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"The fewer data needed, the better the information. And an overload of 
information, that is, anything much beyond what is truly needed, leads 
to information blackout. It does not enrich, but impoverishes." 
Peter F. Drucker - Management: Tasks, Responsibilities, Practices 

1. INTRODUCTION 

Post-genomic science is producing bounteous data floods, and as the 
above quotation indicates the extraction of the most meaningful parts of 
these data is key to the generation of useful new knowledge. Atypical 
metabolic fingerprint or metabolomics experiment is expected to generate 
thousands of data points (samples times variables) of which only a handful 
might be needed to describe the problem adequately. Evolutionary 
algorithms are ideal strategies for mining such data to generate useful 
relationships, rules and predictions. This chapter describes these techniques 
and highlights their exploitation in metabolomics. 

In a recent study Lyman and Varian estimated that in 2000 the world 
produced between I and 2 exabytes (1-2.10 18 bytes) of unique information 
(www.sims.berkeley.edu/how-much-info) . This data flood is roughly 250 
megabytes for every man, woman and child on earth! IBM's (www.ibm.com) 
estimates are that information within the life sciences doubles every 6 
months, and this data explosion comes from genomic sequencing, the 
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'omics' (transcriptome, proteomics, metabolomics), high-throughput 
screening as well as the more traditional pre-clinical and clinical trials. 

Metabolomics is the third level of 'omics' analysis. The metabolome is 
the quantitative complement of all the low molecular weight molecules 
present in cells in a particular physiological or developmental state (Oliver et 
al., 1998; Fiehn, 2002) and whilst complementary to transcriptomics and 
proteomics may be. seen to have special advantages. In particular, we know 
from the theory underlying metabolic control analysis (MCA) (Kell and 
Westerhoff, 1986; Fell, 1996; Heinrich and Schuster, 1996; Mendes et al., 
1996; Kell and Mendes, 2000) as well as from experiment (Fiehn et al., 
2000a; Raamsdonk et al., 2001), that while changes in the levels of 
individual enzymes may be expected to have little effect on metabolic 
fluxes, they can and do have significant effects on the concentrations of a 
variety of individual metabolites (Westerhoff and Kell, 1996). In addition, as 
the 'downstream' result of gene expression, changes in the metabolome are 
amplified relative to changes in the transcriptome and the proteome. 

Currently the 'gold standard' for measuring the metabolome is gas 
chromatography-mass spectrometry (GC-MS) (Fiehn et al., 2000a, 2000b), 
and whilst a single run generates the name of a metabolite (or unique 
designation) with its (relative) concentration, GC-MS suffers from being 
chemically biased because of the extraction solvents employed. It is also 
relatively slow both for the chromatography itself (typical run times are 30 
min per sample) and for the subsequent deconvolution steps. By contrast, 
rather than attempting to measure every metabolite, metabolic fingerprinting 
methods are sufficiently rapid to enable the classification of samples 
according to the origin or their biological relevance (Fiehn, 2002). For high­
throughput metabolic fingerprinting the methods typically employed include 
nuclear magnetic resonance spectroscopy (NMR) (Lindon et al., 2000), 
direct infusion electrospray ionization-MS (Vaidyanathan et al., 2001, 2002; 
Allen et al., 2002), and Fourier transform infrared (FT-IR) spectroscopy 
(Winson et al., 1997; Goodacre et al., 1998; Oliver et al., 1998). These 
profiling strategies generate large amounts of data, and it is obvious (Fiehn 
et al., 2001; Mendes, 2002) that current informatic approaches need to adapt 
and grow in order to make the most of these data 

2. MULTIVARIATE ANALYSIS 

Multivariate data such as those from a metabolic fingerprint consist of 
the results of observations on a number of individuals (objects, or samples) 
of many different characters (variables) such as the spectral intensities at 
different mass-to-charge· ratios, chemical shifts from NMR, or absorbance at 
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different wavenumbers from Ff-IR (Martens and Nres, 1989). Each variable 
may be regarded as constituting a different dimension, such that if there are 
n variables each object may be said to reside at a unique position in an 
abstract entity referred to as n-dimensional hyperspace (Goodacre et al., 
1996). This hyperspace is necessarily difficult to visualize (Wilkinson, 1999) 
and the underlying theme of multivariate analysis is thus simplification 
(Chatfield and Collins, 1980) or dimensionality reduction (Tukey, 1977). 
This usually means that one wants to summarize a large body of data by 
means of relatively few parameters, preferably the two or three which lend 
themselves to graphical display, with minimal loss of information. 

Within chemometrics there are three varieties of algorithms that are used 
to analyze multivariate data. 

2.1 The Clustering Variety 

These algorithms are based on unsupervised learning (Duda et al., 2001; 
Hastie et al., 2001) and seek to answer the question 'How similar to one 
another are these samples based on the metabolite fingerprints I have 
collected?' 

Conventionally the reduction of multivariate data has been carried out 
using principal components analysis (PCA; (Jolliffe, 1986; Everitt, 1993)) or 
hierarchical cluster analysis (HCA; (Manly, 1994)). PCA is a well-known 
technique for reducing the dimensionality of multivariate data whilst 
preserving most of the variance, and is used to identify correlations amongst 
a set of variables and to transform the original set of variables to a new set of 
uncorrelated variables called principal components (PCs). These PCs can 
then be plotted and clusters in the data visualized; moreover this technique 
can be used to detect outliers. In its more conventional form, HCA calculates 
distances (usually Euclidean, but often Mahanalobis or Manhattan) between 
the objects in either the original data or a derivative thereof (e.g. the PCs) 
and uses these to construct a similarity matrix using a suitable similarity 
coefficient. These distance measures are then processed by an agglomerative 
clustering algorithm (although divisive algorithms are also used) to construct 
a dendrogram. In post-genomics such methods are sometimes referred to as 
'guilt-by-association' (Altshuler et al., 2000; Oliver, 2000). 

2.2 The Classification/Quantification Variety 

These algorithms are based on supervised learning (e.g. (Mitchell, 1997; 
Beavis et al., 2000; Kell and King, 2000; Hastie et al., 2001)) and seek to 
give answers of biological interest which have much-lower dimensionality, 
such as "Based on the metabolite fingerprint of this new sample I have just 
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collected, which class in my database does it (most likely) belong to?" 
and/or "what are the levels of these metabolites in my biological sample?" 

The basic idea behind supervised learning is that there are some patterns 
(e.g. metabolic fingerprints) that have desired responses which are known 
(i.e. whether an animal has been challenged with a drug or placebo). These 
two types of data (the representation of the objects and their responses in the 
system) form pairs that are conventionally called inputs (x-data) and targets 
(y-data) . The goal of supervised learning is to find a model or mapping that 
will correctly associate the inputs with the targets (Fig. 1). 
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Figure 1. Supervised learning: When we know the desired responses (y-data, or targets) 
associated with each of the inputs (x-data, or metabolic fingerprints) then the system may be 
supervised. The goal is to find a mathematical transformation (model) that will correctly 
associate all or some of the inputs with the targets . In its conventional form this is achieved by 
minimizing the error between the known target and the model's response (output). 

Many different algorithms perform supervised learning. Among the most 
common are (a) discriminant function analysis (DFA), which is a qualitative 
(categorical), cluster analysis-based method that involves projection of test 
data into cluster space (Manly, 1994; Radovic et al., 2001) , (b) partial least 
squares (PLS) which is a quantitative linear regression method (Martens and 
Nres, 1989) and (c) discriminant PLS, a qualitative (categorical) linear 
regression method (Martens and Nres, 1989; Alsberg et al., 1998). However, 
arguably the most popular supervised learning methods are based on 
artificial neural networks (ANNs) which can learn non-linear as well as 
linear mappings. The most popular varieties are multilayer perceptrons 
(Werbos, 1994) and radial basis functions (Broomhead and Lowe, 1988; 
Saha and Keller, 1990; Bishop, 1995). In these supervised learning 
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techniques there are minimally 4 data sets to be studied, as follows. The 
"training data" consist of (i) a matrix of s rows and n columns in which s is 
the number of objects/samples and n the number of variables (the y-data 
referred to above), and (ii) a second matrix, again consisting of s rows and 
typically I to i columns, in which the columns represent the variable(s) 
whose value(s) it is desired to know (they-data or targets) and which for the 
training set have actually been previously determined by some existing 
"benchmark" method. The x-data (ii) are always paired with the patterns in 
the same row in the y-data (i) . The "test data" also consist of two matrices, 
(iii) and (iv), corresponding to those in (i) and (ii) above, but the test set 
contains different samples. As the name suggests, this second pair is used to 
test the accuracy of the system; alternatively (and better) they may be used to 
cross-validate the model. That is to say, after construction of the model using 
the training set (i, ii) the test data (iii) are then used to challenge the 
calibration model so as to obtain the model's prediction of results, and these 
are then compared with the known or expected responses (iv) . Once these 
are within acceptable ranges for the test data then the model is considered to 
be calibrated and ready to use. 

2.3 The Inductive I Mining Variety 

These algorithms are also based on supervised learning and seek to 
answer the question 'What have I measured in my metabolic fingerprint that 
makes samples in class A different from samples in class B?' 

The problem with the supervised learning algorithms detailed above is 
that the mathematical transformation from multivariate data to the target 
question of interest is often largely inaccessible. DFA, PLS, and ANN 
methods are often perceived as 'black box ' approaches to modeling spectra. 
It is known from the statistical literature that better (i.e. more robust) 
predictions can often be obtained when only the most relevant input 
variables are considered (Seasholtz · and Kowalski, 1993; Kell and 
Sonnleitner, 1995; B~ and Jonassen, 2002) . Thus the best machine learning 
techniques should not only give the correct answer(s), but also identify a 
subset of the variables with maximal explanatory power. This can provide an 
interpretable description of what, in biological terms, is the basis for that 
answer. Such explanatory modeling methods do exist ' and are based on rule 
induction (Brei man et al., 1984; Harrington, 1991 ; Quinlan, 1993; Alsberg et 
al., 1997), inductive logic programming (Lloyd, 1987; Muggleton, 1990; 
King et al., 1992; Lavrac and Dzeroski, 1994), and, in particular, 
evolutionary computation (Holland, 1992; Koza, 1992; Back et al. , 1997). 
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3. EVOLUTIONARY COMPUTATION 

Evolutionary computational-based algorithms are particularly popular 
inductive reasoning and optimization methods (Corne et al., 1999; 
Michalewicz and Fogel, 2000). They are based on concepts of Darwinian 
selection (Back et al., 1997) to generate and to optimize a desired 
computational function or mathematical expression that will yield 
explanatory 'rules'. These techniques include genetic algorithms (GAs; 
(Goldberg, 1989; Holland, 1992; Michalewicz, 1994; Mitchell, 1995)), 
evolution strategies (Schwefel, 1995; Beyer, 2001), evolutionary 
programming (Fogel, 1995, 2000) genetic programming (GP; (Koza, 1992, 
1994; Banzhaf et al., 1998; Koza et al., 1999)) and genomic computing (GC; 
(Kell et al., 2001; Kell, 2002A, 2002b)), and because the models are in 
English, and can penalize complex expressions, they may be made to be 
comparatively simple and easily interpreted. 
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Complex algorithm Good 
problem - - - - - - - - - • solution 

\ / 
Population of 

solutions 

Mutations/ 
(low rate) t ~Natural 

selection 
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Figure 2. (A) The complex problem we wish to solve but cannot, and (B) the GA strategy. 

If we consider the generic "Traveling Salesman Problem" where the 
object of the exercise is to find the shortest route between 20 cities, with the 
caveat that one may only visit each city once, we could (a) write down every 
possible order, (b) compute the distance for each, and ( c) pick the shortest 
one. But is this really feasible? The number of possible orders is factorial 
and immense, 20! = 2.4 x 10i8

, this number is so big that if your computer 
could check 1 million orderings every second it would still take 77,000 years 
to check them all! Thus even though we know how to solve the Traveling 
Salesman Problem we still cannot do it. This is true for identifying a subset 
of the variables from a metabolic fingerprint with the globally maximal 
explanatory power. For example, if we have measured only a modest 200 
variables an exhaustive search of all possible permutations (where a variable 
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. . h d . 200 6 60 1s e1t er use or not) 1s 2 = 1. x 10 . These problems are NP complete 
(see Garey and Johnson, 1979); that is to say to find the global optimum 
requires exhaustive search and this is computationally impossible. Thus 
route A in Fig. 2 is unfeasible as no algorithm can do this and an alternative 
strategy needs to be found . The premise is that a 'good' solution is 
acceptable and so we need an alternative method to search the huge spaces 
of possible solutions. Importantly, however, if the search space is large but 
the solution space is small, i.e. we can solve the problem with just a small 
number of variables, the effective search space becomes much narrower. 
Thus the number of permutations of 4 variables from 200 is just 6.47 x 107

. 
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Figure 3. The overall procedure employed by GAs and GP. The criterion for a good solution 

will be based on setting a threshold error between the known target and the GAs' response. 

In a GA a population of individuals, each representing the parameters of 
the problem to be optimized as a string of numbers or binary digits, 
undergoes a process analogous to evolution in order to derive an optimal or 
near-optimal solution (Fig. 2B). The parameters stored by each individual 
are used to assign it afitness, a single numerical value indicating how well 
the solution using that set of parameters performs. New individuals are 
generated from members of the current population by processes analogous to 
asexual and sexual reproduction (Fig. 3) . 

Asexual reproduction, or mutation, is performed by randomly selecting a 
parent with a probability related to its fitness, then randomly changing one or 
more of the parameters it encodes. The new individual then replaces a less­
fit member of the population, if one exists. Sexual reproduction, or 
crossover, is achieved by selecting two parents with a frequency related to 
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their fitnesses, and generating two new individuals by copying parameters 
from one parent, and switching to the other parent after a randomly-selected 
point. The two new individuals then replace less fit members of the 
population as before. The above procedure is repeated, with the overall 
fitness of the population ii:nproving at each generation, until an acceptably fit 
individual is produced. 

For variable selection prior to some supervised learning method, whether 
it is linear regression or ANNs, the state of each variable (in GA terminology 
a gene) is represented by a 'I' (selected to be in the model) or a 'O' (not 
selected) (Horchner and Kalivas, 1995; Broadhurst et al., 1997). Together 
theses sets of variables are called a chromosome, this GA string would be of 
length m (where m = number of x-data input variables in the metabolic 
fingerprint). For example, in a variable selection problem starting with 7 
variables, one possible chromosome would be 1101001. This can be 
translated such that variables 1, 2, 4, and 7 are to be used in the modeling 
process and variables 3, 5, and 6 are to be omitted. Other GA variants based 
on the selection Of spectral windows for Ff-IR and Raman spectroscopy are 
also popular (Williams and Paradkar, 1997; Taylor et al., 1998; Roger and 
Bellon-Maurel, 2000; Leardi et al., 2002; McGovern et al., 2002). 

However, whilst GAs are very successful search algorithms for tackling 
NP-hard problems, the disadvantage is that with the GA variable selection 
approach the relationship between one variable and another is not evident, 
only whether they contribute to a model or not. Therefore, a richer language 
is needed. 

3.1 Genetic Programming 

A GP is an application of the GA approach to derive mathematical 
equations, logical rules or program functions automatically (Koza, 1992, 
1994; Gilbert et al., 1997; Langdon, 1998; Koza et al., 1999; Langdon and 
Poli, 2002). Rather than representing the solution to the problem as a string 
of parameters, as in a conventional GA, a GP usually (c.f Banzhaf et al., 
1998) uses a tree structure. The leaves of the tree, or terminals, represent 
input variables or numerical constants. Their values are passed to nodes, at 
the junctions of branches in the tree, which perform some numerical or 
program operation before passing on the result further towards the root of 
the tree (Fig. 4). Genomic Computing (GC; Kell et al., 2001 ; Kell, 2002a, 
2002b) (www .abergc.com) is a variant on a GP. 

The overall evolutionary procedure employed by GP is essentially 
identical to that of GAs. An initial (commonly random) population of 
individuals, each encoding a function or expression, is generated and their 
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fitness to produce the desired output is assessed. In the second population 
three reproduction strategies are adopted (see Fig. 5 for pictorial details). 
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1 Input 
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Constant 
Terminal 

A 

2 Input 
Node 

8 
Variable 
Terminal 

A B C D 

4 Input 
Node 

B output= 
[1.7xlog(v89)]+v271 

Figure 4. The richer language structure of a tree-encoded GP: (A) the building blocks and (B) 
a typical function tree. 

(I) Cloning: some of the original individuals are allowed to survive 
unmodified. 

(2) New individuals are generated by mutation where one or more 
random changes to a single parent individual are introduced. This can be 
when a node is randomly chosen, and modified either by giving it a different 
operator with the same number of arguments, or it may be replaced by a new 
random sub-tree. Terminals can be mutated by slightly perturbing their 
numerical values, or randomly choosing an input variable. 

(3) Alternatively new children are generated by crossover where random 
rearrangement of functional components between two or more parent 
individuals takes place. Two parents are chosen with a probability related to 
their fitness. A node is randomly chosen on each parent tree, and the selected 
sub-trees are then swapped. At each reproduction stage because of the use of 
these trees to encode mathematical equations the new trees are still 
syntactically correct. The fitness of the new individuals in population 2 is 
assessed and the best individuals from the total population become the 
parents of the next generation. An individual's fitness is usually assessed as 
the root mean squared error of the difference between expected values and 
the GP' s estimated values for the training set. In order to reduce 'bloat ', a 
phenomenon in which the GP function trees gets so huge that it lacks 
explanatory power (Langdon and Poli, 1998), penalties to the number of 
nodes and depth of the tree in the individual's function tree can be applied. 
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This overall process is repeated until either the desired result is achieved or 
the rate of improvement in the population becomes zero. It has been shown 
(Koza, 1992) that if the parent individuals are chosen according to their 
fitness values, the genetic method can approach the theoretical optimum 
efficiency for a search algorithm, and EAs generally are guaranteed to find 
the global optimum provided the best individuals are retained between 
generations ('elitism') (Rudolph, 1997). 

Clone -

x 

Clone 

Crossover -

Mutation -

+ 

Figure 5. The GP reproduction processes, showing examples of (A) cloning, (B) mutation and 
(C) crossover events. 

4. APPLICATION OF EVOLUTIONARY 
COMPUTATION-BASED METHODS TO 
METABOLOMICS 

GAs and GPs are very efficient search algorithms and can be used to 
produce models that allow the deconvolution of metabolome data in 
chemical terms. Detailed below are five published examples illustrating this. 

Example 1 (Goodacre et al., 2000). Members of the genus Bacillus are 
widely distributed in soil, water, and air, and because their spores are so 
resistant their control is of considerable importance in the food processing 
industry and in the preparation of sterile products (Doyle et al., 1997). In 
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addition, the rapid identification of Bacillus anthracis spores is of 
importance because of its potential use as a biological warfare agent (Dando, 
1994; Barnaby, 1997). Therefore, there is a need for a generic 
characterization system that can be used to carry out large-scale and rapid 
detection of bacterial spores. GP was used to analyze metabolic fingerprints 
generated from vegetative biomass and spores using Curie-point pyrolysis­
MS (Py-MS) and Ff-IR. Both fingerprinting approaches could be used to 
differentiate successfully between vegetative biomass and spores. GP 
produced mathematical rules that could be interpreted in simple biochemical 
terms. It was found that for Py-MS, a peak at mlz 105 was characteristic and 
attributable to a pyridine ketonium ion derived from the pyrolysis of 
pyridine-2,6-dicarboxylic acid (dipicolinic acid), a metabolite found in 
spores but not in vegetative cells. In addition, Ff-IR analysis of the same 
system showed that a pyridine ring vibration at 1447-1439 cm·1 from the 
same metabolite, dipicolinic acid, was highly characteristic of spores. Thus, 
although the original datasets recorded hundreds of spectral variables from 
whole cells simultaneously, a simple biomarker was detected that can be 
used for the rapid and unequivocal detection of spores of these organisms. 

Example 2 (Johnson et al., 2000). Samples from tomato fruit grown 
hydroponically under both high- and low-salt conditions were analyzed by 
Ff-IR, with the aim of identifying biochemical features linked to salinity in 
the growth environment. Examination of the GP-derived trees showed that 
there were a small number of spectral regions that were consistently used. In 
particular, the spectral region containing absorbances potentially due to a 
cyanide/nitrile functional group was identified as discriminatory. Cyanide is 
formed in plants during ethylene biosynthesis, and ethylene production is 
enhanced in plants subjected to stress conditions. Therefore, one may 
propose that plants grown under saline conditions may therefore have 
enhanced levels of cyanide as a result of enhanced ethylene biosynthesis. 
Thus inductive reasoning via GP has allowed the significance of a pathway 
turned on under tomatoes exposed to salinity to be highlighted as potentially 
important. This pathway can now be subjected to conventional biochemical 
analysis. 

Example 3 (McGovern et al., 2002). The previous two examples have 
been qualitative (i .e. the outputs were categorical variables). This example 
now demonstrates how GA and GP can be used ' in a quantitative fashion. 
The ability to control industrial bioprocess is paramount for product yield 
optimization, and it is imperative therefore that the concentration of the 
fermentation product (the determinand) is assessed accurately. Whilst IR and 
Raman spectroscopies have been used for the quantitative analysis of 
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fermentations (McGovern et al., 1999; Shaw et al., 1999; Vaidyanathan et 
al., 1999) the transformation of spectra to determinand concentration(s) has 
usually been undertaken by PLS and ANNs, and so one can not be sure 
whether the model is detecting the product itself, an increase in bi-products 
or decrease in substrates. By contrast, GA and GP have recently been used 
to analyse IR and Raman spectra from a diverse range of unprocessed, 
industrial fed-batch fermentation broths containing the fungus Gibberella 
fujikuroi which produces the gibberellic acid. The models produced allowed 
the determination of those input variables that contributed most to the 
models formed, and it was observed that those quantitative models were 
predominately based on the concentration of gibberellic acid itself. 

Example 4 (Ellis et al. , 2002). Whilst a number of studies have applied 
Fr-IR to the discrimination and adulteration of meats (Al-Jowder et al., 
1999; Downey et al., 2000) its application to the rapid detection of microbial 
spoilage in meats has only very recently been demonstrated. A particularly 
robust and reproducible form of this method is attenuated total reflectance 
(ATR) where the food sample is placed in intimate contact with a crystal of 
high refractive index and an IR absorbance spectrum, a metabolic snapshot, 
collected in just a few seconds. It has been shown (Ellis et al., 2002) that Fr­
IR with PLS allowed accurate estimates of bacterial loads (from 106 to 109 

cm-2) to be calculated directly from the chicken surface in 60s, and that GA 
and GP indicated that at levels of 107 bacteria.cm·2 the main biochemical 
indicator of spoilage as measured by Fr-IR was the onset of proteolysis, a 
finding in agreement with the literature (Dainty, 1996; Nychas and Tassou, 
1997). 

Example 5 (Kell et al., 2001). Within functional genomics the potential 
power of evolutionary methods has been shown for the analysis of 
metabolites from transgenic tobacco plants. Tobacco is a model organism for 
the study of salicylate biology in plant defense, but despite a considerable 
amount of research, little is known regarding its synthesis, catabolism, and 
mode of action. Six week old control plants and a transgenic expressing a 
bacterial gene encoding the enzyme salicylate hydroxylase (SH-L), which is 
known to block salicylic acid accumulation in transgenic tobacco (Darby et 
al. , 2000) were inoculated with tobacco mosaic virus and leaf samples were 
analyzed by HPLC. Genomic Computing analysis of these metabolome 
profiles identified 3 peaks as highly discriminatory for detecting the 
presence of the SH-L genotype in the transgenic. One of the peaks was 
indeed salicylate, but the other two were unknown and are now the subject 
of further investigation. 
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5. CONCLUSION 

As scientists we are all aware of the cycle of knowledge (Fig. 6) (Kell, 
2002b). One has some preconceived notions about the problem domain, 
experiments are designed to test these hypotheses, the observations from 
these experiments are recorded and by deductive reasoning the observations 
considered to be consistent or inconsistent with the hypotheses (Oldroyd, 
1986). Actually, although this part is normally only implicit, by a process of 
induction these observations are synthesized or generalized to refine our 
accepted wisdom. The cycle then repeats itself until one is happy with the 
solution to a given problem. However, in the early stages of functional 
genomics programs we have a scenario where our knowledge is minute, that 
is to say we have no ideas about the role of an orphan open reading frame 
and there are few if any hypotheses to test (Brent, 1999; Brent, 2000; Kell 
and King, 2000). However, we can design experiments based, for example, 
on gene knockouts and controlled over-expression and observe the effect on 
the phenotype of the organism. 

Synthesis I 
Induction 

KNOWLEDGE 

Hypothesis I 
Analysis I 
Deduction 

ORSERVATIONS v 
Inductive reasoning via 
evolutionary computation 

Figure 6. The cycle of knowledge showing where rule induction will play its part. 

Metabolomics is one 'omics approach with which one can generate data 
floods from these genetic manipulations (as indeed are transcriptomics and 
proteomics, and the same general conclusions given here apply equally to 
these methods). Thus we are then positioned at the bottom of Fig. 6 where 
we have collected a great many observations and the trick is to drive the 
cycle round via inductive reasoning to generate new hypotheses. 
Evolutionary computing methods can be considered to be rule induction 
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methods that are entirely data-driven and are thus especially appropriate for 
problems that are data-rich but hypothesis/information-poor. Rule induction 
by GP and GC can be used to generate rules and hence hypotheses from 
suitable examples. Of course these new theories will not necessarily be 
correct, but by testing them new knowledge will be generated which will 
lead to an increased understanding of the function of the orphan gene. In the 
new post-genomic biology, then, we shall need good databases (Mendes, 
2002), very good data, and even better algorithms, with which to turn our 
data into knowledge. 
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