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For pyrolysis mass spectrometry (PyMS) to be used for
the routine identification of microorganisms, for quantify-
ing determinands in biological and biotechnological sys-
tems, and in the production of useful mass spectral
libraries, it is paramount that newly acquired spectra be
compared to those previously collected. Neural network
and other multivariate calibration models have been used
to relate mass spectra to the biological features of interest.
As commonly observed, however, mass spectral finger-
prints showed a lack of long-term reproducibility, due to
instrumental drift in the mass spectrometer; when identi-
cal materials were analyzed by PyMS at dates from 4 to
20 months apart, neural network models produced at
earlier times could not be used to give accurate estimates
of determinand concentrations or bacterial identities.
Neural networks, however, can be used to correct for
pyrolysis mass spectrometer instrumental drift itself, so
that neural network or other multivariate calibration
models created using previously collected data can be
used to give accurate estimates of determinand concen-
tration or the nature of bacteria (or, indeed, other materi-
als) from newly acquired pyrolysis mass spectra. This
approach is not limited solely to pyrolysis mass spectrom-
etry but is generally applicable to any analytical tool which
is prone to instrumental drift, such as IR, ESR, NMR and
other spectroscopies, and gas and liquid chromatography,
as well as other types of mass spectrometry.

There is a continuing need for more rapid, precise, and
accurate analyzes of the (bio)chemical composition of (micro)-
biological systems, both within biotechnology and for the iden-
tification of potentially pathogenic organisms. An ideal method
would require minimum sample preparation, would analyze
samples directly (i.e., be reagentless), and would be rapid,
automated, quantitative, and (at least relatively) inexpensive.
Pyrolysis mass spectrometry (PyMS) is an instrument-based
technique which satisfies these requirements.

Pyrolysis is the thermal degradation of complex material in
an inert atmosphere or a vacuum which causes molecules to
cleave at their weakest points to produce smaller, volatile frag-
ments. Curie-point pyrolysis is a particularly reproducible and
straightforward version of the technique, in which the sample,
dried onto an appropriate metal, is rapidly heated (0.5 s is typical)
to the Curie point of the metal. These degradation products are
then separated and counted by a mass spectrometer so as to
produce a pyrolysis mass spectrum (150 m/z intensities; from m/z
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51 to 200), which can then be used as a “chemical profile” or
fingerprint of the complex material analyzed.'?

PyMS is a highly discriminatory method,? which is applicable
to any organic material.1* The technique is well established within
(micro)biology for the differentiation and identification of groups
of bacteria, fungi, and yeasts.1*~¢ and has also been applied to
the authentication of foodstuffs.”~%!

Recently, the PyMS technique has been expanded within our
laboratory for the quantitative analysis of the chemical constituents
of microbial and other samples, via the application of the novel
supervised learning methods of artificial neural networks (ANNSs)
(see refs 12—25 for introductory surveys) and the multivariate
linear regression techniques of partial least-squares regression
(PLS) and principal components regression (PCR) (see refs 26—
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35 for first-rate texts). For example, we have shown that it is
possible using this method to follow the production of indole in a
number of strains of E. coli grown on media incorporating various
amounts of tryptophan,® to quantify the (bio)chemical constituents
of complex biochemical binary mixtures of proteins and nucleic
acids in glycogen,¥*® and to measure the concentrations of tertiary
mixtures of cells of the bacteria Bacillus subtilis, Escherichia coli,
and Staphylococcus aureus.® For biotechnological purposes, the
powerful combination of PyMS and ANNSs has been used for the
quantitative analysis of recombinant cytochrome bs expression in
E. coli,® and for effecting the rapid screening for the high-level
production of desired substances in fermentor broths.40:4!

With regard to classifications and discriminations, PyMS and
ANNs have also been exploited for the rapid and accurate
assessment of the presence of lower-grade seed oils as adulterants
in extra-virgin olive oils,2? and to effect the rapid identification of
strains of E. coli,* Eubacterium,*® Mycobacterium,* Propionibac-
terium spp.,* and Streptomyces.*® This approach is far more
attractive for the identification of samples from their pyrolysis mass
spectra since it no longer involves the interpretation of complex
principal components analysis and canonical variates analysis plots
because the identities are binary-encoded at the output layer of
the neural network, and so the results are easily read.

Within clinical microbiology, because of the uncertainties over
the long-term reproducibility of the PyMS system, PyMS has really
been limited to the typing of short-term outbreaks, where all
microorganisms are analyzed in a single batch.#”~* In a study to
differentiate between different strains of Carnobacterium,® the
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short-term reproducibility over a period of 4 weeks was excellent;
the separation of the five type strain species examined was
sustained, and the spectra had not changed significantly over the
4 weeks. Shute et al.*! also investigated the reproducibility of
the PyMS system over a much longer period of 14 months for
differentiating some Bacillus species. Although these bacteria
were classified similarly at the beginning and end of the time
period, direct comparison of the two data sets was not possible.
Curie-point pyrolysis is very reproducible, and the pyrolysate
transfer to the ion source of the mass spectrometer is also tightly
controlled; therefore, the major contribution to long-term irrepro-
ducibility is ion source aging (over long periods of extended use,
intractable organic debris collects around the ion source), which
alters the transmissivity of ions, thus causing mass spectral drift.
In a recent study to characterize the origin of green coffee,* it
was concluded that PyMS would not be satisfactory until an
improvement in reproducibility was found, since reliable dif-
ferentiation was not obtained.

For PyMS to be (a) used for the routine identification of
microorganisms and (b) combined with ANNSs to quantify biologi-
cal systems (e.g., metabolites of interest in fermentor broths), new
spectra must be able to be compared to those previously collected.

The first strategy to compensate (correct) for mass spectral
drift is to tune the instrument. For mass spectrometry, this is
typically achieved using the volatile standard perfluorokerosene
and tuning, within the m/z 51—200 range, such that m/z 181 was
one-tenth of m/z 69. Unfortunately, this procedure does not
compensate for all the instrumental drift, and additional methods
need to be sought.

To correct for drift, one would need to analyze the same
standards at the two different times and use some sort of
mathematical correction method. This could simply be subtract-
ing the amount of drift from new spectra collected; however, this
assumes that the drift is uniform (linear) with time, which is
obviously not the case. This method also relies on the variables
(masses) being void of noise, which is also not the case with
(pyrolysis) mass spectral data. An alternative method would be
to transform the mass spectra to look like the mass spectra of the
same material previously collected using a method which was (a)
robust to noisy data and (b) able to perform nonlinear mappings.
Avrtificial neural networks carry out nonlinear mappings while still
being able to map the linearities and are purported to be robust
to noisy data. These mathematical methods are therefore ideally
suited to be exploited for the correction of mass spectral drift.

Smits et al.5® have implemented a drift correction for pattern
recognition using neural networks using simulated flow cytometry
data. These data sets contained only two variables, and the
amount of drift was included in neural networks as an extra input
variable (three input nodes in total). It is, however, often difficult
to measure the amount of drift accurately in real systems,
especially if the number of input variables is high (typically 150
with pyrolysis mass spectral data); a better method would be to
transform the spectra collected today to be like those collected
previously.

In the present study, we therefore reanalyzed four systems
using PyMS which had previously been studied and reported in
the literature. The duplicate data sets spanned time periods
between 4 and 20 months and included (1) the quantification of
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lysozyme in glycogen,® (2) the quantification of S. aureus in E.
coli,?>38 (3) the quantification of the antibiotic ampicillin in E. coli“
to mimic a fermentor, and (4) the identification of human isolates
of Propionibacterium acnes.> We applied neural networks, with
(150-8-150) or without (150-150) a hidden layer, to correct for mass
spectral drift by transforming data collected now into mass spectra
previously collected and compared the results with correction
techniques which exploited linear transformations either by
subtracting the drift or by using a mass-by-mass linear scalar based
on the ratio of the old to new mass values. This work has been
described in a patent application.

EXPERIMENTAL SECTION

Pyrolysis Mass Spectrometry. Five microliter aliquots of
the samples (see below for details of the four data sets) were
evenly applied onto iron—nickel foils. Prior to pyrolysis, the
samples were oven-dried at 50 °C for 30 min. Samples were run
in triplicate. The pyrolysis mass spectrometer used was the
Horizon Instruments PYMS-200X (Horizon Instruments Ltd.,
Heathfield, U.K.) as initially described by Aries et al.®® For full
operational procedures, see Goodacre et al.®404 The sample tube
carrying the foil was heated, prior to pyrolysis, at 100 °C for 5 s.
Curie-point pyrolysis was at 530 °C for 3 s, with a temperature
rise time of 0.5 s. These conditions were used for all experiments.

The pyrolysis mass spectra that were collected were normal-
ized so that the total ion count was 2% to remove the influence of
sample size per se.

Prior to any analysis, the mass spectrometer was calibrated
using the chemical standard perfluorokerosene (Aldrich), such
that m/z 181 was one-tenth of m/z 69.

Principal Components Analysis. The data from PyMS may
be displayed as quantitative pyrolysis mass spectra (e.g., as in
Figure 1, normalized here to percentage ion count). The abscissa
represents the m/z ratio, while the ordinate contains information
on the ion count for any particular m/z value ranging from 51 to
200.

To observe the natural relationships between samples, the
normalized data were then analyzed by principal components
analysis (PCAS-51 using the program Unscrambler 11 Version 4.0
(CAMO A/S, Trondheim, Norway), which runs under Microsoft
MS-DOS 6.2 on an IBM-compatible PC. PCA is a well-known
technique for reducing the dimensionality of multivariate data
while preserving most of the variance, and while it does not take
account of any groupings in the data, neither does it require that
the populations be normally distributed, i.e., it is a nonparametric
method.

Artificial Neural Networks. All ANN analyzes were carried
out using a user-friendly, neural network simulation program,

(54) Goodacre, R.; Howell, S. A.; Noble, W. C.; Neal, M. J. Zentralbl. Bakteriol.
Mikrobiol., Reihe C, in press.

(55) Goodacre, R.; Kell, D. B. U.K. Patent #9511619.0, 1995.

(56) Aries, R. E.; Gutteridge, C. S.; Ottley, T. W. J. Anal. Appl. Pyrol. 1986, 9,
81-98.

(57) Chatfield, C.; Collins, A. J. Introduction to Multivariate Analysis; Chapman
& Hall: London, 1980; pp 57—81.

(58) Causton, D. R. A Biologist’s Advanced Mathematics; Allen & Unwin: London,
1987; pp 48—72.

(59) Gutteridge, C. S.; Vallis, L.; MacFie, H. J. H. In Computer-assisted Bacterial
Systematics; Goodfellow, M., Jones, D., Priest, F. G., Eds.; Academic Press:
London, 1985; pp 369—401.

(60) Flury, B.; Riedwyl, H. Multivariate Statistics: A Practical Approach; Chapman
& Hall: London, 1988; pp 181—233.

(61) Everitt, B. S. Cluster Analysis; Edward Arnold: London, 1993.

Percentage total ion count

150 160 170 180 190 200

Mass (m/z)

Figure 1. Normalized pyrolysis mass spectra of 35 ug of lysozyme
mixed with 20 ug of glycogen, analyzed on 27 Aug, 1992 (—), 19
April, 1994 (— —), and the spectra from 19 April, 1994, after drift
correction by a 150-8-150 neural network trained to transform data
collected at time 2 into data collected at time 1 (- - -).

NeuralDesk (Neural Computer Sciences, Southampton, U.K.),
which runs under Microsoft Windows 3.1 on an IBM-compatible
PC. To ensure maximum speed, an accelerator board for the PC
(NeusSprint) based on the AT&T DSP32C chip, which effects a
speed enhancement of some 100-fold compared with a 386 PC,
permitting the analysis (and updating) of some 400 000 weights
per second, was used. Data were also processed prior to analysis
using the Microsoft Excel 4.0 spreadsheet.

The algorithm used was standard back-propagation,'262 which
employs processing nodes (neurons or units), connected using
abstract interconnections (connections or synapses). Connections
each have an associated real value, termed the weight, that scales
signals passing through them. Nodes sum the signals feeding to
them and output this sum to each driven connection scaled by a
“squashing” function (f) with a sigmoidal shape, typically the
function f = 1/(1 + ™), where x = Yinputs.

For the training of the ANN, each input (i.e., normalized
pyrolysis mass spectrum) is paired with a desired output (see
below for output pattern); together these are called a training pair
(or training pattern). An ANN is trained over a number of training
pairs; this group is collectively called the training set. The input
is applied to the network, which is allowed to run until an output
is produced at each output node. The differences between the
actual and the desired output, taken over the entire training set,
are fed back through the network in the reverse direction to signal
flow (hence back-propagation), modifying the weights as they go.
This process is repeated until a suitable level of error is achieved.
In the present work, we used a learning rate of 0.1 and a
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Table 1. Time Table of the Four Duplicate PyMS
Experiments Studied To Investigate Instrumental Drift

pyrolysis mass time
purpose of PyMS spectra collected difference
experiment ref time 1 time 2 days months

quantify lysozyme 38
in glycogen

quantify S. aureus 25,38 30 Sept, 1992 18 Apr, 1994 535 17.6
in E. coli

quantify ampicillin - 40
in E. coli

identify P. acnes 54
human isolates

27 Aug, 1992 19 Apr, 1994 600  19.7

22 July, 1993 19 Apr, 1994 271 8.9

28 Jan, 1994 2 June, 1994 125 41

momentum of 0.9. Learning rate scales the magnitude of the step
down the error surface taken after each complete calculation in
the network (epoch), and momentum acts like a low-pass filter,
smoothing out progress over small bumps in the error surface
by remembering the previous weight change.

The structure of the ANNSs used in this study consisted of an
input layer comprising 150 nodes (normalized pyrolysis mass
spectra) connected to the output layer containing x nodes (where
x is the number of determinands) via a single “hidden” layer
containing 8 nodes; for some analyzes, the hidden layer was not
used. The topology containing a hidden layer may be represented
as a 150-8x architecture. In addition, the hidden layer (if present)
and output layer were connected to the bias (the activation of
which is always +1), whose weights will also be altered during
training. Before training commenced, the values applied to the
input and output nodes were normalized between 0 and +1, and
the connection weights were set to small random values.6

Preparation of Samples for the Investigation into Mass
Spectral Drift. Four data sets were analyzed at two different
times. The work was originally conducted (and later published)
at time 1, and the samples were reanalyzed under nominally
identical conditions at time 2. The details of when these four data
sets were collected and the various time differences are given in
Table 1.

Quantification of Lysozyme in Glycogen Data Set. The
mixtures were prepared such that 5 mL of a solution contained
0—100 mg (in steps of 5 mg) of lysozyme (from chicken egg white,
Sigma) in 20 mg of glycogen (oyster type Il, Sigma).®

To quantify the amount of lysozyme mixed in glycogen a 150-
8-1 ANN was trained, as detailed in Table 2 and previously
described by Goodacre et al.,38 with data from the mass spectra
collected on 27 August, 1992 (time 1).

Quantification of Ampicillin in E. coli Data Set. Ampicillin
(desiccated p-(—)-a-aminobenzylpenicillin sodium salt, >98% (ti-
tration), Sigma) was prepared in bacterial slurries of 40 mg mL™1
E. coli W3110 (as prepared below) to give a concentration range
of 0—5000 ug mL™t in 250 ug mL~?* steps.*°

To quantify the amount of ampicillin in E. coli, a 150-8-1 ANN
was trained, as detailed in Table 2 and previously described by
Goodacre et al.,* with data from the mass spectra collected on
22 July, 1993 (time 1).

Quantification of S. aureus in E. coli Data Set. The
bacteria used were E. coli W3110 and S. aureus NCTC6571. Both
strains were grown in 2 L of liquid media (glucose (BDH), 10.0
g; peptone (LabM), 5.0 g; beef extract (LabM), 3.0 g; H,0, 1 L)
for 16 h at 37 °C in a shaker. After growth, the cultures were
harvested by centrifugation and washed in phosphate-buffered

saline (PBS). The dry weights of the cells were estimated
gravimetrically and used to adjust the weight of the final slurries
using PBS to approximately 40 mg mL~t. Mixtures were then
prepared that consisted of x% E. coli and y% S. aureus, where x:y
were 100:0, 90:80, 80:20, 75:25, 70:30, 60:40, 50:50, 40:60, 30:70,
25:75, 20:80, 10:90, and 0:100.%538

To quantify the amount of S. aureus mixed with E. coli, a 150-
8-1 ANN was trained, as detailed in Table 2 and previously
described by Goodacre et al.,> with data from the mass spectra
collected on 30 September, 1992 (time 1).

Identification of P. acnes Data Set. P. acnes isolates were
recovered from the foreheads of three normal adults.> Nine
isolates were taken from person a, five from person b, and five
from person c. The P. acnes isolates were incubated anaerobically
for 7 days at 37 °C on a single batch of coryneform agar (CA;
composition (in g L™1) tryptone soya broth (Oxoid), 30; yeast
extract (Oxoid), 10; agar No. 1 (Oxoid), 10; and Tween 80 (Sigma),
10 mL L™1). After growth, biomass was carefully collected in PBS
and frozen at —20 °C.

To identify the P. acnes a 150-8-3 ANN was trained with data
from the mass spectra collected on 28 January, 1994 (time 1).
The training input data were the replicate normalized pyrolysis
mass spectra of two isolates from each of the people (and see
Table 4), and the outputs were binary encoded such that P. acnes
from person a were coded as 100, thosee from person b as 010,
and those from person ¢ as 001. The input layer was scaled across
the whole mass range from 0 to 3500; the output layer was scaled
between 0 and 1. Training was stopped when the %RMS error in
the training set was 1%; this took approximately 2 x 10° epochs.

Drift Correction. Four methods of drift correction were
employed to transform pyrolysis mass spectra collected at time 2
into those collected previously at time 1. This procedure should
then allow new mass spectra to be directly compared with old
mass spectra and used to challenge neural networks previously
trained with data from time 1, to quantify or identify the various
biological systems described above.

Calibration spectra were chosen at the two time periods: (1)
for the quantification of lysozyme in glycogen, these were the
replicate normalized pyrolysis mass spectra containing 0, 25, 50,
75, and 100 ug of lysozyme in 20 ug of glycogen; (2) for the
calculation of the ampicillin titer in E. coli, these were the replicate
normalized pyrolysis mass spectra containing 0, 1250, 2500, 3750,
and 5000 ug mL~ ampicillin in 40 mg mL~* E. coli; (3) for the
guantification of S. aureus mixed with E. coli, these were the
replicate normalized pyrolysis mass spectra containing 0, 25, 50,
75, and 100% S. aureus; finally (4) for the identification of P. acnes,
these were the triplicate mass spectra from two isolates from each
of the three people.

The first neural network-based method to correct for drift
employed 150-8-150 ANNS; the input to the network comprised
the normalized pyrolysis mass spectra from the calibration
samples collected at time 2, and the output layer comprised the
mass spectra of the same calibration material analyzed at time 1.
Neural networks were also used which contained no hidden layer
(this is represented as a 150-150 ANN). Both types of neural
networks employed the back-propagation algorithm; the input and
output layers were scaled to lie between 0 and +1 across the 51—
200 mass range and trained until an average RMS error of 0.5%
was reached. Given the large number of connection weights to
be updated, 2558 weights for 150-8-150 ANNSs and 22 650 weights



Table 2. Optimal Neural Network Solutions Used for Quantification of the Three Systems from Their Pyrolysis Mass

Spectra Analyzed at Time 1 (Table 1)

lysozyme (ug) in 20 ug
of glycogen®,a

training data

cross-validation data

scaling on
input layer® 0—5000 0—5000
output layer -50—150 -2500—7500
%RMS error
training set 0.5 1.0
cross-validation set  1.36 1.14
No. of epochs 1 x 104 2 x 103

ampicillin titer (g mL™1) in 40 mg mL~! E. coli*®,2

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 0, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500,
100 5000

S. aureus in E. coli (%)%

0, 25, 50, 75, 100

5, 15, 25, 35, 45, 55, 65, 75, 85, 95 250, 750, 1250, 1750, 2250, 2750, 3250, 3750, 4250, 4750 10, 20, 30, 40, 60, 70, 80, 90

0—6000
-10—110

0.3
1.55
5 x 108

2 The best generalization point was established using cross-validation and was previously found and published elsewhere. ® Input layer was

scaled across the whole mass range.

for 150-150 ANNS, this was relatively quick and typically took
between 2 x 103 and 1 x 10* epochs.

To compare the performance of these two neural network-
based drift corrections with that of corrections based on linear
corrections alone, two methods relying on mass-by-mass trans-
formations were also studied. Linear subtractions were used
where the amount of drift in each mass was calculated by first
subtracting the normalized mass spectrum collected at time 1 (old)
from the mass spectrum collected at time 2 (new); this was done
for the calibration samples and the average drift in each mass
computed. These drift correction values were then subtracted
from each of the masses in newly acquired (time 2) mass spectra:

linear method 1 = (new mass) — [average of
(new calibration mass — old calibration mass)]

The second linear transformation involved calculating the average
mass-by-mass ratio between the mass spectra of the calibration
samples collected at time 1 (old) and time 2 (new). These ratios
were then used to scale each of the masses in newly acquired
mass spectra collected at time 2:

linear method 2 = (new mass)[average ratio of
(old calibration mass/new calibration mass)]

RESULTS AND DISCUSSION
Drift Correction. (i) Quantification of Lysozyme in Gly-

cogen. Pyrolysis mass spectral fingerprints of 35 ug of lysozyme
mixed with 20 ug of glycogen analyzed at time 1 on 27 August,
1992 and the same material analyzed 600 days later on 19 April,
1994 (time 2) are shown in Figure 1. These mass spectra are
complex as judged by eye, and there is little obvious difference
between them. One way of highlighting any differences between
these spectra is simply to subtract one from the other; subtraction
spectra of this type (data not shown) indeed show that the
intensities of some masses are significantly different (typically in
the range +1% total ion count). The next stage is, therefore, to
ascertain if these differences due to instrument drift are large
enough to be problematic in using neural networks trained with
data from time 1 to give accurate estimates of the amount of
lysozyme from pyrolysis mass spectra collected at time 2.

Data collected from time 1 from mixing lysozyme in glycogen
were split into two sets. The training set contained the normalized
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Figure 2. Estimates of trained 150-8-1 neural networks versus the
true amount of lysozyme (0—100 ug in 20 ug of glycogen) for data
collected at time 1 (27 August, 1992; O, training set; O, cross-
validation set) and time 2 (19 April, 1994; A, PyMS data). Networks
were trained with PyMS data from time 1 using the standard back-
propagation algorithm to 0.5% RMS error. Data points are the
averages of the quadruplicate pyrolysis mass spectra, and the error
bars show standard deviation. The solid line is the expected
proportional fit.

triplicate ion intensities from the pyrolysis mass spectra from 0,
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 ug of lysozyme in 20 ug
of glycogen, while the cross-validation set contained both the
training set and the 10 “unknown” pyrolysis mass spectra (5, 15,
25, 35, 45, 55, 65, 75, 85, and 95 ug of the determinand lysozyme
in 20 ug of glycogen). We then trained ANNSs, using the standard
back-propagation algorithm, with the normalized PyMS data from
the training sets as the inputs and the amount of determinand
(0—100 ug of lysozyme) mixed in 20 ug of glycogen as the output.
The details of input and output scaling and the length of training
are given in Table 2; these were previously found to give optimal
neural network solutions.® Once trained to 0.5% RMS error in
the training set, the ANN was interrogated with the training and
cross-validation sets, and a plot of the network’s estimate versus
the true amount of lysozyme in 20 ug of glycogen (Figure 2) gave
a linear fit which was indistinguishable from the expected
proportional fit (i.e., y = x). It was therefore evident that the
network’s estimate of the quantity of lysozyme in the mixtures
was very similar to the true quantity, both for spectra that were
used as the training set (O) and, more importantly, for the
“unknown” pyrolysis mass spectra (O).

Once the neural network was optimally trained (i.e., trained
to give the best generalization as judged by the cross-validation
set), the next stage was to interrogate the network with all the



Table 3. Comparison of a Trained Neural Network with
Mass Spectral Data from Time 1 Interrogated with
New Data from Time 2 and the Same Data after Drift
Correction Using Either Neural Networks or Linear
Transformations

ANN linear

. s A
time time correction transformation

1 2 150-8-150 150-150 method 1 method 2
Quantification of Lysozyme in Glycogen
error (%) 0.83 8.68 3.49 2.77 10.30 6.29
slope 0.99 0.73 0.94 0.93 0.62 0.77
intercept 0.67 17.21 4.88 4.18 14.44 8.72
correln coeff 1.00 0.99 0.99 1.00 0.99 0.99
Quantification of Ampicillin in E. coli
error (%) 1.70 64.76 3.69 3.19 7.33 5.50
slope 0.99 0.56 1.00 1.03 1.13 0.87
intercept 3530 —214240 6940 —31.08 —127.00 400.84
correln coeff 1.00 0.99 0.99 0.99 0.98 0.98
Quantification of S. aureus in E. coli
error (%) 1.24 16.83 3.41 5.06 7.47 7.67
slope 1.03 0.87 1.01 1.05 1.09 0.99
intercept —1.43 23.06 1.38 —2.97 -3.39 5.54
correln coeff 1.00 0.95 0.99 0.99 0.98 0.97

a Linear transformations for a mass-by-mass correction were carried
out as described in the text. Method 1 corrected using linear
subtractions, (new mass) — [average of (new calibration mass—old
calibration mass)]; method 2 corrected using linear ratios, (new
mass)[average ratio of (old calibration mass/new calibration mass)].

normalized pyrolysis mass spectra of 0—100 ug of lysozyme (in
steps of 5 ug) in 20 ug of glycogen collected at time 2. The
network’s estimate for these samples is also shown in Figure 2
(a), where it can be seen that the network’s estimate versus the
true amount of lysozyme in 20 ug of glycogen no longer gave a
truly linear (or proportional) fit. The percentage error in these
estimates (Table 3) was 8.68%, compared to 0.83% for the same
samples analyzed at time 1. Table 3 also shows the slope and
intercept of the best-it line for the network’s estimates versus
the true concentrations. It is notable that the slope for data
collected at time 1 was 0.99, but it was only 0.73 for those collected
at time 2. These results clearly show that the pyrolysis mass
spectra of the same material had changed significantly between
27 August, 1992 (time 1) and 19 April, 1994 (time 2), thus resulting
in an inability to use neural networks trained with data collected
at time 1 to give accurate predictions for data from the same
material subsequently collected at time 2.

It is therefore necessary to apply a mathematical correction
procedure to compare directly two sets of data of the same
material. As described in the Experimental Section, calibration
spectra (standards) were chosen at the two time periods, and these
were the triplicate normalized pyrolysis mass spectra containing
0, 25, 50, 75, and 100 ug of lysozyme in 20 ug of glycogen. These
standards were used in each of the four numerical methods also
described above, two of which were based on neural networks
and two on linear transformations.

After training 150-8-150 neural networks to transform new mass
spectra collected at time 2 into those previously collected at time
1, the first stage was to observe how similar the transformed mass
spectra were to the old mass spectra of the same material. Figure
1 shows the normalized pyrolysis mass spectra of 35 ug of
lysozyme mixed with 20 ug of glycogen (chosen because it had
not been used to train the neural network) analyzed on 27 August,
1992 (time 1, —), 19 April, 1994 (time 2, — —), and the spectra
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Figure 3. Estimates of trained 150-8-1 neural networks versus the
true amount of lysozyme (0—100 ug in 20 ug of glycogen) for data
collected at time 2 (19 April, 1994; m, linear transformation; O, neural
network transformation) after correction for instrumental drift. Networks
were trained with PyMS data from time 1 using the standard back-
propagation algorithm to 0.5% RMS error. Data points are the
averages of the triplicate pyrolysis mass spectra, and the error bars
show standard deviation. The solid line is the expected proportional
fit.

from time 2 transformed by a 150-8-150 neural network (- - -).
Itis clear that there is, as expected from subtraction spectra (data
not shown) and Figure 2, some difference in the mass spectra
collected at the two different time, but that the transformed
spectrum shows little or no difference compared to the real mass
spectra collected at time 1; it was therefore evident that this
correction procedure had, indeed, corrected for instrumental drift.

The next stage was to use these neural network transformed
spectra, and those transformed by linear methods, to challenge
neural networks trained with PyMS data from time 1 to quantify
the amount of lysozyme in mixtures with 20 ug of glycogen.
These ANNs employed the standard back-propagation algorithm
and were trained to 0.5% RMS error as detailed in Table 2. Figure
3 shows the estimates of trained 150-8-1 neural networks versus
the true amount of lysozyme (0—100 «g in 20 ug of glycogen) for
data collected at time 2 (19 April, 1994) after correction for
instrumental drift by either (a) 150-8-150 ANN drift correction (O)
or (b) a linear mass-by-mass subtraction correction (H). It can
clearly be seen that the neural network transformed mass spectra
give better estimates than do the linear transformed spectra; this
is particularly notable within the range 50—100 ug of lysozyme.
The error in the estimates and the slope and intercept of the best-
fit lines for these and the other two correction methods used are
detailed in Table 3. The typical error in the neural network-based
transformations was 3.49% for the 150-8-150 ANN and slightly
lower, 2.77%, for the neural network with no hidden layer,
compared with 8.68% for no correction applied; for the linear
subtraction and linear ratios on the individual m/z intensities, the
errors were 10.30% and 6.29%, respectively. It is likely that using
the ratios to correct was better than using subtractions of drift
because the latter will introduce some negative m/z intensities in
the transformed spectra; this phenomenon is not possible with
real data and is, in this instance, a consequence of having to
normalize to percentage total ion count.

Further to highlight the success of the neural network
corrections over the linear ones, the transformed mass spectra
were analyzed with the data collected at time 1 and time 2 by
PCA (data not shown). In both of these plots, the first principal
component describes the features in the mass spectra which
account for the increasing amount of lysozyme, and the second



principal component accounts for the effect of instrument drift. It
can be seen (data not shown) that both transformations “move”
the time 2 data closer to time 1 but that the neural network
transformation is more successful because the line from these
transformed data more closely overlaps the line from the data
collected at time 1. Furthermore, the line from time 2 contains a
curvature in the 50—80 ug lysozyme region which is straightened
out when transformed using the 150-8-150 ANN; this curvature
remains when the mass spectra are linearly altered, and this may
explain why the estimates using the linear transformed spectra
were poor in the range 50—100 ug of lysozyme (Figure 3).

In conclusion, neural networks can be trained with pyrolysis
mass spectral data to quantify lysozyme in glycogen; however,
these neural network models cannot be used with mass spectra
from identical material collected 600 days later. The 150-8-150
and 150-150 neural networks can be used to correct successfully
for the drift observed in these pyrolysis mass spectra, so that
neural network models created using old data (time 1) can be
used with newly acquired spectra from time 2. It is likely that
this success was due to the ability of ANNs to map nonlinearities
as well as linearities, since linear transformation methods alone
could not be used to correct for instrument drift.

(ii) Quantification of Ampicillin in E. coli. Data collected
from time 1 from mixing ampicillin with E. coli were split into
two sets. The training set contained the normalized triplicate ion
intensities from the pyrolysis mass spectra from 0, 500, 1000, 1500,
2000, 2500, 3000, 3500, 4000, 4500, and 5000 g mL~* of ampicillin
mixed with 40 mg mL~! E. coli, while the cross-validation set
contained both the training set and the 10 “unknown” pyrolysis
mass spectra (250, 750, 1250, 1750, 2250, 2750, 3250, 3750, 4250,
and 4750 ug mL™! of the determinand ampicillin in 40 mg mL~!
E. coli). We then trained ANNSs, using the standard back-
propagation algorithm, with the normalized PyMS data from the
training sets as the inputs and the amount of determinand (0—
5000 g mL~* ampicillin) mixed in 40 mg mL™! E. coli as the
output. The details of input and output scaling and the length of
training are given in Table 2; these were previously found to give
optimal neural network solutions.*° Once trained to 1.0% RMS
error in the training set, the ANN was then interrogated with the
training and cross-validation sets, and a plot of the network’s
estimate versus the true concentration of ampicillin in E. coli
(Figure 4) gave a linear fit which was indistinguishable from the
expected proportional fit. It was therefore evident that the
network’s estimate of the ampicillin titer in the mixtures was very
similar to the true quantity, both for spectra that were used as
the training set (O) and, more importantly, for the “unknown”
pyrolysis mass spectra (O).

Once the neural network was optimally trained, the next stage
was to interrogate the network with all the normalized pyrolysis
mass spectra of 0—5000 xg mL~1 ampicillin (in steps of 250 ug
mL~%) in 40 mg mL~t E. coli collected at time 2. The network’s
estimate for these samples is also shown in Figure 4 (a), where
it can be seen that the network’s estimate versus the true
ampicillin titer was very inaccurate. The percentage error in these
estimates (Table 3) was 64.76% compared to 1.70% for the same
samples analyzed at time 1. These results unequivocally show
that the pyrolysis mass spectra of the same material had changed
significantly between 22 July, 1993 (time 1) and 19 April, 1994
(time 2), thus resulting in an inability to use neural networks
trained with data collected at time 1 to give predictions for data
from the same material subsequently collected at time 2.
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Figure 4. Estimates of trained 150-8-1 neural networks versus the
true ampicillin titer (0—5000 xg mL~1 in 40 mg mL~! E. colj) for data
collected at time 1 (22 July, 1993; O, training set; O, cross-validation
set) and time 2 (19 April, 1994; a, PyMS data). Networks were trained
with PyMS data from time 1 using the standard back-propagation
algorithm to 1.0% RMS error. Data points are the averages of the
triplicate pyrolysis mass spectra, and the error bars show standard
deviation. The solid line is the expected proportional fit.

It is therefore necessary to apply a mathematical correction
procedure to compare directly these two sets of data. As
described in the Experimental Section, calibration spectra (stan-
dards) were chosen at the two time periods, and these were the
triplicate normalized pyrolysis mass spectra containing 0, 1250,
2500, 3750, and 5000 xg mL~* ampicillin in 40 mg mL™! E. coli.
These standards were used in each of the four numerical methods
described above and were used to transform the mass spectra
collected at time 2.

The first stage was to observe the natural relationships between
the transformed data using neural networks without a hidden layer
in this example (150-150 architecture) and the linear mass-by-
mass ratio transformed data with data collected on 22 July, 1993
(time 1) and 19 April, 1994 (time 2) using PCA (Figure 5). Figure
5a shows the effect on transforming data from time 2 to time 1
using the linear ratio method, and Figure 5b shows the effect of
a 150-150 ANN transformation. In both plots, the first principal
component seems to relate to the effect of instrument drift, while
the second principal component is controlled by the features in
the mass spectra which account for the increasing ampicillin titer.
As observed previously, both transformations “move” the time 2
data closer to the time 1 data, but the neural network transforma-
tion is more successful because the line from these transformed
data (Figure 5b) overlaps the line from the data collected at time
1 more. It is particularly noteworthy that the linear transformed
estimates are parallel with the time 2 untransformed data (Figure
5a), whereas a 150-150 transformation produces data which map
accurately onto the data from time 1 (Figure 5b); this may again
be explained by the ability of the ratio transformation to correct
the mass spectra only in a linear manner.

The next stage was to use these 150-150 neural network
transformed spectra and those transformed by the linear ratio
method to challenge neural networks trained with PyMS data from
time 1 to assess the ampicillin titer when mixed with 40 mg mL~!
E. coli. These ANNs employed the standard back-propagation
algorithm and were trained to 1.0% RMS error as detailed in Table
2. Figure 6 shows the estimates of trained 150-8-1 neural networks
versus the true ampicillin concentration (0—5000 ug mL™1) for
data collected at time 2 (19 April, 1994) after correction for
instrumental drift by either (a) 150-150 ANN drift correction (O)
or (b) a linear mass-by-mass ratio correction (M). It can be
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Figure 5. Principal components analyzes plots based on the PyMS
data for 0—5000 ug mL~* lysozyme mixed with 40 mg mL~! E. coli
for data collected on 22 July, 1993 (time 1, a) and 19 April, 1994
(time 2, M) compared with (O) either a linear mass-by-mass ratio
correction (A) or a 150-150 neural network (B) drift correction of the
mass spectra collected at time 2 transformed into those collected at
time 1. The first two principal components (PCs) accounted for 76%
and 22% (98% total) of the total variance in plot A and 77% and 22%
(99% total) in plot B. In both plots, the first PC accounts for the effect
of instrument drift, and the second PC describes the features in the
mass spectra which account for the increasing ampicillin titer.
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Figure 6. Estimates of trained 150-8-1 neural networks vs. the
true ampicillin titer (0—5000 xg mL~1 in 40 mg mL~* E. coli) for data
collected at time 2 (19 April, 1994; &, linear transformation; O, neural
network transformation) after correction for instrumental drift. Networks
were trained with PyMS data from time 1 using the standard back-
propagation algorithm to 1.0% RMS error. Data points are the
averages of the triplicate pyrolysis mass spectra, and the error bars
show standard deviation. The solid line is the expected proportional
fit.

observed that the neural network-transformed mass spectra give
better estimates than do the linear transformed spectra. The error
in the estimates and the slope and intercept of the bestfit lines
for these and the other two correction methods used are detailed

in Table 3. The typical error in the neural network-based
transformations was 3.19% for the 150-150 ANN and 3.69% for the
neural network with eight nodes in the hidden layer, compared
with 64.76% for no correction applied. Again ANNs with no hidden
layer gave slightly better estimates than did those containing a
hidden layer. For the linear subtraction and linear ratios on the
individual m/z intensities, the errors were 7.33% and 5.50%,
respectively. In this example, the linear methods appear to have
performed rather well; however, the slopes of the best-fit lines of
the estimates versus the known ampicillin titer (Table 3) were
1.13 and 0.87 for the linear subtraction and ratio correction
methods, compared to 1.00 and 1.03 for the 150-8-150 and 150-
150 ANN corrections, respectively.

In conclusion, neural networks can be trained with pyrolysis
mass spectral data to quantify ampicillin in E. coli, as a model of
mixtures containing a biological cell suspension and a product
metabolite of interest. These neural network models can not
however be used with mass spectra from identical material
collected 271 days later. The 150-8-150 and 150-150 neural
networks can be used to correct successfully for the drift observed
in these pyrolysis mass spectra, so that neural network models
created using old data from time 1 can be used with newly
acquired spectra from time 2.

(iii) Quantification of S. aureus in E. coli. Data collected
from time 1 from mixing S. aureus with E. coli were split into two
sets. The training set contained the normalized triplicate ion
intensities from the pyrolysis mass spectra from 0, 25, 50, 75, and
100% S. aureus mixed with E. coli, while the cross-validation set
contained both the training set and the eight “unknown” pyrolysis
mass spectra (10, 20, 30, 40, 60, 70, 80, and 90%). ANNs were
then trained, using the standard back-propagation algorithm, with
the normalized PyMS data from the training sets as the inputs
and the percentage S. aureus mixed with E. coli as the output.
The details of input and output scaling and the length of training
are given in Table 2; these were previously found to give optimal
neural network solutions.?® This 150-8-1 neural network was
optimally trained (i.e., trained to give the best generalization as
judged by the cross-validation set) to 0.3% RMS error in the
training set. The ANN was then interrogated with the training
and cross-validation sets from time 1, the new pyrolysis mass
spectra from time 2, and these data after instrument drift
correction by each of the four transformation methods.

The percentage error in these estimates and the slopes, and
intercepts of the best-fit lines of the estimates versus the S. aureus
content are given in Table 3. It can be seen that, on the day,
error (as judged by the estimates from time 1) was only 1.24%,
and when interrogated with spectra collected 535 days later, it
was 16.83%. The errors in the estimates after correction using
150-8-150 and 150-150 ANNs were 3.41% and 5.06%, so in this
example the neural network containing a hidden layer was better
for correcting for instrumental drift; for the linear subtraction and
linear ratio transformation methods the errors, although similar,
were less good, calculated to be 7.47% and 7.67%.

In conclusion, neural networks can be trained with pyrolysis
mass spectral data to quantify a mixed population of S. aureus
and E. coli. However, these neural network models cannot be
used to give accurate S. aureus content estimates for mass spectra
from identical material collected 535 days later. The 150-8-150
and 150-150 neural networks can be used to correct successfully
for instrumental drift so that neural network models created using



Table 4. Identities of the Bacteria in the Test Set and Training Set from Time 1 as Judged by a Neural Network
Trained with Mass Spectral Data from Time 1, Compared with New Data from Time 2 and Those Data after Drift
Correction Using Either 150-8-150 Neural Network or Linear Mass-by-Mass Ratio Transformation

results from PyMS data

results after correcting for drift

linear mass-by-mass

time 1 time 2 150-8-150 ANN ratio transformation

identity a b c a b c a b c a b c
ad 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0
a 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.0 1.0 0.0 0.0
a 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.0 1.0 0.0 0.0
a 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0
a 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0
a 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.0 1.0 0.0 0.0
a2 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.8 0.0 0.0
a 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.0 1.0 0.0 0.0
a 1.0 0.0 0.0 1.0 0.0 0.0 0.8 0.1 0.0 1.0 0.0 0.0
b2 0.0 1.0 0.0 0.8 0.7 0.0 0.0 1.0 0.0 0.0 0.9 0.0
b 0.1 1.0 0.0 1.0 0.5 0.0 0.0 1.0 0.0 0.2 0.8 0.0
b2 0.0 1.0 0.0 1.0 0.4 0.0 0.0 1.0 0.0 0.3 0.8 0.0
b 0.0 1.0 0.0 0.3 0.8 0.0 0.0 0.7 0.3 0.0 0.9 0.0
b 0.2 0.9 0.0 1.0 0.2 0.0 0.7 0.4 0.0 0.6 0.5 0.0
cd 0.0 0.0 1.0 0.0 0.9 0.3 0.0 0.0 1.0 0.0 0.0 1.0
c 0.0 0.0 1.0 0.0 0.9 0.3 0.0 0.0 1.0 0.0 0.0 1.0
cd 0.0 0.0 1.0 0.0 0.1 1.0 0.0 0.0 1.0 0.0 0.0 1.0
c 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0
c 0.0 0.0 1.0 0.0 0.3 0.9 0.1 0.0 0.7 0.0 0.0 1.0
misidentified 0/19 (0%) 6/19 (31.6%) 1/19 (5.3%) 1/19 (5.3%)

a Results from the pyrolysis mass spectra from the time 1 training set. These spectra were also chosen as the calibration samples for drift
correction. Values in italics are those P. acnes isolates which were misidentified.

old data from time 1 can be used to give accurate S. aureus
measurements from newly acquired spectra.

(iv) Identification of P. acnes. Data collected from time 1
from the 19 strains of P. acnes were split into two sets. The
training set contained the normalized triplicate ion intensities from
the pyrolysis mass spectra from two isolates from each of the
people (details are given in Table 4), and the three outputs were
binary encoded as explained above. The interrogation set
contained the triplicates of all 19 pyrolysis mass spectra. The 150-
8-3 ANNs were then trained, using the standard back-propagation
algorithm, with the normalized PyMS data from the training sets
as the inputs and the bacterial identity as the output. The details
of input and output scaling are given above. Training was stopped
when the %RMS error in the training set was 1%, this took
approximately 2 x 108 epochs. After training, the interrogation
set from time 1 was applied to the input nodes of the neural
network, and the answers are given in Table 4, where it can be
seen that each of the 19 bacteria was identified correctly.

Once the neural network was trained to give correct results
for “unknown” pyrolysis mass spectra, the next stage was to
interrogate with all the normalized pyrolysis mass spectra from
the same bacteria collected 125 days later at time 2. The network’s
identities for these samples are also shown in Table 4, where it
can be seen that 6 of the 19 bacteria were incorrectly identified.
These results show unequivocally that the pyrolysis mass spectra
of the same material had changed significantly between 28
January, 1994 (time 1) and 2 June, 1994 (time 2), thus resulting
in an inability to use neural networks trained with data collected
at time 1 (to identify these P. acnes strains) to give accurate
identities for data from the same bacteria subsequently collected
at time 2.

It is therefore necessary to apply a mathematical correction
procedure to compare directly these two sets of data. Calibration
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Figure 7. Principal components analysis plot based on the PyMS
data for the P. acnes human isolates for data collected on 28 Jan,
1994 (time 1, solid symbols) and 2 June, 1994 (time 2, shaded
symbols) compared with a 150-8-150 neural network drift correction
(open symbols) of the mass spectra collected at time 2 transformed
into those collected at time 1. The first two principal components (PCs)
accounted for 54% and 33% (87% total) of the total variance. A
combination of the first and second PCs can be seen to describe the
effects of instrument drift. Circles, bacterial isolates from person a;
squares, from person b; and triangles, from person c.

spectra were chosen at the two time periods, and these were the
triplicate normalized pyrolysis mass spectra from two isolates from
each of the three people; details are given in Table 4. These
standards were used by each of the four numerical methods
described above and were used to transform the mass spectra
collected at time 2.

The first stage was to carry out PCA to observe the natural
relationships between the transformed data using 150-8-150 neural
networks with data collected at time 1 and time 2; the PCA plot
is shown in Figure 7, where it can be observed that a combination



of the first two principal components clearly reflects the effect of
instrument drift (indicated by the arrow). In this PCA plot, it can
seen that the isolates from person c form a distinct cluster
(triangles) and that, although the isolates from person a (circles)
and person b (squares) cluster tightly together, they can be
separated. This may help to explain why the neural network
trained with data from time 1 when interrogated with new
pyrolysis mass spectra, misidentified four of the five isolates from
person b as being from person a. The most important observation
from this PCA plot is that the 150-8-150 ANN-transformed mass
spectra (open symbols) overlap with the data collected at time 1
(closed symbols) and no longer cluster with the data from time 2
(shaded symbols). Moreover, the strains from each of the three
people can be seen to cluster together.

The next stage was to use these neural network-transformed
spectra, and those transformed by the linear ratio method, to
challenge the 150-8-3 neural networks trained with PyMS data
from time 1 to identify the three P. acnes strains. The results
after interrogation are shown in Table 4, where instead of
misidentifying 6 of the 19 bacteria (31.6% of total), only one isolate
(5.3% of total) from person b was misidentified; the same
bacterium was identified incorrectly by both of these methods.
When the other two correction techniques (150-150 ANNs and
linear subtraction method) were used to transform the pyrolysis
mass spectra and to challenge the 150-8-3 neural network, the
same results were seen; 18 of the 19 bacteria were identified
correctly, as opposed to only 13, and the same strain from person
b was misclassified.

In conclusion, neural networks can be trained with pyrolysis
mass spectral data to identify P. acnes isolated from the foreheads
of three individuals. However, these neural network models
cannot be used to give accurate classifications for mass spectra
from the same bacteria collected 125 days later. The 150-8-150
and 150-150 neural networks and the two linear models were used
to correct successfully for instrumental drift, so that neural
network models created using old data from time 1 can be used
to give accurate isolate identities from newly acquired spectra. It
is noteworthy that these isolates were of the same species of
Propionibacterium and so were phenotypically very similar; that
these transformation procedures were sensitive enough to cor-
rected for drift was, therefore, very encouraging. Although in this
example, all methods could be used to correct for drift, the results
from the other three examples indicate strongly that the prefered
method for instrumental drift correction would employ ANNS,
since they have the ability to perform nonlinear mappings in
addition to linear ones.

CONCLUSIONS
We have shown here and elsewhere?>3840 that pyrolysis mass

spectrometry and neural networks can be used to accurately
quantify binary mixtures of lysozyme in glycogen, S. aureus mixed
with E. coli, and ampicillin in E. coli. ANNs can also be applied
to PyMS data to identify correctly human isolates of P. acnes
isolated from the foreheads of three individuals. However, when
identical materials were analyzed by PyMS at later dates, the
neural network models could not be used to give accurate
determinand estimates or bacterial identities. It was therefore
evident that this lack of long-term reproducibility was due to
instrument drift.

For PyMS to be used either for the routine identification of
microorganisms or to quantify biological systems, it is paramount

that newly acquired spectra be compared to those previously
collected. To correct for the instrumental drift observed, four
methods were exploited which attempted to transform new spectra
into old spectra, using a set of calibration samples, or standards,
which had been analyzed at both times (time 1, old data; time 2,
new data). Two methods relied on linear corrections alone either
by subtracting the drift seen in each mass or by applying a
weighting to each new mass based on the average ratio of old
calibration mass to new calibration mass. The use of linear
correction techniques does, however, assume that the drift is
uniform (i.e., linear) with time, which is obviously not the case;
therefore two other methods which exploited neural networks
were used. ANNs can carry out nonlinear as well as linear
mappings from the input to the output nodes; in addition, they
are purported to be robust to noisy data which are often associated
with pyrolysis mass spectra.® In these models, the inputs to the
ANNSs were the new calibration masses and the outputs were the
calibration masses, from the old spectra. Some ANNSs contained
a hidden layer of 8 nodes and had an architecture of 150-8-150,
whereas some lacked a hidden layer and had a 150-150 topology.

In each of the three quantification examples, the neural
network transformation techniques gave better corrections for
drift. This can be determined by observing the lower errors
between determinand estimates and known titers seen in Table 3
and by examining PCA plots of old, new, and transformed mass
spectra (Figure 5). Furthermore, whether the ANN contained a
hidden layer or not made very little difference to the transforma-
tions seen. For the identification of human P. acnes isolates, all
four methods corrected for instrument drift and correctly identified
18 of the 19 isolates; before correction, 6 bacteria were misiden-
tified. However, given that ANNs gave better drift corrections
than did the linear transformations for the other examples, it would
be advisable to use ANNSs to correct for drift.

In conclusion, neural networks can be used successfully to
correct for instrumental drift so that neural network models
created using old, previously collected data can be employed to
give accurate estimates of determinand concentration or bacterial
identities (or, indeed, other materials) from newly acquired spectra
when calibrated with standards common to the two data sets.

It should seem obvious that this approach is not limited to
pyrolysis mass spectrometry but is generally applicable to any
analytical tool which is prone to instrumental drift (which cannot
be compensated for by tuning), such as infrared spectroscopy,
nuclear magnetic resonance, and gas chromatography, as well as
other forms of mass spectrometry.
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