization using linear methods 

To compare the performance of these ANN-based 
corrections with corrections based on linear correc- 
tions alone for the lysozyme in glycogen data set, two 
methods relying on mass-by-mass transformations 
were also studied. Linear subtractions were used 
where the amount of drift in each mass was calculated 
by first subtracting the normalised mass spectrum 
collected on Machine 1 from the mass spectrum 
collected on Machine 2, this was done for the calibra- 
tion samples and the average drift in each mass 
computed. These drift correction values were then 
subtracted from each of the masses newly acquired 
on Machine 2 mass spectra: 

Linear method l= (new mass) - (average of 

(Machine 2 calibration mass 

-Machine 1 calibration mass)). 

(7) 

The second linear transformation involved calculat- 
ing the average mass-by-mass ratio between the mass 
spectra of the calibration samples collected on 
Machine 1 and Machine 2 (new). These ratios were 
then used to scale each of the masses in newly 
acquired mass spectra collected on Machine 2. 

Linear method 2= (new mass)*(average ratio of 

Machine 1 calibration mass : 

Machine 2 calibration mass). (8) 
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Machine 2 
calibration 

data 

Machine 1 
calibratic an 

Fig. 3. Architecture of an associative neural network consisting of three layers, trained to transform F’yMS spectra from Machine 2 to Machine 
1 spectra. In the architecture shown, adjacent layers of the network are fully interconnected. The input and output layer are presented with 
PyMS data from calibration standards analysed on the two instruments (in this figure there are 24 nodes in these layers; in the present work the 
number of nodes was actually 150 inputs/masses). 

3. Results and discussion 

3.1. Quantification of lysozyme in glycogen; 
instrument standardization 

Pyrolysis mass spectral fingerprints of 50 ug lyso- 
zyme mixed with 5Oug glycogen analysed on 
Machine 1 from University of Wales, Aberystwyth 
and the same material analysed at Horizon Instru- 
ments (Machine 2) are shown in Fig. 1. Although 

these mass spectra are complex, as judged by eye, 
there are some very obvious difference between them; 
for example the spectrum from the PYMS-200X 
machine (Fig. l(a)) has a very intense peak at m/z 
60, there are other noticeable differences at m/z 97, 
118 and 145. One way of highlighting any smaller 
differences between these spectra is simply to subtract 
one from the other; the resulting subtraction spectrum 
of the normalised average of three pyrolysis mass 
spectra of 50 pg lysozyme mixed with 50 ug glycogen 
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Mass (m/z) 

Fig. 4. The subtraction spectrum of the normalised average of 

three pyrolysis mass spectra of 50% lysozyme mixed with 

glycogen analysed on Machine 1 (PYMS-200X) (Fig. l(a)) from 

the equivalent normalised average spectra from the same material 

analysed on Machine 2 (RAPyD-400) (Fig. l(b)). (i.e., subtraction 

spectrum=Fig. l(a) and (b)). 

analysed on Machine 1 from the equivalent normal- 
ised average spectra from the same material analysed 
on Machine 2 is shown in Fig. 4. The positive half of 
the graph indicates the peaks that are more intense in 

the pyrolysis mass spectra collected on the RAPyD- 
400 instrument (Machine 2), likewise the negative half 
of the graph indicates masses that are more intense 
when collected on Machine 1. Fig. 4 indeed shows the 

same masses indicated above as being characteristic of 

Machine 1 and also highlights that other masses are 
different. It is significant that the subtraction spectrum 
is not monotonic, that is to say there is no obvious 

trend in the mass spectra of the same material analysed 
on different mass spectrometers. It is of interest that in 
our previous studies which investigated instrument 

drift on a single machine [46] there was an observable 
trend which resulted in a tip down in the lower m/z 

values and a tip up in high molecular weight frag- 
ments. The next stage is therefore to ascertain if these 
differences due to the different instruments are large 
enough to be problematic in using PLS models cali- 

brated with data from Machine 1 to give accurate 
estimates of the percentage lysozyme from pyrolysis 

mass spectra collected on Machine 2. 
Data collected from Machine 1 from mixing lyso- 

zyme in glycogen were split into two sets. The cali- 
bration set contained the normalized triplicate ion 
intensities from the pyrolysis mass spectra from 0, 

10,20,30,40,50,60,70,80,90 and 100% lysozyme 
in glycogen, whilst the cross validation set contained 
the 10 ‘unknown’ replicate pyrolysis mass spectra (5, 
15, 25, 35, 45, 55, 65, 75, 85 and 95% of the 
determinand lysozyme in glycogen). We then cali- 

brated PLS models as detailed above with the normal- 
ized PyMS data from the calibration sets as the inputs 

(X-matrix) and the amount of determinand (% lyso- 

zyme) mixed in glycogen as the output (Y-matrix). 
The RMS error in the calibration and cross-validation 
data are plotted vs. the number of latent variables used 

in predictions in Fig. 2 where it can be seen that the 
first minimum is with 3 PLS factors, another minimum 

was at 6 factors whilst the global was at 8 factors. 

When the observed vs. known % lysozyme in glyco- 
gen were plotted for these three minima (data not 

shown) it was found that with 3 factors there was a 
sigmoidal trend and this straightened when 6 and 8 

factors were used; that the drop in RMS error between 
6 and 8 was small (5.71 to 5.46) 6 was taken to be the 

best number of latent variables to be used in predic- 

tions. PLS models were calibrated with 6 PLS factors 
and interrogated with the calibration and cross valida- 
tion sets and a plot of the PLS estimates versus the true 
% lysozyme in glycogen (Fig. 5) gave a linear fit 

which was indistinguishable from the expected pro- 

portional fit (i.e. y=x); the RMS error for the calibra- 
tion and cross-validation sets were 2.35 and 5.71, 
respectively (Table 3). It was therefore evident that 

the network’s estimate of the quantity of lysozyme in 
the mixtures was very similar to the true quantity, both 

for spectra that were used as the calibration set (open 
circles) and, most importantly, for the ‘unknown’ 
pyrolysis mass spectra (closed circles). 

The next stage was to interrogate the PLS model 
with all the normalised pyrolysis mass spectra of % 

lysozyme (in 5% steps) in glycogen collected 481 days 
later on Machine 2. The estimates for these samples 

are also shown in Fig. 5 (partially shaded squares), 
where it can be seen that the model’s estimate versus 

the true % lysozyme in glycogen was exceedingly 
inaccurate. The RMS error in these estimates 

(Table 3) was 24.1 compared to 4.3 for the same 
samples analysed on Machine 1. These results clearly 
show that the pyrolysis mass spectra of the same 
material had changed significantly when analysed 
on the two different instruments, thus resulting in 
an inability to use a PLS model calibrated with data 
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It is therefore necessary to apply a mathematical 
correction procedure to compare two sets of data of the 
same material directly. As described in the methods 
section, standards (calibration spectra) were chosen 
from the two different data sets and these were the 
triplicate normalised pyrolysis mass spectra contain- 
ing 0, 25, 50, 75, and 100% lysozyme in glycogen. 
These standards were used by the two linear transfor- 
mations and the various 150-x-150 neural networks 
which varied in the numbers of nodes used in their 
hidden layers. 

0 Machine 2 (PYMS-200X) training set 

l Machine 2 (PYMS-200X) cross validation set 

n Machine 2 (RAPyD-400) test set 

- Expected proprotional fit 

Fig. 5. The estimates from PLS models vs. the true percent 
lysozyme in glycogen for data collected on Machine 1 (PYMS- 
200X, WA) and Machine 2 (RAPyD-400, HI). PLS models were 
calibrated with PyMS data from Machine 1 using 6 latent variables. 
The open data points are the averages of the triplicate pyrolysis 
mass spectra from Machine 1; open circles represent spectra that 
were used to train the network and closed circles indicate the cross 
validation set. Partially shaded squares are the averages of the 
triplicate PyMS spectra collected on Machine 2. Error bars show 
standard deviation. The expected proportional fit is shown. 

collected on Machine 1 to give accurate predictions 
for data from the same material subsequently collected 
on Machine 2. 

Data from Machine 2 were first transformed by the 
linear methods as detailed above and used to challenge 
PLS models calibrated with Machine 1 data, using six 
latent variables, to quantify the % lysozyme in mix- 
tures with glycogen. Fig. 6 shows the estimates of PLS 
models vs. the true % lysozyme in glycogen for data 
collected on Machine 2 after correction for instru- 
mental drift by either (a) linear subtraction (open 
triangles) or (b) a linear mass-by-mass ratio correction 
(closed triangles). It can be seen clearly that both 
methods failed to compensate for the differences 
between the spectra collected on Machine 2 compared 
with the same collected on Machine 1. Table 3 gives 
details of the RMS errors between the expected and 
observed % lysozyme and these were 20.5 and 17.6 for 
the subtraction and ratio methods respectively, com- 
pared with 24.1 for when no correction was applied. 
That the linear mass-by-mass ratio method gave 
slightly lower RMS errors than using subtractions 
of drift and so was better for compensating is because 
the latter will introduce some negative mlz intensities 
in the ~ansfo~ed spectra; this phenomenon is not 

Table 3 
Comparison of the average RMS error for quantifying lysozyme in glycogen using PLS models calibrated with 3,6 or 8 latent variables from 
data collected on Machine 1 (PYMS-200X). The test sets were data from Machine 1 (PYMS2OOX), Machine 2 (RAPyD-400). and two linear 
methods to transform data collected on Machine 2 to resemble that collected on Machine 1 and hence attempt to compensate for instrument 
differences 

Number of latent variables used for PLS 

Machine 1 - training set 
Machine 1 - cross validation set 
Machine 1 - all data 
Machine 2 - at1 data 
Linear subtraction correction - all data 
Linear ratio correction - all data 

RMS erroIB 

3 

5.57 
6.11 
5.83 

31.88 
14.43 
15.83 

6 8 

2.35 1.49 
5.71 5.46 
4.29 3.92 

24.08 21.13 
20.53 19.60 
17.57 16.93 

a RMS error is the error between the expected and observed percentages of lysozyme mixed with glycogen. 
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Fig. 6. The estimates from PLS models vs. the true percent 
lysozyme in glycogen for data collected on Machine 2 (RAPyD- 
400; HI) after instrument standardization using linear methods. 
PLlS models were calibrated with PyMS data from Machine 1 
using six latent variables. The open triangles are the averages of the 
triplicate pyrolysis mass spectra after the linear subtraction 
correction; closed triangles represent spectra after correction using 
the mass-by-mass ratio correction method. Error bars show 
standard deviation, The expected proportional tit is shown. 

possible with real data and is in this instance a con- 

sequence of having to normalise to total ion count. 
The next stage was to compare the performance of 

various neural networks trained to transform mass 

spectra collected on Machine 2 to those previously 
collected on Machine 1. Seven different 150-x-150 
ANNs, which differed in the number of nodes (x) used 

in their hidden layers, were employed which were 

trained using the standard back-propagation algorithm 
with the normalised triplicate pyrolysis mass spectra 

containing 0, 25, 50, 75, and 100% lysozyme in 
glycogen as the inputs from Machine 2 and the outputs 
from the same calibration standards collected on 

Machine 1 as the outputs. The following hidden layer 
sizes were employed which differed in the number of 
total number of weights in the ANN and are ranked in 

order of increasing number of weights or complexi- 
city; 2, 4, 8, 16, 32, 64, and one ANN containing no 
hidden layer (i.e. a 150-150 architecture). Table 4 

gives details of the training times, in terms of epochs, 
to train these ANNs to various RMS error points; this 

RMS error is defined as the average RMS error for the 
training set between the observed and expected 150 

outputs. It can be seen that ANNs employing only 2 or 
4 nodes in the hidden layer failed to reach 0.005 and 

0.002 RMS error respectively and this implies that 
these ANNs which contained 752 and 1354 weights 

were not complex enough to compensate for the 

instrumental differences. Indeed, this result might 
be taken to indicate that there were more than four 

features (or hyperplanes through 150-dimensional 
input space) which could describe the effects of the 

differences between the spectra from the two instru- 

ments. This is not surprising given that the subtraction 
spectra (Fig. 4) displayed no obvious monotonic 

trends. 
ANNs with 8, 16, 32 and 64 nodes were trained to 

an RMSEF of 0.002 which took longer to train as a 
function of model complexicity and typically 

1.8x106, 1.9x106, 2.3x106, and 3.2~10~ epochs, 
respectively (Table 4). The 150-150 ANN which con- 

tained 22 650 weights trained very slowly and training 
was stopped when the RMS error was 0.005; this took 

5.0~10~ epochs. Table 5 gives details of the RMS 
errors between the expected and observed quantities of 

% lysozyme after challenging PLS models calibrated 
with Machine 1 data, using six latent variables, to 

quantify the % lysozyme in mixtures with glycogen. It 

can be seen that when 8, 16, 32 and 64 nodes were 
used in the hidden layer of these 150-x-150 ANNs all 
gave similar RMS errors; 6.08, 6.44, 6.20 and 7.34, 
and it was observed that the error increased with 

model complexicity. The parsimony principle, as 
described by Seasholtz and Kowalski [62], states that 

the fewer the number of parameters (or weights) in a 

calibration model the better, provided there is not a 
deterioration in predictive accuracy. To satisfy this 
principle 150-8-150 ANNs were deemed to give the 

best model with the fewest weights (2448). The 150-8- 
150 ANN were therefore trained further to 0.001 RMS 
error which took 5.8 x lo6 epochs, and it was observed 

that the error in PLS predicting % lysozyme increased 
slightly from 6.08 (at 0.002 RMS error for the mass 
spectra) to 6.09. It was therefore taken that optimal 

correction for the difference between instruments was 
for the 150-8- 150 network trained to 0.002 RMS error, 
this took 1.8x lo6 epochs and the actual time taken 
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Table 4 
Number of epochs taken to reach the indicated average RMS errors in the training set over the 150 masses in the output layer of 150-x-150 
ANNs trained to transform data collected on Machine 2 to resemble those collected on Machine 1 and hence compensate for instrument 
differences. Seven ANNs were assessed which differed in the number of nodes in the hidden layer 

RMS erro? Number of epochs 

No. nodes in hidden layer 0 2 4 8 16 32 64 
No. weights in ANN 22650 752 1354 2558 4966 9782 19414 

0.05 399 9 9 14 16 19 23 
0.025 2.0x 10s 251 128 179 213 161 160 
0.01 2.3~10’ 2.3x lo4 2.9x lo4 3.1x104 4.2x lo4 5.6x lo4 6.6x 104 
0.009 4.0x 10s 4.2x lo4 4.1x104 4.6x lo4 6.3x lo4 8.0x lo4 9.6x lo4 
0.008 6.9x 10’ 8.7x lo4 5.9x 104 6.5x lo4 9.2x 104 1.2x105 1.4x 105 
0.007 1.2x106 1.7x105 8.4x lo4 9.5x104 1.3x105 1.7x10’ 2.1x105 
0.006 2.3x lo6 5.7x 105 1.3x 105 1.5xld 1.9x 10s 2.5x lo5 3.3 x 10s 
0.005 5.0x 10s 3.1x1oss 2.5 x 10’ 2.6~10’ 2.9x 10s 4.1x105 5.5 x 10s 
0.004 nd nd 5.2x 10’ 5.1x105 6.1~10~ 7.0x 105 9.7x 10s 
0.003 nd nd 1.1x106 8.6x105 1.1 x 10s 1.2x106 1.7x 10s 
0.002 nd nd 4.6x lOti 1.8~10~ 1.9x 106 2.3x lo6 3.2x lo6 
0.001 nd nd nd 5.8~10~ nd nd nd 

’ Average RMS error between the expected and observed 150 outputs of 150-x-150 ANNs trained to correct for differences in the mass spectra 
between Machine 1 and Machine 2. 
b The average RMS error reached 0.005743 and would not &crease further. 
’ The average RMS error reached 0.002201 and would not decrease further. nd, not determined. 

Table 5 
Comparison of the average RMS error between that expected and that seen for quantifying lysozyme in glycogen using PLS models calibrated 
with six latent variables from data collected on Machine 1 (PYMS-200X). The test data were data from Machine 2 (RAPyD-400) 
after transformation using various ANNs, differing in the number of nodes used in their hidden layers, trained to various stages as indicated in 
Table 4 

RMS errolB Average RMS error for prediction of percentage lysozyme 

No. nodes in hidden layer 

0.05 
0.025 
0.01 
0.009 
0.008 
0.007 
0.006 
0.005 
0.004 
0.003 
0.002 
0.001 

0 

774.76 
322.76 

15.98 
12.09 
9.87 
8.60 
7.89 
7.72 

nd 
nd 
nd 
nd 

2 4 8 16 

470.33 1349.39 396.27 689.61 
86.47 41.19 32.93 180.64 
22.03 20.55 19.19 19.20 
22.18 19.38 17.40 17.16 
18.30 16.99 14.91 15.04 
18.73 14.54 12.68 12.31 
18.86 12.93 11.04 9.64 
18.86 12.13 10.04 8.00 
nd 11.38 9.21 7.10 
nd 9.79 8.07 6.75 
nd 7.44 6.08 6.44 
nd nd 6.09 nd 

32 

764.45 
236.65 

15.57 
14.23 
12.98 
11.78 
10.19 
8.72 
7.80 
6.99 
6.20 

nd 

64 

328.24 
102.90 
15.08 
13.30 
12.07 
11.24 
10.42 
9.60 
9.05 
8.31 
7.34 

nd 

’ Average RMS error between the expected and seen 150 outputs of 150-x-150 ANNs trained to correct for differences in the mass spectra 
between Machine 1 and Machine 2. nd, not determined. 

was approximately eight days on a 486 DX4, with on Machine 2 into those previously collected on 
24 MB of memory. Machine 1, the first stage was to observe how similar 

After training 150-S-150 neural networks to the the transformed mass spectra were to the raw mass 
above point to transform new mass spectra collected spectra of the same material. Fig. 7 shows the 
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Fig. 7. Normalized pyrolysis mass spectra of 65 : 3.5 lysozyme : 
glycogen mixture, analysed on Machine 1 (thin filled line), 
Machine 2 (broken line), and the spectra from Machine 2 after 
correction by a 150-8-150 neural network trained to transform data 
collected on Machine 2 into data collected on Machine 1 (bold 
broken line). ANNs were trained until the average RMS error of the 
150 outputs was 0.002, this took approximately 2x lo6 epochs. 

normalized pyrolysis mass spectra of 65% lysozyme 
mixed with glycogen (chosen because it had not been 
used to train the neural network) analysed on Machine 
1 (thin filled line), Machine 2 (broken line), and the 
spectra from Machine 2 transformed by a 150-8-150 
neural network (bold broken line). It is clear that there 
is, as expected from Figs. 1 and 4, some difference in 
the mass spectra collected on the two different instru- 
ments, but that the transformed spectrum shows little 
or no difference compared to the real mass spectra 
collected on Machine 1; it was therefore evident that 
this ANN-based correction procedure had indeed 
compensated for the differences between the mass 
spectrometers. 

80- 

0 20 40 60 80 100 

% lysozyme in glycogen 

l Machine 2 after 150-8-l 50 ANN correction 

- - - - Expected proportional fit 

- Calculated linear fit 

Fig. 8. The estimates from PLS models vs. the true percent 
lysozyme in glycogen for data collected on Machine 2 (RAPyD- 
400; HI) after correction using 150-8-150 neural networks. ANNs 
were trained until the average RMS error of the 150 outputs was 
0.002, this took approximately 2~10~ epochs. Error bars show 
standard deviation based on replicates. The expected proportional 
fit and the calculated linear fit are shown. The slope and intercept 
of the calculated fit are 0.992 and 1.87, respectively. 

The next stage was to use these neural network 
transformed spectra to challenge PLS models cali- 
brated with PyMS data from Machine 1 to quantify the 
amount of lysozyme in mixtures with glycogen; Fig. 8 
shows the estimates of PLS models vs. the true % 
lysozyme. It can clearly be seen that the neural net- 
work-transformed mass spectra gave much better 
estimates than do the linear transformed spectra 
(Fig. 6); indeed these gave a linear fit which was 
indistinguishable from the expected proportional fit 
(i.e. y=n); the error in the estimates was 6.08 and the 
slope and intercept of the best fit line (dotted line) was 
0.992 and 1.87, respectively. It was therefore evident 
that the PLS estimate of the % lysozyme in glycogen 
was very similar to the true quantity after correction. 

Further to highlight the success of the neural net- 
work corrections over the linear ones the transformed 
mass spectra were analysed with the data collected on 
Machine 1 and Machine 2 by PCA (Fig. 9); the first 
plot (Fig. 9(a)) shows the effect on transforming data 
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Fig. 9. Principal components analyses plots based on the PyMS data for lysozyme mixed with glycogen for data collected on Machine 1 and 

Machine 2 compared with either a linear mass-by-mass ratio correction (A) or 150-S-150 neural network (B) correction of the mass spectra 

collected on Machine 2 transformed to those collected on Macine 1. The first two principal components accounted for 67.8% and 25.3% 

(93.1% total) of the total variance in plot A and 76.8% and 14.5% (91.3% total) in plot B. In both plots arrows are used to indicate the features 

in the mass spectra which are extracted by F’CA and which account for the increasing amount of lysozyme and for the effect of instrumental 
differences. 
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from Machine 2 to Machine 1 using the linear mass- 
by-mass ratio method whilst the second plot 
(Fig. 9(b)) shows the effect of a 150-8-150 ANN 
transformation. In both plots the first PC describes 
the features in the mass spectra which account for the 
differences between the two instruments whilst the 
second PC is controlled by the features in the mass 
spectra which account for increasing amount of lyso- 
zyme. It can be seen that both transformations ‘move’ 
the Machine 2 data closer to Machine 1 but that the 
neural network transformation is more successful 
because the line from these transformed data 
(Fig. 9(b)) overlap the line from the data collected 
on Machine 1 more. It is particularly noteworthy that 
the linear transformed estimates are parallel with the 
Machine 2 untransformed data (Fig. 9(a)) whereas the 
150-8-150 ANN transformation produces data which 
map accurately onto the data from Machine 1 
(Fig. 9(b)); this may be explained by the ability of 
the ratio transformation to correct the mass spectra 
only in a linear manner. 

Although these 150-8-150 ANN were very success- 
ful for correcting between the two instruments the 
time taken to train these ANNs was long and typically 
took eight days; with the current advances in comput- 
ing technology, particularly in the area of processor 
power this should not be a problem. However, we have 
previously observed that individual scaling of the 
input nodes of a 150-8- 1 ANN considerably decreased 
the time taken to train by lOO-fold because the range 
of each input in the population is made equal [72]; this 
does, however, have the undesired effect that if there is 
any noise in masses with low intensity then this can 
affect the ability of ANNs to generalise 1731, since 
models with irrelevant or noisy variables will always 
tend to perform poorly [74]. Therefore, the effect of 
scaling the inputs and outputs on the basis of the 
highest ion counts throughout the entire data set vs. 
scaling the inputs and outputs of each mlz indepen- 
dently over the data set was studied. 

In addition to scaling the lower headroom by +0% 
and the upper headroom by +lO% other scaling 
regimes were set up as detailed in Table 6; all ANNs 
were trained for 5 x lo5 epochs. It can be seen that the 
various scalings used had little effect on the RMS error 
between the observed and known values for the con- 
centration of lysozyme, when the input and output 
layers were scaled across the whole mass range. In 

Table 6 

Effect of scaling the input and output layer of 150-8-150 ANNs 

trained to transform data collected on Machine 2 to resemble that 

collected on Machine 1 and hence compensate for instrument 

differences. The comparisons are based on the average RMS error 

for quantifying lysozyme in glycogen using PLS models calibrated 

with 3, 6 or 8 latent variables from data collected on Machine 1 

(PYMS200X) 

Headroom RMS errof No. latent variables used 

Lower Upper 3 6 8 

Scaling the input and output lalyers across the total rangeb 

0 10 0.0045 9.12 8.71 9.59 

0 20 0.0047 10.04 8.47 9.12 

0 30 0.0048 11.75 8.53 9.32 

10 10 0.0036 5.83 8.51 11.27 

20 20 0.0039 8.79 8.37 11.14 

30 30 0.0041 9.14 7.92 8.60 

Scaling each input and output node individuallyC 

0 10 0.025 1 7.33 5.88 6.45 

0 20 0.0261 7.95 8.85 10.34 

0 30 0.0248 7.26 12.04 9.90 

10 10 0.0261 6.50 7.61 7.30 

20 20 0.0222 7.09 7.10 6.89 

30 30 0.0169 5.27 5.02 4.87 

a Average RMS error between the expected and seen 150 outputs of 

150-8-150 ANNs trained for 0.5x lo6 epochs to correct for 

differences in the mass spectra between Machine 1 and Machine 2. 

b The input and output layers were scaled across the whole mass 

range, with the percentage headroom indicated, such that the lowest 

mass (+ lower headroom) was set to 0 and the highest mass (+ 

upper headroom) to 1. 

’ The input and output layers were scaled for each input node, with 

the percentage headroom indicated, such that the lowest mass (+ 

lower headroom) was set to 0 and the highest mass (+ upper 

headroom) to 1. 

contrast, if the input and output layers were scaled for 
each input and output node then the RMS errors 
decreased. Indeed, the lowest F&IS error was 5.02 
(for PLS models calibrated with six latent variables) 
and this was when the ANNs were scaled +30% on 
both the lower and upper headroom, that is to say each 
individual mass was scaled such that the lowest mass 
was set to 0.3 and the highest mass to 0.7. This 
suggests that these mass spectra were fairly free of 
noisy variables and that a reduction in training time 
was possible; this lowest RMS error (5.02) was 
achieved in 5x lo5 epochs compared to the best 
150-8-150 ANN (Tables 4 and 5), scaled across the 
mass range, which took 1.8x lo6 epochs (-3.5 times 
longer) to reach an RMS error of 6.08. 
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In conclusion, PLS can be calibrated with pyrolysis 
mass spectral data to quantify lysozyme in glycogen. 
However, these PLS models cannot be used with mass 
spectra from identical material collected on a different 
mass spectrometer. 150-S-150 neural networks can be 
used to compensate successfully for the difference 
observed in these pyrolysis mass spectra so that PLS 
models created using the PYMS-200X instrument 
from UWA (Machine 1) can be used with spectra 
from the RAPyD-400 instrument from Horizon Instru- 
ments (Machine 2). It is likely that this success was 
due to the ability of ANNs to map non-linearities as 
well as linearities since linear transformation methods 
alone could not be used to correct for instrument drift. 

3.2. The identijication of Eubacterium species: 
instrument standardization 

5 1 most characteristic masses and the a priori knowl- 
edge of the appropriate number of groupings; the a 
priori groups used were the triplicate pyrolysis mass 
spectra from the five E. timidum, four Eubacterium Cl, 
five Eubacterium C2 and five Eubacterium New 1 
from data collected on Machine 1 (PYMS-200X, 
UWA). The five Eubacterium isolates from St Bartho- 
lomew’s Hospital (SBH) were known to belong to the 
Eubacterium C2 taxon [49] and were thus used as an 
external cross-validation set, and were projected into 
this CVA space. All the SBH isolates were found to 
cluster with the five Eubacterium Cz isolates (data not 
shown). Now that the model had been tested, the next 
stage was to project in the 23 mass spectra analysed on 
Machine 3 (PYMS-200X, Public Health Laboratory, 
Heath Park); the E. timidum W690 strain was not 
analysed on this instrument because during freezer 
storage the sample had been lost. 

As detailed above CVA was used to separate the Fig. 10 shows the pseudo-3D CVA plot based on 
bacteria (objects) into four groups on the basis of the PyMS data from Machine 1 analysed by GENSTAT 

cv3 

201 

Eubacterium CJ 

22 

2 
§B 22s 

4 Eubactetium New 1 

Fig. 10. Pseudo-3D CVA plots based on PyMS data from Machine 1 (PYMS-200X, UWA) analysed by GENSTAT showing the relationship 

between five E. timidum (x), four Eubacrerium C1 (O), five Eubacrerium Cz (2133*) and five Eubacrerium New 1 (+). CVA was given the a 

priori information according to the four different Eubactetium sp. and calibrated with the 51 most characteristic masses; the symbols refer to 

the group centroids. The test set was the 23 average pyrolysis mass spectra from Machine 3 (PYMS-200X, PHLS) and were projected into this 
CV space. The test set are coded as follows; T=E. timidurn, l=Eubacterium Cl, 2=Eubacterium Cz. N=Eubacterium New 1, S=Eubacrerium 
isolates from Saint Bartholomew’s Hospital. 
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showing the relationship between five E. fimidum (x), 
four Eubacterium Cl (O), five Eubacterium Cz (*) 
and five Eubacterium New 1 (+). The test set was the 
23 averaged pyrolysis mass spectra from Machine 3 
and were projected into the CV space. It can been seen 
that the only isolates that appeared close to the correct 
group mean were the five Eubacterium C2 (labelled 2) 
and the five Eubacterium isolates from St Bartholo- 
mew’s Hospital (labelled S), although if a different 
angle were used they were in fact quite distant. The E. 
timidum (labelled T), Eubacterium Cl (labelled 1) and 
the Eubacterium New 1 (labelled N) isolates were not 

projected near their respective groupkaxon centres. 
On closer inspection it may be observed that all 
isolates from Machine 3 were projected accurately 
in the first CV but that the second CV was very poorly 
projected; it may be considered therefore that the 
failure in CV2 is due to the differences between the 
two sets of data collected on the two different mass 
spectrometers. 

It is therefore necessary to apply a mathematical 
correction procedure to compare these two sets of data 
directly. Calibration spectra from both instruments 
were chosen as detailed above and in Table 7 and 

Table I 

The identities of the bacteria in the test set and training set from Machine 1 (PYMS-200X, UWA) as judged by PLS2 using 4 latent variables 

calibrated with mass spectral data from Machine 1, compared with new data from Machine 3 (PYMS-200X. PIUS) and that data after 

transformation using various 150-8-150 ANNs trained for 5 x lo5 epochs 

Identity Results from PyMS data from Results from PyMS data from Results after correction using a 

Machine 2 Machine 3 150-8-150 ANN 

T 1 2 N T 1 2 N T 1 2 N 

E. tim. ATCC3309 3” 0.8 0.1 0.2 -0.1 0.2 0.9 -0.5 0.4 0.8 0.1 0.2 -0.1 

E. tim. W551 1.0 -0.1 0.1 0.0 0.5 0.6 -0.3 0.2 0.5 -0.1 0.6 0.0 
E. rim. W690b 1.1 0.0 -0.2 0.1 - - - - - - - 

E. tim. W693 1.1 0.0 -0.2 0.0 0.6 0.7 -0.6 0.3 0.7 0.1 0.2 0.0 

E. tim. W2847 1.0 -0.1 0.2 0.0 0.6 -0.1 0.2 0.3 0.2 0.2 0.4 0.1 
Eub. C, W1471’ 0.1 1.0 -0.1 0.0 -0.3 1.5 -0.6 0.4 0.1 0.1 -0.1 0.0 

Eub. C, W687 0.0 0.9 0.0 0.0 -0.1 1.2 -0.5 0.5 0.0 0.9 -0.1 0.2 

Eub. C, W1475 0.0 1.0 0.0 0.0 -0.2 1.1 -0.6 0.7 0.0 0.9 -0.1 0.2 

Eub. C, W1470 0.0 1.0 0.0 0.0 -0.2 1.3 -0.6 0.5 0.1 0.9 -0.1 0.1 

Eub. C2 SC142” 0.0 0.0 1.0 0.0 0.0 0.2 0.8 0.1 0.0 0.0 1.0 0.0 

Eub. C2 SC108 0.1 0.1 1.0 -0.2 -0.1 0.2 1.0 -0.1 0.0 -0.1 1.1 0.0 

Eub. C2 W1365 0.0 -0.2 1.0 0.2 -0.1 -0.1 0.9 0.2 -0.1 0.0 1.0 0.1 

Eub. C2 W733 0.0 0.0 0.9 0.1 0.0 0.0 0.7 0.4 -0.1 0.0 1.0 0.1 

Eub. C2 W2848 0.0 0.0 0.8 0.2 0.0 0.1 0.6 0.3 -0.2 -0.1 0.9 0.4 

Eub. New 1 SC68” 0.0 0.0 0.1 0.9 -0.1 0.4 -0.4 1.0 0.0 0.0 0.1 0.9 

Eub. New 1 SC88P 0.0 0.0 -0.1 1.1 -0.1 0.3 -0.5 1.2 0.0 0.0 0.1 0.9 

Eub. New 1 SC41B 0.0 0.0 0.0 0.9 0.0 0.4 -0.5 1.1 0.0 0.0 0.1 0.9 
Eub. New 1 SC37 0.0 0.1 0.0 0.9 -0.2 0.4 -0.4 1.1 -0.1 0.1 0.1 0.9 

Eub. New 1 SC87K 0.0 0.0 0.1 0.9 0.0 0.2 -0.3 1.1 -0.1 0.0 0.1 0.9 

SBH463 0.1 0.2 0.7 0.0 0.0 0.4 0.4 0.1 0.0 0.0 0.8 0.2 

SBH481 0.0 0.3 0.4 0.2 -0.1 0.4 0.3 0.4 0.1 0.1 0.7 0.1 

SBH462 0.1 0.1 0.7 0.1 -0.1 0.2 0.8 0.1 0.0 -0.1 1.1 0.0 

SBH403 0.0 0.1 0.8 0.1 0.0 0.2 0.6 0.2 0.0 0.0 0.8 0.2 

SBH477 0.0 0.1 0.7 0.2 0.0 0.1 0.6 0.3 -0.1 0.1 0.8 0.2 

mis-identified (bold) 1124 or 4.2% 16123 or 69.6% 3/23 or 13.0% 

mis-identified (&a&s) O/24 or 0% 5123 or 21.7% 2l23 or 8.7% 

T=E. timidurn, l=Eubacterium Cl, 2=Eubacterium Cz, N=Eubacterium New 1. SBH=Eubacrerium isolates from Saint Bartholomew’s 

Hospital. 

a These spectra were also chosen as the calibration samples for drift correction. 

b Only available for analysis on Machine l.Values in bold and italics are those Eubacterium isolates which were mis-identified: for bold-a 
correct identification was described as the winning position having a value of ti.7 and losing positions 4.3; for italics-a correct 

identification was described as the winning position having the highest value. 
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these were the triplicate normalised pyrolysis mass 
spectra from each of the four taxa. These standards (12 
spectra) were used to train 150-8-150 ANNs, the input 
and output nodes were scaled individually such that 
the lowest mass was set to 0.3 and the highest mass to 
0.7 (this was chosen since it was found to be the best 
for the previous experiment). Training was stopped 
after 5x lo5 epochs. 

The first stage was to carry out PCA to observe the 
natural relationships between the transformed data 
using 150-8-150 neural networks with data collected 
on Machine 1 and Machine 3; the PCA plot is shown in 
Fig. 11 where it can be observed that different com- 
binations of the first two PCs reflect the effect of 
instrument differences for each of the taxa (indicated 
by the arrows). That this drift is not uniform in PC 
space indicates that the instrument differences are 
non-linear in nature since PCA carries out only linear 
(orthogonal) transformations of the raw multivariate 
data. In this PCA plot it can seen that the isolates from 
Eubacterium Cl (squares), Eubacterium C2 (upward 
pointing triangles) and Eubacterium New 1 (down- 

ward pointing triangles), cluster tightly together and 
that they can be easily separated. In contrast E. 

timidum (circles), although easily separated from 
the other three taxa do not cluster tightly together. 
The most important observation from this PCA plot is 
that the 150-8-150 ANN-transformed mass spectra 
(partially shaded symbols) overlap with the data col- 
lected at Machine 1 (open symbols) and no longer 
cluster with the data from Machine 3 (closed sym- 
bols). 

The next stage was therefore to project the neural 
network-transformed Machine 3 data into the CVA 
model constructed from mass spectral data collected 
on Machine 1. Fig. 12 shows the Pseudo-3D CVA plot 
based on PyMS data from Machine 1 and the trans- 
formed test set from Machine 3. It can been seen that 
the isolates from Eubacterium Cl, Eubactetium Cz, 

Saint Bartholomew’s Hospital and Eubacterium New 

1 were all very close to their respective group means 
from data from Machine 1. The four isolates from E. 

timidum were also moved closer to its group mean but 
two E. timidum W557 and W693 were projected 

Principal component 1 

0 E. timidurn o Eubacterium C, A Eubacterium C, v Eubacterium New 1 

o Machine 1 data l Machine 3 data 

0 Machine 3 data lnmsfonmd using a 150-8-l 50 ANN 

Fig. 11. Principal components analysis plot based on the PyMS data for the Euhacterium isolates for data collected on Machine 1 (PYMS- 

200X, UWA) compared with a 150-8-150 neural network correction of the mass spectra collected on Machine 3 transformed into those 

collected on Machine 1. The fast two principal components accounted for 85.7% and 6.8% (92.5% total) of the total variance. A varying 

combination of the first and second PCs can be seen to describe the effects of the different instruments (indicated by arrows). 
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Fig. 12. Pseudo-3D CVA plots based on PyMS data from Machine 1 (PYMS-200X, UWA) analysed by GENSTAT showing the relationship 
between five E. timidum (x), four Eubacterium Cl (O), five Eubacterium Cz (*) and five Eubactetium New 1 (+). CVA was conducted as 
detailed in the text and Figure. 10; the symbols refer to the group centroids. The test set was the 23 average pyrolysis mass spectra from 
Machine 3 (PYMS-200X, PHLS), after transformation using 150-8-150 neural network corrections, and were projected into this CV space. 
The test set are coded as follows; T = E. timidurn, 1 = Eubacterium C,, 2 = Eubacterium Ca, N = Eubacterium New 1, S = Eubacterium 
isolates from Saint Bartholomew’s Hospital. 

between the group means for E. timidum and Eubac- 
terium Cz. Indeed these correspond to the rather loose 
clustering of the E. timidum isolates in the PCA plot 
(Fig. 11). 

Rather than interpret complex 3-D ordination plots 
a better way to perform identification is to use a 
supervised learning method that gives a numerical 
output which can be easily read. Discriminant PLS2 
is such an approach and can be exploited to allow easy 
direct interpretation of the identification of bacteria 
from their pyrolysis mass spectra. The same 19 repli- 
cate mass spectral data from Machine 1 that were used 
in the above CVA analysis were therefore employed to 
calibrate PLS models coding the variables in Y-matrix 
as follows; E. timidum as 1 0 0 0, Eubacterium Cl as 
0 10 0, Eubacterium C2 as 0 0 10, and Eubacterium 
New 1 as 000 1. 

To choose the optimal number of latent variables to 
use in predictions, after the PLS model was calibrated 
the model was challenged with the training set data 
from Machine 1 and the five replicate spectra from St 
Bartholomew’s Hospital (cross-validation set) using a 
range of PLS factors; between 1 and 10. It is best to use 

as few latent variables as possible whilst still obtaining 
good predictions [17], and it was found that the best 
model was formed when four PLS factors were used. 
The results for predictions of the Machine 1 data are 
shown in Table 7 where it can be seen that the training 
set were all correctly identified; the results from the 
five SBH isolates scored highest on the third variable 
and were thus all identified as belonging to the 
Eubacterium C2 taxon. This criterion (A) was a simple 
one and was that the identity was related to the 
winning Y-variable; if a second criterion (B) was used 
where a correct identification was taken to be that the 
winning variable must be >0.7 and ~0.3, then the SBH 
481 isolated was not classified. 

The PLS2 model was then challenged with the mass 
spectral data from Machine 3 before and after correc- 
tion using the 150-g 150 ANN transformation method 
as described above. The results of these two data sets 
are also shown in Table 7 where it can be seen that for 
raw untransformed data from Machine 3 using criter- 
ion A 21.7% (5 out of 23) were mis-classified and after 
ANN transformation this dropped to 8.7% and the two 
E. timidum isolates W557 and W693 were mis-iden- 
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tified as belonging to the Eubacterium C2 taxon. It is 
noteworthy that these two isolates were also found to 
be projected away from their group means in CVA 
space (Fig. 12) and were between E. timidum and 
Eubacterium C2. If the more rigorous criterion B 
for a correct identification was used then before 
transformation 69.6% (16 out of 23) were mis-identi- 
fied and after ANN correction this was 13.0% (3 out of 
23). The reason this second criterion was used is 
because it highlights how successful the ANN trans- 
formation process has been in causing a more quan- 
tized identification; the Y-variables for the members 
belonging to the Eubacterium C2 taxon were very 
much different from the 0 1 0 0 expected before 
correction, for example strain W 1471 was scored as 
-0.3 1.5 -0.6 0.4, after ANN correction this was 
much closer to the real answer and was 0.1 1.0 -0.1 
0.0. 

In conclusion, projections into CVA space and 
PLS2 can be calibrated with pyrolysis mass spectral 
data to identify Eubacterium isolated from human oral 
abscess, and that five isolates from St Bartholomew’s 
Hospital were unequivocally identified as belong to 
Eubacterium C2. However, these models, calibrated 
with data from Machine 1, cannot be used to give 
accurate classifications for mass spectra from the same 
bacteria collect on a different mass spectrometer 
(Machine 3) collected 331 days later. 150-8-150 
ANNs were used successfully to correct for instru- 
mental differences so that CVA models created using 
old data from Machine 1 can be used to give accurate 
isolate identities from newly acquired spectra on 
Machine 3. It is noteworthy that these isolates were 
all from oral isolates that had been previously identi- 
fied as belong to the genus Eubacterium and were 
phenotypically very similar [49]; that these transfor- 
mation procedures were sensitive enough to corrected 
for drift was therefore very encouraging. 

4. Conclusion 

We have shown here and elsewhere that pyrolysis 
mass spectrometry and multivariate calibration can be 
used accurately to quantify various mixtures 
[14,21,23-251 and to identify correctly (micro)biolo- 
gical materials [49,50,75,76]. However, when identi- 
cal materials were analysed by PyMS on different 

machines accurate calibration models for (A) the 
quantitative assessment of the amount of lysozyme 
in a binary mixture with glycogen and (B) the rapid 
identification down to the species level of bacteria 
belonging to the genus Eubacterium could not be 
formed. It was therefore evident that this lack of 
instrument reproducibility resulted in a lack of cali- 
bration transfer. 

For PyMS to be used for either the routine identi- 
fication of microorganisms, or to quantify biological 
systems, it is paramount that newly acquired spectra 
from ‘slave’ machines be compared to those pre- 
viously collected on a ‘master’ machine. To correct 
for the instrumental differences observed calibration 
samples, or standards, were used which had been 
analysed on both machines. Two methods relied on 
linear corrections alone either by subtracting the drift 
seen in each mass, or by applying a weighting to each 
new mass based on the average ratio of old calibration 
mass : new calibration mass. The use of linear correc- 
tion techniques does, however, assume that the differ- 
ences are uniform (i.e. linear), which is obviously not 
the case; therefore, neural network-based transforma- 
tions were also exploited. ANNs can carry out non- 
linear as well as linear mappings from the input to the 
output nodes, and are purported to be robust to the 
types of noisy data which are often associated with 
pyrolysis mass spectra [23,73]. In these models the 
inputs to the ANNs were the new calibration masses 
from machine ‘b’ and the outputs were the calibration 
masses from machine ‘a’ spectra, several ANNs were 
employed which contained different numbers of nodes 
in their hidden layers. 

With regard to the quantification of lysozyme in 
mixtures with glycogen the linear correction methods 
could not be used to correct for drift (Fig. 6 and 
Table 3). In contrast the neural network transforma- 
tion method allowed excellent calibration transfer. 
This can be determined by observing the lower errors 
between % lysozyme estimates and known percen- 
tages seen in Tables 5 and 6, Fig. 8 and by examining 
PCA plots of Machine 1, Machine 2 and transformed 
mass spectra (Fig. 9). Furthermore, the optimal ANN 
model contained a hidden layer of 8 nodes (150-8-150 
architecture) and each input and output node was 
scaled individually to lie between 0.3 and 0.7. 

For the identification of human Eubacterium iso- 
lates 150-S-150 ANNs could also be used to correct 
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for the drift, so that projections into CVA space from 
models calibrated with Machine 1 data would give 
accurate projections for Machine 3 mass spectra. In 
addition, PLS2 also showed that before correction 16 
out of 23 were mis-identified compared to only 3 out 
of 23 after transformation using neural networks. 

In conclusion, neural networks can be used success- 
fully to carry out calibration transfer so that multi- 
variate calibration models created using previously 
collected data on machine ‘a’ can be used to give 
accurate estimates of determinand concentration or 
bacterial identities (or indeed other materials) from 
newly acquired spectra on a different instrument when 
calibrated with standards common to the two data sets. 

It should seem obvious that this approach is not 
limited solely to pyrolysis mass spectrometry but is 
generally applicable to any analytical tool which is 
prone to instrumental differences which result in a 
lack of calibration transfer (which cannot be compen- 
sated for by tuning), such as infrared and Raman 
spectroscopies, nuclear magnetic resonance and gas 
chromatography, as well as other forms of mass 
spectrometry. 
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