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ABSTRACT 

Pyrolysis-mass spectrometry and artificial neural networks (ANNs) were used in combi- 
nation to provide quantitative analyses of mixtures of casamino acids in glycogen, as 
representatives of complex proteins and carbohydrates. We studied fully interconnected 
feedforward networks, whose weights were modified using various types of back-propagation 
algorithms, and which exploited a sigmoidal activation function. The ability of the ANNs to 
generalise was evaluated by varying the number of data points in the training set. It was 
found that for the algorithms and architecture employed, a set of ten samples equally spaced 
over the desired concentration range should be used to provide good interpolation. ANNs 
were poor at extrapolating beyond the range over which they had been trained. 

Amino acids; artificial neural networks; biotechnology; glycogen; Py-MS; pyrolysis. 

INTRODUCTION 

Pyrolysis-mass spectrometry (Py-MS) has been widely applied to the 
characterisation of microbial systems (see refs. l-5 for reviews). In particu- 
lar, Py-MS, because of its high discriminatory ability, has been successfully 
applied to the inter-strain comparison and classification of a wide range of 
bacterial species and groups, including Bacillus [ 61, Corynebacterium [ 31, 
Escherichia [7-91 and Legionella spp. [ 10,111, mycobacteria [ 12- 141, 
salmonellae [ 151, Staphylococcus spp. [ 16,171 and streptococci [ 18,191, high- 
lighting the usefulness of this technique in the detection of small differences 
between microbial samples. Only rarely, however, has the chemical basis for 
any such differences either been sought or found. 

Windig and Meuzelaar [20] successfully used factor and discriminant 
analyses [21,22] to uncover the concentration of components (expressed in 
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the form of “variance diagrams”) from various sets of simulated mixtures 
(biopolymers, lignites and grass leaves). More recently, our own aims have 
been to extend the Py-MS technique to the quantitative analysis of the 
chemical constituents of microbial and other samples, and to this end we 
have sought to apply- novel analytical techniques to the deconvolution and 
interpretation of pyrolysis-mass spectra [23,24]. 

Chemometrics is the application of statistical and mathematical methods 
to chemical data, typically via the transformation of multivariate spectral 
inputs into the concentrations of target determinands [25-281. A related 
approach is the use of (artificial) neural networks ( ANNs), which are, by 
now, a well-known means of uncovering complex, non-linear relationships 
in multivariate data. ANNs can be considered as collections of very simple 
“computational units” which can take a numerical input and transform it 
(usually via summation) into an output (see refs. 29-41 for excellent 
introductions). The relevant principle of supervised learning in ANNs is that 
the ANNs take numerical inputs (the training data) and transform them 
into “desired” (known, predetermined) outputs. The input and output 
nodes may be connected to the “external world” and to other nodes within 
the network. The way in which each node transforms its input depends on 
the so-called “connection weights” (or “connection strength”) and “bias” 
of the node, which are modifiable. The output of each node to another node 
or the external world then depends on both its weight strength and bias and 
on the weighted sum of all its inputs, which are then transformed by a 
(normally non-linear) weighting function referred to as its activation func- 
tion. For present purposes, the great power of neural networks stems from 
the fact that it is possible to “train” them. Training is effected by continu- 
ally presenting the networks with the “known” inputs and outputs and 
modifying the connection weights between the individual nodes and the 
biases, typically according to some kind of back-propagation algorithm 
[29], until the output nodes of the network match the desired outputs to a 
stated degree of accuracy. The network, the effectiveness of whose training 
is usually determined in terms of the root mean square (r.m.s.) error 
between the actual and the desired outputs averaged over the training set, 
may then be exposed to “unknown ” inputs and will “immediately” output 
the globally optimal best fit. If the outputs from the previously unknown 
inputs are accurate, the trained ANN is said to have generalised. 

The reason this method is so attractive for the quantitative analysis of 
Py-MS data is that it has been shown mathematically [42-441 that a neural 
network consisting of only one hidden layer, with an arbitrarily large 
number of nodes, can learn any arbitrary (and hence nonlinear) mapping to 
an arbitrary degree of accuracy. ANNs are also considered to be robust to 
noisy data, such as those which may be generated by Py-MS. ANNs have 
been trained to analyse for the presence of functional groups in the mass 
spectra of purified organic compounds [45] and we have also demonstrated 
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their ability quantitatively to analyse pyrolysis-mass spectra in terms of the 
concentrations of target determinands [23]. We therefore consider that this 
approach might be exploited, inter alia, for the quantitative analysis of any 
fermentation or biotransformation of interest. The question arises, however, 
as to how many samples containing different, known concentrations of 
target determinand are required in a training set to allow an ANN accu- 
rately to generalise (interpolate and/or extrapolate), to provide accurate 
estimates of unknowns. 

In this study, using Py-MS, we therefore analysed a mixture of casamino 
acids in glycogen, as representative of complex proteins and carbohydrates, 
and used ANNs to estimate the amount of casamino acids in unknown 
spectra. We then evaluated the ability of the ANNs to generalise by varying 
the number of data points in the training set. In addition, we studied the 
neurodynamics of ANNs of this type when presented simply with numbers, 
to establish how well they could be expected to interpolate linearly. Further- 
more, we assessed the effects of using different scaling ranges on the input 
and output nodes of the ANNs. We conclude that for accurate deconvolu- 
tion of the pyrolysis-mass spectra of mixtures, the training set should 
beneficially consist of at least ten equally spaced standards in the range of 
interest. 

EXPERIMENTAL 

Preparation of the mixtures 

5 ~1 solutions containing O-100 ,ug of casamino acids (Bacto Technical, 
Difco) (in steps of 5 pg) in 20 pg of glycogen (Oyster Type II, Sigma) were 
prepared. 

Sample preparation for pyrolysis -mass spectrometry 

Clean iron-nickel foils (Horizon Instruments Ltd., Ghyll Industrial 
Estate, Heathfield, E. Sussex TN21 8BR, UK) were inserted, using clean 
forceps, into clean pyrolysis tubes (Horizon Instruments), so that 6 mm was 
protruding from the mouth of the tube. 5 ~1 aliquots of the mixtures were 
evenly applied to the protruding foils. The samples were oven dried at 50°C 
for 30 min, and then the foils were pushed into the tube using a stainless 
steel depth gauge so as to lie 10 mm from the mouth of the tube. Finally, 
viton ‘O’-rings (Horizon Instruments) were placed on the tubes. Samples 
were replicated four times. 

Pyrol; Ais -mass spectrometry 

The py:Jysis-mass spectrometer used in this study was the Horizon 
Instruments PYMS-200X, as initially described by Aries et al. [46]. The 
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sample tube carrying the foil was heated, prior to pyrolysis, at 100°C for 1 s. 
Curie-point pyrolysis was carried out at 530°C for 3 s, with a temperature 
rise time of 0.5 s. The pyrolysate then entered a gold-plated expansion 
chamber heated to 150°C whence it diffused down a molecular beam tube 
to the ionisation chamber of the mass spectrometer. Low voltage electron 
impact ionisation (25 eV) was used to ionise the pyrolysate (because low 
energy was used the majority carried only a single positive charge). Non- 
ionised molecules were deposited on a cold trap, cooled by liquid nitrogen. 
The ionised fragments were focussed by the electrostatic lens of a set of 
source electrodes, accelerated, and directed into a quadrupole mass filter. 
The ions were separated by the quadrupole, on the basis of their mass-to- 
charge ratio, and detected and amplified with an electron multiplier. The 
mass spectrometer scanned the ionised pyrolysate 160 times at 0.2 s intervals 
following pyrolysis. Data were collected over the m/z range 51-200, in 
intervals of one-tenth of a mass unit. These were then integrated to give 
unit mass. Given that the charge of the fragment was unity, the mass-to- 
charge ratio was accepted as a measure of the mass of pyrolysate fragments. 
The IBM-compatible PC used to control the PYMS200X was also pro- 
grammed (using software provided by the manufacturers) to record spectral 
information on ion count for the individual masses scanned and the total 
ion count for each sample analysed. 

Prior to any analysis the mass spectrometer was calibrated using the 
chemical standard perlhiorokerosene (Aldrich), so that m/z 18 1 was one- 
tenth of m/z 69. 

Data analysis 

The Py-MS data may be displayed as quantitative pyrolysis-mass spec- 
tra (e.g. Fig. 1). The abscissa represents the m/z ratio whilst the ordinate 
contains information on the ion count for any particular m/z value ranging 
from 51 to 200. Data were normalised as a percentage of total ion count to 
remove the effect of sample size differences. 

All ANN analyses were carried out using a user-friendly neural network 
simulation program, NeuralDesk (version 1.2) (Neural Computer Sciences, 
Lulworth Business Centre, Nutwood Way, Totton, Southampton, Hants 
SO1 OJR, UK), which runs under Microsoft Windows/3.1 on an IBM-com- 
patible PC. To ensure maximum speed, an accelerator board for the PC 
(NeuSprint), based on the AT&T DSP32C chip, which effects a speed 
enhancement of some IOO-fold, and permits the analysis (and updating) of 
some 400 000 weights per second, was used. Data were also manipulated 
prior to analysis using the Microsoft Excel 4.0 spreadsheet. 

For training the ANN on the mixtures, the inputs were the four nor- 
malised replicate pyrolysis-mass spectra derived from the various mixtures, 
with the output nodes being the actual (true) amount of casamino acids in 
the mixtures. 
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Fig. 1. Normalised pyrolysis-mass spectra of (A) 20 pg of glycogen, (B) 50 pg of casamino 
acids mixed with 20 pg of glycogen and (C) 20 pg of casamino acids. 
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Fig. 2. Information processing by a node. An individual node sums its input from nodes in 
the previous layer, transforms them via a “sigmoidal” squashing function (f), and outputs 
them to the next node to which it is linked via a connection weight. 

The primary algorithm used was standard back-propagation [ 29,471, 
running on the accelerator board, although other algorithms were also used, 
including stochastic back-propagation [48,49] quick propagation [ 501 and 
Weigend weight elimination [51], all running on the accelerator board, As 
indicated above, the back-propagation algorithm employs processing nodes 
(neurons or units), connected using abstract interconnections (connections 
or synapses). The format (topology) of the network is that of a directed 
acyclic graph. Connections each have an associated real value, termed the 
“weight”, that scales signals passing through it. Nodes sum the signals 
feeding to them and output this sum to each driven connection scaled by a 
“squashing” function (f) with a sigmoidal shape (Fig. 2), typically the 
function f = l/( 1 + eeX), where x = C inputs. 

For the training of the ANN, each input (i.e. pyrolysis-mass spectrum) 
is paired with a desired output (i.e. the amount of casamino acids); together 
these are called a training pair (or training pattern). An ANN is trained 
over a number of training pairs; this group is called the training set. The 
input is applied to the network, which is allowed to run until an output is 
produced at each output node. The differences between the actual and the 
desired output, taken over the entire training set, are fed back through the 
network in the reverse direction to signal flow (hence back-propagation) 
modifying the weights as they go. This process is repeated until a suitable 
level of error is achieved. 

For any given ANN, set of connection weight values, and training set, 
there exists an overall RMS error value. An error surface can be constructed 
by using one dimension in a multidimensional space to represent each 
connection weight, and one more for the RMS error. The back-propagation 
algorithm performs gradient descent on this error surface by modifying each 
weight in proportion to the gradient of the surface at its location. Two 
constants, learning rate and momentum, control this process. Learning rate 
scales the magnitude of the step down, the error surface taken after each 
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complete calculation in the network (epoch), and momentum acts as a low 
pass filter, smoothing out progress over small bumps in the error surface by 
remembering the previous weight change. 

The structure of the ANN used in this study to analyse pyrolysis-mass 
spectra therefore consisted of three layers containing 159 nodes made up of 
the 150 input nodes (normalised pyrolysis-mass spectra), one output node 
(amount of casamino acids), and one “hidden” layer containing eight nodes 
(i.e. a 150-S 1 architecture). Each of the 150 input nodes was connected to 
the eight nodes of the hidden layer which in turn were connected to the output 
node. In addition, the hidden layer and output node were connected to the bias, 
making a total of 1217 connections, whose weights were altered during 
training. (For a diagrammatic representation see Fig. 3.) Before training 
commenced the values applied to the input and output nodes were normalised 
between 0 and + 1, and the connection weights were set to small random values 
[ 341. Each epoch represented 12 17 connection weight updatings and a 
recalculation of the r.m.s. error between the true and desired outputs over the 
entire training set. A plot of the r.m.s. error vs. the number of epochs represents 
the “learning curve”, and was used to estimate the extent of training. Finally 
during training, all pyrolysis-mass spectra of the mixtures (0- 100 pg) were 
used as the “unknown” inputs (test data); the network then output its estimate 
(best fit) in terms of the amounts of casamino acids in the mixtures. 

INPUT HIDDEN 
IAKR IAkERO if%? 

Fig. 3. A neural network consisting of ten inputs (data herein actually consisted of 150 
inputs/masses or one input/true numerical value) and one output (casamino acids concentra- 
tion or true numerical value) connected to each other by one hidden layer consisting of eight 
nodes. In the architecture shown, adjacent layers of the network are fully interconnected, 
although other architectures are possible. 
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Since we wished to establish how sparse a training set it was possible to 
generalise from in principle, other ( l-8 - 1) ANNs were also used in which 
the input was the amount of casamino acids in the mixtures, ranging from 
0 to 100, and the output was simply the same, “true” numerical value. ‘For 
every ANN trained with pyrolysis-mass spectra as its input, a correspond- 
ing network was also trained with the true numerical values (amount of 
casamino acids) as its input. In this way, it was possible to establish how 
easy it was for algorithms and architectures of the present type to learn 
univariate, linear relationships between inputs and outputs when they were 
as simple as possible. 

RESULTS AND DISCUSSION 

Pyrolysis-mass spectra fingerprints of glycogen, casamino acids mixed 
with glycogen, and pure casamino acids are shown in Fig. 1. These 
pyrolysis-mass spectra are fairly complex and at first there appears to be 
relatively little difference between them, with the exception of m/z 154 which 
is quite intense in the spectra from pure casamino acids (Fig. 1 (C)) and the 
mixture of 50 pg casamino acids in 20 pg glycogen (Fig. l(B)). 

Figure 4 shows a simple subtraction of the normalised averages of four 
spectra of glycogen from the above casamino acid/glycogen mixture. The 
positive half of the graph indicates the peaks that are more intense in the 
casamino acids spectra and indeed shows some similarities to the pyrolysis- 

50 60 70 80a590 100 110 120 130 140 150 160 170 180 190 200 

Mass (m/z) 

Fig. 4. A subtraction spectrum of the normalised average of four glycogen pyrolysis-mass 
spectra (Fig. l(A)) from four average spectra of 50 pg of casamino acids mixed with 20 pg 
of glycogen (Fig. 1 (B)). 
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mass spectrum of pure casamino acids (Fig. l(C)); these were notably m/z 
72, 74, 86, 110, 112 and 154. Similarly the negative half of the subtraction 
spectra (Fig. 4) shows some analogies to the spectrum of glycogen (Fig. 
l(A)), the most distinct peaks in the difference spectrum being m/z 60, 85, 
97, 102, 103, 144 and 149. We note, however, that m/z 149 may be derived 
from phthlate contamination in plastics [52], and that the glycogen (in 
contrast to the casamino acids) was supplied in a plastic bottle. 

If these masses can be considered characteristic for casamino acids or 
glycogen, respectively, the intensities of at least two of these, m/z 85 for 
glycogen and m/z 154 for casamino acids, for example, should alter linearly 
depending on the relative proportion of these two chemicals in the mixtures. 
A plot of the average intensities of these two masses, against the amount of 
casamino acids in the mixtures, with standard error bars and the best linear 
fits, is shown in Fig. 5. It can be seen that m/z 154 does indeed alter in a 
fashion that is approximately linear with the amount of casamino acids, 
whereas although the intensity of m/z 85 decreases, it does not do so 
linearly. This might suggest that it is possible simply to use the intensity of 
m/z 154 to estimate the relative amount of casamino acids in these mixtures. 
However, there are two main problems with this. The first is that the 
variation in the intensity of m/z 154 is quite large; in the region 60-80 pg 
of casamino acids the standard deviation error bars in fact overlap. The 
other problem is that although the relationship between the % ion count 
with m/z 154 and the amount of casamino acids is linear, it is not 
proportional (i.e. the line does not pass through the origin), which means 
that the source of m/z 154 is not purely from casamino acids, and there is 
some contribution from glycogen (as is also clear from the data in Fig. 

l(A)). 
We therefore trained an artificial neural network, with normalised ion 

intensities from the pyrolysis mass spectra from 0, 10, 20, . . . ,90 and 
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Fig. 5. Plots of the percentage intensity of m/z 85 and 154 against the amount of casamino 
acids mixed in 20 pg of glycogen. The best linear fits are shown. 
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Fig. 6. The learning curve(s) for the neural network using the standard back-propagation 
algorithm with one hidden layer consisting of eight nodes, trained with 0, 10, 20. . 90 and 
100 fig of casamino acids. 

100 pg of casamino acids in 20 pg of glycogen as inputs, and the stated 
amounts of casamino acids as outputs. We used the standard back-propaga- 
tion algorithm, and the effectiveness of training was expressed in terms of 
the r.m.s. error between the actual and the desired outputs; this “learning 
curve” is shown in Fig. 6. Training was effected five times, using ran- 
domised, small initial values for the starting weights; because the five curves 
were superimposed, despite the randomised starting connection weights, it is 
clear that training was executed in a rather reproducible manner. It can be 
seen in the learning curve (Fig. 6) that the network very quickly reached a 
plateau (after about 100 epochs; r.m.s. error = 0.035-0.04) and training was 
nearly finished. When the network was trained further, the r.m.s. error had 
gradually decreased between 2-5 x lo4 epochs to a value between 0.01 and 
0.005; at this level the r.m.s. error was observed to fluctuate between 0.005 
and 0.01, and we considered training to have finished. At the end of 
training, when the r.m.s. error had reached approximately 0.01, the network 
was interrogated both with the pyrolysis-mass spectra that had been used 
to train the network (0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 pg 
casamino acids) and with “unknown” spectra (5, 15, 25, 35, 45, 55, 65, 75, 
85 and 95 pg casamino acids) which were not in the training set. A plot of 
the network estimate vs. the true output (the amount of casamino acids) 
(Fig. 7(A)) gave a proportional fit (i.e. y = x), which was indistinguishable 
from the “expected” linear fit, and it was evident that the network estimate 
of the quantity of casamino acids in the mixtures was very similar to the 
true quantity, both for spectra that were used as the training set and for the 
“unknown” pyrolysis-mass spectra. Similar results were also found for the 
other three algorithms used (Fig. 7(A)), with similar r.m.s. error values 
being reached, and together they show that the combination of Py-MS and 
ANNs was able quantitatively to detect the amount of casamino acids in the 
range 0- 100 ,ug when they were mixed with 20 pg of glycogen. 
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Fig. 7. Results of the estimates of trained neural networks against (A) true casamino acids 
concentration and (B) true numerical values, using a variety of (back-propagation) al- 
gorithms all running on the accelerator board with one hidden layer consisting of eight 
nodes. The training set consisted of either (A) 0, 10, 20 . . 90 and 100 mg/ml of casamino 
acids, or (B) the true numerical values from 0 to 100 in steps of 10. The expected linear fit 
is shown. 

In other studies ANNs were set up using the standard back-propagation 
algorithm with the same architecture as the ones used above except that 
they contained no hidden layers. It was interesting to observe that the 
networks were still able to converge (Fig. 8(A)), indicating that the differ- 
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Fig. 8. Results of the estimates of trained neural networks against (A) true casamino acids 
concentration and (B) the true numerical values, using the standard back-propagation 
algorithm employing no hidden layers. The training set consisted of either (A) 0, 10, 
20 . . 90 and 100 mg/ml of casamino acids, or (B) the true numerical values from 0 to 100 
in steps of 10. The expected linear fit is shown. 

ences due to casamino acids in glycogen in pyrolysis-mass spectra could be 
fitted in a linear model in 150-dimensional space. 

Complementary ANNs were also trained in which the input had the same 
numerical values as the output (i.e. 0, 10, 20 . . . 90 and 100) using all four 
algori+kms, employing one hidden layer with eight nodes. A plot of the 
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network estimate vs. the true output (Fig. 7(B)) also, as expected, gave a 
proportional fit for all the algorithms. The Weigend weight eliminator 
algorithm led, however, to a slightly sigmoidal plot; this might be because 
networks trained with this algorithm were not able to learn beyond an r.m.s. 
error of 0.04. 

When ANNs were set up using the standard back-propagation algorithm 
with no hidden layers, which appeared to stop training at an r.m.s. error of 
0.038, a plot of the network estimate vs. the true output (Fig. 8(B)) was not 
proportional but sigmoidal. This is likely to be a reflection of the sigmoidal 
squashing function f used to scale the signal passing through the output 
nodes. 

In separate experiments (data not shown) ANNs were trained as above, 
employing only the standard back-propagation algorithm using one hidden 
layer with eight nodes, and the effectiveness of generalisation was estimated 
by calculating the standard error of regression for the network estimate vs. 
true output. It was found that the ANNs generalised after an r.m.s. error of 
between 0.02 and 0.03 was reached after 5-9 x lo3 epochs. 

Since we have seen that it is possible to accurately determine the amount 
of one determinand in a mixture using the present approach, the question 
arises as to how many data points between 0 and 100 pg of casamino acids 
are needed to allow the network to generalise well? In order to elucidate 
this, several networks were run, using either the normalised pyrolysis-mass 
spectra or the true numerical values as the inputs. Plots of the network 
estimate vs. the true output are shown in Fig. 9. When the four pyrolysis- 
mass spectra from the samples containing 50 pg of casamino acids in 
glycogen were used to train the network, or when the input was only 50, the 
network, not surprisingly, was unable to generalise and all outputs were 
very close to 50 (Fig. 9(A)), i.e. very close to the only “knowledge” to 
which the network had been exposed. If the inputs used consisted of 
the values 0 and 100 only, the network again learnt the inputs which it 
had seen, but failed to generalise resulting in sigmoidal plots (Fig. 9(B)). 
Interestingly, the two sets of estimates are not superimposed; the network 
estimates from pyrolysis-mass spectral input approximates to 100 at much 
lower values of the abscissa than with the estimates from the true numerical 
data. Similarly shaped plots were observed (Fig. 9(C)) when 0, 50 and 100 
were the inputs. In this instance what the network had seen (its training set) 
was very well estimated, but the unknown spectra or numerical inputs were 
badly estimated. When more data points are used (0, 35, 65 and 100; Fig. 
9(D) and 0, 25, 50, 75 and 100; Fig. 9(E)), the network estimate began to 
become more like the true output, both for the training set and the 
unknown inputs, although there were still some sigmoidal deviations from 
the expected linear fit. In each case the pattern was clear; the network learnt 
its training set perfectly, but generalisation was less than perfect, at least 
until some ten equally spaced samples were used (Fig. 7). 
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Fig. 9. Results of the estimates of trained neural networks against true casamino acid 
concentration (O-100 pg) ( 0) and the estimates against the true numerical values (o-100) 
( l ), using the standard back-propagation with one hidden layer consisting of eight nodes 
running on the accelerator board. Various training sets were run: (A) 50 pg only; (B) 0 and 
1OOpg; (C) 0, 50 and IOOpg; (D) 0, 35, 65 and 1OOpg; (E) 0, 25, 50, 75 and 100 pg of 
casamino acids or true numerical value. The expected linear fits are shown. 

However, when’ using ten equally spaced samples as the training set, over 
the desired concentration range, even though the network estimate is linear, 
the edges of the data range were nearly always sigmoidal. Figure 10 
demonstrates this more obviously, and shows the results obtained from 



108 R. Goodacre et al. 1 J. Anal. Appl. Pyrolysis 26 (1993) 93-114 

0 20 40 60 80 100 

The true numerical value 

- Trained to an RMS error of 0.05 

Trained to an RMS error of 0.01 

- Trained to an RMS error of 0.001 

Fig. 10. Results of the estimates of trained neural networks against the true numerical 
values, using standard back-propagation algorithm. The training set consisted of 0 to 100 in 
steps of 10 and the test set of 0 to 100 in steps of 1. Data points are joined by straight lines. 

training an ANN on numerical input (0 to 100 in steps of 10) to an r.m.s. 
error of 0.05,O.Ol and 0.001, and interrogating with 0 to 100 in steps of unity. 
It is, therefore, always best to test near the middle of the concentration range 
because this will contain the most accurate part of the “calibration curve”. 

The effect of altering the scaling range in the input and output nodes of 
ANNs using 0, 35, 65 and 100 in the training set was investigated to 
determine whether this would improve the ability of the network to gener- 
alise. A variety of scaling ranges was employed. The first (a) represented the 
normally used scaling ranges of 0 to 5000 in the input layer and from 0 to 
100 in the output layer. Other ANNs were also used: those where only the 
output was altered to scale between - 100 and 200 (b); those where only the 
input scale was altered to lie between - 5000 and 10 000 (c); those employ- 
ing input and output nodes that were scaled between - 5000 and 10 000 and 
- 100 and 200 respectively (d). 

After the ANNs were trained they were interrogated and the network 
estimates were plotted against the desired outputs, both for Py-MS data 
(Fig. 1 l(A)) and true numerical data (Fig. 1 l(B)). In Fig. 1 l(B) it is clear 
that scaling the input node (condition c) has no effect on improving the 
ability of the network to generalise. In contrast, however, when the output 
node was scaled from - 100 to 200 (in conditions b and d) the network 
estimate was very much like the desired output, and coincident with the 
expected best fit. There was also some improvement when the output was 
scaled ( - 100 to 200) when using pyrolysis-mass spectra as the training 
data. However, a plot of the network estimate vs. the actual amount of 
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Expected linear fit 

Fig. 11. Results of (A) the estimates of trained neural networks against true casamino acid 
concentration (O-100 pg in 20 pg of glycogen), and (B) the estimates against the true 
numerical values (O-100) using the standard back-propagation algorithm with one hidden 
layer consisting of eight nodes running on the accelerator board using 0, 35, 65 and 100 pg 
as the input. To investigate the effects of scaling the input and output layers, several neural 
networks were run: in (a) the network was scaled where the input was from 0 to 5000 and 
the output was from 0 to 100 (this represented the scaling on the input and output layers that 
was typically employed, i.e. it was these values that were normalised to the range 0 to 1); 
input scaled from 0 to 5000 and output from - 100 to 200 (b); input scaled from - 5000 to 
10 000 and output from 0 to 100 (c); and input scaled from - 5000 to 10 000 and the output 
from - 100 to 200 (d). The expected linear fits are shown. 

casamino acids in glycogen (Fig. 1 l(A)) did not concur with the expected 
best fit as well as when ten equally spaced samples were used in the training 
set (Fig. 7(A)). 

When using ANNs (and other multivariate calibration methods) to 
estimate concentration ranges from spectral and numerical inputs it is 
important that they are not interrogated with data outside that range. 
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0 20 40 60 80 100 

Casamino acids @g) or the true 

numerical value 

0 20 40 60 80 100 

Casamino acids @g) or the true 

numerical value 

o Mixing casamino acids in glycogen - ANN training set 

l Mixing casamino acids in glycogen - unseen spectra 

q Results from numerical values - ANN training set 

l Results from numerical values - unseen numbers 

- Expected linear fit 

Fig. 12. Results of the estimates of trained neural networks against true casamino acid 
concentration (O-100 pg in 20 pg of glycogen) (0, 0) and the estimates against the true 
numerical values (o-100) ( n , q ), using the standard back-propagation algorithm with one 
hidden layer consisting of eight nodes running on the accelerator board using (A) 0, 25-75 
(in steps of 5 pg) and 100 pg, or (B) only 25-75 (in steps of 5 pg), in the training set. 

Figure 12(A) shows the network estimates against true values using an input 
of 0, 25 to 75 (in steps of 5) and 100 pg of casamino acids, and the true 
numerical values. ANNs were also trained on the same two training sets, 
except that data for 0 and 100 values were omitted (Fig. 12(B)). When Figs. 
12(A) and 12(B) are compared, the former shows a more linear relationship 
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Fig. 13. The effect of training neural networks with 25 -75 pg (in steps of 5 pg) using (A) true 
casamino acid concentrations (O-100 pg in 20 pg of glycogen), and (B) true numerical values 
(0- 100) employing the standard back-propagation algorithm with one hidden layer consisting 
of eight nodes running on the accelerator board. Results are expressed as (A) the estimates 
of the trained neural networks vs. the true casamino acids concentration, and (B) the estimates 
against the true numerical values. The effects of scaling the input and output layers of the neural 
networks are shown. (For details of scaling see Fig. 11.) The expected linear fits are shown. 

at the edges of the data ranges and the edges of the latter plot are much 
more sigmoidal. 

The effect of altering the scaling range in the input and output nodes was 
also investigated for both PJ-MS (Fig. 13(A)) and true numerical data 
(Fig. 13(B)) containing only values from 25 to 75 (in steps of 5) in the 
training set. ANNs were set up under the four conditions (a-d) outlined 
above. The ability of the network to generalise was improved slightly by 
scaling the output, but was not as obvious as that reported above (Fig. 1 l), 
both for Py-MS (Fig. 13(A)) and for true numerical data (Fig. 13(B)). 
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Indeed, when the input layer alone was scaled between - 5000 and 10 000 
(condition c) for pyrolysis-mass spectra as the input (Fig. 13(A)), the 
network estimates of what it had not seen were worse than the normally 
used conditions of scaling the input from 0 to 5000 and the output from 0 
to 100 (a). It is also interesting to note that scaling only the output layer 
(condition b) of ANNs trained using Py-MS data caused their learning 
curves to be smoother (data not shown) than those using the normal scaling 
ranges (a). 

These results demonstrate that neither ANNs of the present type nor data 
derived from the Py-MS of complex mixtures can be expected to give good 
extrapolations from linear numerical data (the true numbers). 

In summary, we have shown that the combination of Py-MS and ANNs 
was able to quantitatively deconvolute the Py-MS of mixtures of casamino 
acids in glycogen, and that a training set of ten equally spaced samples over 
the desired concentration range should be used in the network training set 
if accurate quantitative values are required. Further, ANNs should not be 
expected to give wholly correct estimates near the edges of or outside their 
training sets. We conclude that the combination of Py-MS and ANNs 
constitutes a novel, powerful and interesting technology for the analysis of 
the concentrations of appropriate substrates, metabolites and products in 
biochemical processes generally. Future work will involve assessing the use 
of a linear activation function to ascertain if it may improve the ability of 
ANNs to generalise from pyrolysis-mass spectral data. 

ACKNOWLEDGEMENTS 

This work is supported by the Biotechnology Directorate of the UK 
SERC LINK scheme in Biochemical Engineering, in collaboration with 
Horizon Instruments, ICI Biological Products and Fine Chemicals, and 
Neural Computer Sciences. 

REFERENCES 

1 D.B. Drucker, Meth. Microbial., 9 (1976) 51-125. 
2 W.J. Irwin, Analytical Pyrolysis: A Comprehensive Guide, Marcel Dekker, New York, 1982. 
3 H.L.C. Meuzelaar, J. Haverkamp and F.D. Hileman, Pyrolysis Mass Spectrometry of 

Recent and Fossil Biomaterials, Elsevier, Amsterdam, 1982. 
4 C.S. Gutteridge, Methods Microbial., 19 (1987) 227-272. 
5 R.C.W. Berkeley, R. Goodacre, R.J. Helyer and T. Kelley, Lab. Pratt., 39 (1990) 81-83. 
6 L.A. Shute, C.S. Gutteridge, J.R. Norris and R.C.W. Berkeley, J. Gen. Microbial., 130 

(1984) 343-355. 
7 G. Wieten, H.L.C. Meuzelaar and K. Haverkamp, in G. Odham, L. Larsson and P-A. 

Mardh (Eds.), Gas Chromatography/Mass Spectrometry: Applications in Microbiology, 
Plenum Press, New York, 1984, pp. 335-380. 

8 R. Goodacre and R.C.W. Berkeley, FEMS Microbial. Lett., 71 (1990) 133-138. 



R. Goodacre et al. 1 J. Anal. Appl. Pyrolysis 26 (1993) 93-114 113 

9 

10 
11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
21 

22 

23 
24 
25 

26 
27 

28 
29 

30 
31 

32 

33 
34 

35 

36 

37 
38 

R. Goodacre, J.E. Beringer and R.C.W. Berkeley, J. Anal. Appl. Pyrolysis, 22 (1991) 
19-28. 
R. Kajioka and P.W. Tang, J. Anal. Appl. Pyrolysis, 6 (1984) 59-68. 
P.R. Sisson, R. Freeman, N.F. Lightfoot and I.R. Richardson, Epidemiol. Infect., 107 
(1991) 127-132. 
H.L.C. Meuzelaar, P.G., Kistemaker, W. Eshuis and H.W.B. Engel, Rapid Methods and 
Automation in Microbiology, Learned Information, Oxford, 1976, pp. 225-230. 
G. Wieten, K. Haverkamp, H.B.W. Engel and L.G. Berwald, Rev. Infect. Diseases, 3 
(1981) 871-877. 
G. Wieten, K. Haverkamp, H.L.C. Meuzelaar, H.B.W. Engel and L.G. Berwald, J. Gen. 
Microbial., 122 (1981) 109-l 18. 
R. Freeman, M. Goodfellow, F.K. Gould, S.J. Hudson and N.F. Lightfoot, J. Med. 
Microbial., 32 (1990) 283-286. 
R. Freeman, F.K. Gould, R. Wilkinson, A.C. Ward, N.F. Lightfoot and P.R. Sisson, 
Epidemiol. Infect., 106 (1991) 239-246. 
F.K. Gould, R. Freeman, P.R. Sisson, B.D. Cookson and N.F. Lightfoot, J. Hosp. 
Infect., 19 (1991) 41-48. 
J.T. Magee, J.M. Hindmarch, L.A. Burnett and A. Pease, J. Med. Microbial., 30 (1989) 
273-278. 
R. Freeman, F.K. Gould, P.R. Sisson and N.F. Lightfoot, Lett. Appl. Microbial., 13 
(1991) 28-31. 
W. Windig and H.L.C. Meuzelaar, Anal. Chem., 56 (1984) 2297-2303. 
N.H. Nie, C.H.G. Hull, J.G. Jenkins, K. Steinbrenner and W.H. Brent, Statistical 
Package for the Social Sciences, McGraw-Hill, New York, 1975. 
W. Windig, P.G. Kistemaker and J. Haverkamp, J. Anal. Appl. Pyrolysis, 3 (1981) 
199-212. 
R. Goodacre and D.B. Kell, Anal. Chim. Acta, (1993) in press. 
R. Goodacre, D.B. Kell and G. Bianchi, Nature, 359 (1992) 594. 
D.L. Massart, B.G.M. Vandeginste, S.N. Deming, Y. Michotte and L. Kaufmann, 
Chemometrics: A textbook, Elsevier, Amsterdam, 1988. 
H. Martens and T. Naes, Multivariate Calibration, Wiley, New York, 1989. 
R.G. Brereton, Chemometrics: Applications of Mathematics and Statistics to Laboratory 
Systems, Ellis Horwood, New York, 1990. 
S.D. Brown, Anal. Chem., 64 (1992) 22R-49R. 
D.E. Rumelhart, J.L. McClelland and the PDP Research Group, Parallel Distributed 
Processing. Experiments in the Microstructure of Cognition, Vols. I & II, MIT Press, 
Cambridge, MA, 1986. 
J.D. Cowan and D.H. Sharp, Q. Rev. Biophys., 21 (1988) 365-427. 
J.L. McClelland and D.E. Rumelhart, Exploration in Parallel Distributed Processing; A 
Handbook of Models, Programs and Exercises, MIT Press, Cambridge, MA, 1988. 
D.J. Amit, Modeling Brain Function; the World of Attractor Neural Networks, Cam- 
bridge University Press, UK, 1989. 
T. Kohonen, Self-Organization and Associative Memory, Springer, Heidelberg, 1989. 
P.D. Wasserman, Neural Computing: Theory and Practice, Van Nostrand Reinhold, 
New York, 1989. 
P.D. Wasserman and R.M. Oetzel, NeuralSource: the Bibliographic Guide to Artificial 
Neural Networks, Van Nostrand Reinhold, New York, 1989. 
I. Aleksander and H. Morton, An Introduction to Neural Computing, Chapman & Hall, 
London, 1990. 
R. Beale and T. Jackson, Neural Computing: An Introduction, Adam Hilger, Bristol, 1990. 
R.C. Eberhart and R.W. Dobbins, Neural Network PC Tools, Academic Press, London, 
1990. 



114 R. Goodacre et al. / J. Anal. Appl. Pyrolysis 26 (1993) 93- 114 

39 Y-H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, Read- 
ing, MA, 1989. 

40 P.K. Simpson, Artificial Neural Systems, Pergamon, Oxford, 1990. 
41 J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Computa- 

tion, Addison-Wesley, Redwood City, 1991. 
42 K. Hornik, M. Stinchcombe and H. White, Neural Networks, 2 (1989) 359-368. 
43 K. Hornik, M. Stinchcombe and H. White, Neural Networks, 3 (1990) 551-560. 
44 H. White, Neural Networks, 3 (1990) 535-549. 
45 B. Curry and D.E. Rumelhart, MSnet: A Neural Network that Classifies Mass Spectra, 

Hewlett Packard technical report HPL-90- 16 1, 1990. 
46 R.E. Aries, C.S. Gutteridge and T.W. Ottley, J. Anal. Appl. Pyrolysis, 9 (1986) 81-98. 
47 P.J. Werbos, Masters thesis, Harvard University, Boston, MA, 1974. 
48 D. Ackley, G. Hinton and T. Sejnowski, Cognitive Sci., 9 (1985) 147-169. 
49 H. Szu, in J. Denker (Ed.), AIP Conference Proceedings 151: Neural Networks for 

Computing, American Institute of Physics, New York, 1986, pp. 420-425. 
50 SE. Fahlman, An empirical study of learning speed in back propagation networks, 

Technical report, Carnegie-Mellon University, Pittsburgh, PA, 1988. 
51 AS. Weigend, D.E. Rumelhart and B.A. Huberman, in R.P. Lippmann, J.E. Moody and 

D.S. Touretzky (Eds.), Neural Information Processing Systems 3, Morgan Kaufmann, 
San Mateo, CA, 1991, pp. 875-882. 

52 B.S. Middleditch, Analytical Artifacts, Elsevier, Amsterdam, 1989. 


