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Thirty-six strains of aerobic endospore-forming bacteria
confirmed by polyphasic taxonomic methods to belong to
Bacillus amyloliquefaciens, Bacillus cereus, Bacillus
licheniformis, Bacillus megaterium, Bacillus subtilis
(including Bacillus niger and Bacillus globigii), Bacil-
lus sphaericus, and Brevi laterosporus were grown
axenically on nutrient agar, and vegetative and sporulated
biomasses were analyzed by Curie-point pyrolysis mass
spectrometry (PyMS) and diffuse reflectance-absorbance
Fourier-transform infrared spectroscopy (FT-IR). Chemo-
metric methods based on rule induction and genetic
programming were used to determine the physiological
state (vegetative cells or spores) correctly, and these
methods produced mathematical rules which could be
simply interpreted in biochemical terms. For PyMS it was
found that m/z 105 was characteristic and is a pyridine
ketonium ion (C6H3ON+) obtained from the pyrolysis of
dipicolinic acid (pyridine-2,6-dicarboxylic acid; DPA), a
substance found in spores but not in vegetative cells; this
was confirmed using pyrolysis-gas chromatography/mass
spectrometry. In addition, a pyridine ring vibration at
1447-1439 cm-1 from DPA was found to be highly
characteristic of spores in FT-IR analysis. Thus, although
the original data sets recorded hundreds of spectral
variables from whole cells simultaneously, a simple bio-
marker can be used for the rapid and unequivocal
detection of spores of these organisms.

The genus Bacillus consists of Gram-positive bacteria, which
can respond to slowed growth or starvation by initiating the
process of sporulation. These organisms as well as exhibiting
morphological variation of vegetative cells can undergo differentia-
tion to distinct resting bodies or spores, and after a period of time,
these spores can germinate to produce a single vegetative cell.
As sporulation proceeds, there are striking morphological and

biochemical changes in the developing spore. It becomes encased
in two novel layers, a peptidoglycan layer (the spore cortex) and
a number of layers of spore coats that contain proteins unique to
spores.1 The spore also accumulates a substantial deposit (5-
14% of dry weight) of pyridine-2,6-dicarboxylic acid (dipicolinic
acid; DPA), which is unique to spores, as well as a large amount
of divalent cations.2

Members of the genus Bacillus are widely distributed in soil,
water, and air, and because their spores are so resistant their
control is of considerable importance in the food processing
industry and in the preparation of sterile products.3 In addition,
the rapid identification of Bacillus anthracis spores is of importance
because of its potential use as a biological warfare agent.4

Therefore, there is a need for a generic characterization system
that can be used to carry out the large-scale and rapid detection
of bacterial spores.

Although spores can be observed by simple microscopy, this
approach does not lead itself to automation, and hence, analytical
techniques are being employed to detect bacterial spores much
more rapidly and with more specificity. The theoretical fluores-
cence of dipicolinic acid and its anion have been studied,5 while
terbium dipicolinate photoluminescence has been used to detect
the presence of sporulating bacteria.6 The vibrational spectroscopic
methods of UV resonance Raman spectroscopy7 and Fourier
transform infrared spectroscopy8 have also been used to differenti-
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ate between spores and vegetative bacteria. Flow cytometry9 has
also been explored for the rapid detection of spores. Finally, a
number of workers have investigated methods based on mass
spectrometric analyses. However, bacterial spores are nonvolatile
and so to introduce these and their component chemical species
to a mass spectrometer they first have to be pyrolyzed. The volatile
fragments (or pyrolysate) from bacterial spores have then been
measured following electron ionization using a quadrupole mass
analyzer,10 a tandem mass spectrometer,11 or gas chromatogra-
phy/ion mobility spectrometry;12 however, none of these has yet
gained acceptance as the analytical method of choice for spore
detection in a military context.

The above studies used only a handful of Bacillus species, and
some merely a single strain. Most studies for detecting B.
anthracis spores that have been deliberately released for military
or terrorist actions have concentrated on Bacillus subtilis, and in
particular its pigmented variant “Bacillus globigii” (B. subtilis var.
niger), which is perhaps surprising since phylogenetic analysis
of their 16S rRNA sequences shows that B. subtilis and B. globigii
are distinct from B. anthracis,13 which itself is phylogenetically
indistinguishable from Bacillus cereus. Therefore the present study
investigates a wide variety of genetically distinct bacteria (36
representatives of seven mesophilic Bacillus species; B. cereus was
represented by five strains and was used to draw analogy to B.
anthracis; the latter was omitted from this study on grounds of
safety).

The rapid, fully automated, analytical methods that were
employed in this study included Curie-point pyrolysis mass
spectrometry (PyMS), and diffuse reflectance-absorbance Fourier
transform infrared (FT-IR) spectroscopy, in the mid-infrared range.
PyMS and FT-IR are physicochemical methods that measure
predominantly the bond strengths of molecules and the vibrations
of bonds within functional groups, respectively.14,15 Therefore they
give quantitative information about the total biochemical composi-
tion of a sample. However, the interpretation of these multi-
dimensional spectra, or what are known as hyperspectral data,16

has conventionally been by the application of “unsupervised”
pattern recognition methods such as principal component (PCA),
discriminant function (DFA), and hierarchical cluster (HCA)
analyses. With “unsupervised learning” methods of this sort, the
relevant multivariate algorithms seek “clusters” in the data,
thereby allowing the investigator to group objects together on
the basis of their perceived similarity.17 This process is often
subjective because it relies upon the interpretation of complicated

scatterplots and dendrograms. More recently, various related but
much more powerful approaches, most often referred to within
the framework of chemometrics, have been applied to the
“supervised” analysis of hyperspectral data;18 arguably the most
significant of these is the application of intelligent systems based
on artificial neural networks (ANNs).19,20

Although ANNs are excellent at identifying unknown bacterial
isolates to the correct genera and species, the information in terms
of which masses in the mass spectrum or wavenumbers in the
infrared spectrum are important is not readily available. The use
of ANNs therefore is often perceived as a “black box” approach
to modeling spectra and so has limited use for the deconvolution
of hyperspectral data in (bio)chemical terms. Therefore, in this
study a number of rule induction methods21 and methods involving
evolutionary computation22,23 were employed to aid in the decon-
volution of these hyperspectra.

EXPERIMENTAL SECTION
Bacteria and Cultivation. Identities of the 36 Bacillus species

studied were confirmed by use of a polyphasic approach using
conventional biochemical (API tests) and nucleic acid technolo-
gies.24 Full details are shown in Table 1.

Vegetative cells were collected by incubating the 36 bacteria
on Lab M blood agar base plates (without blood) at 37 °C for 10
h. Spores were prepared by incubation on Lab M blood agar base
plates + 5 mg/L-1 MnSO4 at 30 °C for 7 days.25 After incubation,
the biomass was collected in physiological saline (0.9% NaCl).
These bacterial slurries contained ∼109 cells/mL and were stored
at -20 °C until analysis. To assess the level of sporulation, all 72
cultures were examined microscopically. The vegetative cells
contained no spores, while the sporulated biomass comprised
>80% spores; no attempt was made to remove any cell debris or
vegetative cells from the spore preparations.

Pyrolysis Mass Spectrometry. Five-microliter aliquots of the
above bacterial samples were evenly applied to iron-nickel foils
to give a thin uniform surface coating. Prior to pyrolysis, the
samples were oven-dried at 50 °C for 30 min. Each sample was
analyzed in triplicate. The pyrolysis mass spectrometer used for
this study was a Horizon Instrument PYMS-200X (Horizon
Instruments, Heathfield U.K.). For full operational procedures, see
ref 26. The sample tube carrying the foil was heated, prior to
pyrolysis, at 100 °C for 5 s. Curie-point pyrolysis was at 530 °C
for 3 s, with a temperature rise time of 0.5 s. The data from PyMS
were collected over the m/z (mass) range 51-200 (Figure 1).
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normalized as a percentage of the total ion count to remove the
influence of sample size per se.

Diffuse Reflectance-Absorbance Fourier Transform In-
frared Spectroscopy. Ten-microliter aliquots of the above bacte-
rial suspensions were evenly applied onto a sand-blasted aluminum
plate. Prior to analysis, the samples were oven-dried at 50 °C for
30 min. Samples were run in triplicate. The FT-IR instrument used
was the Bruker IFS28 FT-IR spectrometer (Bruker Spectrospin
Ltd., Coventry, U.K.) equipped with a mercury-cadmium-
telluride (MCT) detector cooled with liquid N2. The aluminum
plate was then loaded onto the motorized stage of a reflectance
TLC accessory.27 The IBM-compatible PC used to control the
IFS28, was also programmed (using OPUS version 2.1 software
running under IBM O/S2 Warp provided by the manufacturers)
to collect spectra over the wavenumber range 4000-600 cm-1.
Spectra were acquired at a rate of 20 s-1. The spectral resolution
used was 4 cm-1. To improve the signal-to-noise ratio, 256 spectra
were coadded and averaged. Each sample was thus represented
by a spectrum containing 882 points, and spectra were displayed
in terms of absorbance as calculated from the reflectance-
absorbance spectra using the Opus software (which is based on

the Kubelka-Munk theory15) (Figure 2). These conditions were
used for all experiments. To minimize problems arising from
baseline shifts the following procedure was implemented: (i) the
spectra were first normalized so that the smallest absorbance was
set to 0 and the highest to +1 for each spectrum; (ii) these spectra
then had their baselines removed using a fast Fourier transform

(27) Timmins, EÄ . M.; Howell, S. A.; Alsberg, B. K.; Noble, W. C.; Goodacre, R.
J. Clin. Microbiol. 1998, 36, 367-374.

Table 1. Bacillus Strains Studied

speciesa
strain

no.
training/
test set

identifier
on plots

B. sphaericus 7134T test 1a
B0219 test 1b
B0408 test 1c
B0769 training 1d
B1147 training 1e

B. subtilis B0014T test 2a
B0044 test 2b

(var. B. niger) B0098 test 2c
(var. B. niger) B0099 test 2d

B0410 test 2e
B0501 training 2f

(var. B. globigii) B1382 training 2g
B. licheniformis B0242 test 3a

B0252T test 3b
B0755 test 3c
B1081 training 3d
B1379 training 3e

Br. laterosporus B0043 test 4a
B0115 training 4b
B0262 training 4c
B0616 test 4d

B. cereus B0002T training 5a
B0550 test 5b
B0702 test 5c
B0712 test 5d
B0851 training 5e

B. amyloliquefaciens B0168 test 6a
B0175 test 6b
B0177T test 6c
B0251 training 6d
B0620 training 6e

B. megaterium B0010T training 7a
B0056 training 7b
B0057 test 7c
B0076 test 7d
B0621 test 7e

a var., variants of B. subtilis that produce pigmented spores. b Su-
perscript “T” indicates type strain.

Figure 1. Curie-point pyrolysis-MS spectra of Bacillus subtilis
B0014T in its vegetative and sporulated states. *, m/z 79, 105, 123,
and 167 peaks from dipicolinic acid labeled (see Figure 4 and text
for details).

Figure 2. FT-IR spectra of B. subtilis B0014T in its vegetative and
sporulated states. * is the label for the pyridine ring vibrations between
1470 and 1435 cm-1 from dipicolinic acid (see Figure 6 and see text
for details). Also shown are the ‘spectral biochemical windows’ for
FT-IR spectra of bacteria based on studies by Naumann and
colleagues.42
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baseline routine developed in-house by Dr. A. M. Woodward.
Briefly, these IR spectra were transformed from the spectral
wavelength domain into the Fourier domain spectra (FDS),28

where the signal is concentrated into the low-delay region and
the baseline information into the very-low-delay domain of FDS
(while any noise is located in the high-delay domain). To reduce
any spectral distortions, seen when a simple windowing approach
was employed, an inverted Gaussian filter was deconvolved from
the FDS spectra to taper off the low-frequency bins. These FDS
were then inversely transformed back to the wavenumber domain.

Cluster Analysis. The initial stage involved the reduction of
the multidimensional PyMS and FT-IR data by PCA.29 PCA is a
well-known technique for reducing the dimensionality of multi-
variate data while preserving most of the variance, and Matlab
was employed to perform PCA according to the NIPALS algo-
rithm.30 DFA (also known as canonical variates analysis; CVA)
then discriminated between groups on the basis of the retained
principal components (PCs) and the a priori knowledge of which
spectra were replicates, and thus this process does not bias the
analysis in any way.31 Finally, the Euclidean distance between a
priori group centers in DFA space was used to construct a
similarity measure, with the Gower general similarity coefficient
SG,32 and these distance measures were then processed by an
agglomerative clustering algorithm to construct a dendrogram.31

These methods were implemented using Matlab version 5.0.0.4069
(The Math Works, Inc., Natick, MA), which runs under Microsoft
Windows NT on an IBM-compatible PC.

Common Supervised Analysis Methods. When the desired
responses (targets) associated with each of the inputs (spectra)
are known, then the system may be supervised. The goal of
supervised learning is to find a model that will correctly associate
the inputs with the targets; this is usually achieved by minimizing
the error between the target and the model’s response (output).33

The input data sets for all supervised learning methods
contained the full PyMS spectra (150 m/z intensities) and the full
FT-IR spectra (882 wavenumber absorbances), and these were
partitioned into training and test sets. The training set contained
the replicate spectra from 14 of the Bacillus species, as both
vegetative cells and sporulated biomass, chosen randomly (84
spectra), and the test set comprised the 132 remaining spectra
(details are given in Table 1). The output data were binary
encoded such that vegetative biomass was coded as 0 and spores
as 1.

Two artificial neural network-based methods, viz. standard
back-propagation multilayer perceptrons (MLPs)19,34 and radial
basis functions (RBFs),35,36 were used. Both ANNs were carried
out with a user-friendly, neural network simulation program,

NeuFrame version 3,0,0,0 (Neural Computer Sciences, Totton,
Southampton, Hants, U.K.), which runs under Microsoft Windows
NT on an IBM-compatible personal computer.

The multivariate linear regression method of partial least
squares (PLS)37 was also exploited. All PLS analyses were carried
out using an in-house program, developed by Dr. Alun Jones38

following the pseudocode given in ref 37, which runs under
Microsoft Windows NT on an IBM-compatible PC.

Rule Induction. Rule induction methods produce if-then-else
decision trees, which are often very easy to interpret. These
decision trees are found by attempting to partition the space of
sample objects into regions of single class memberships. The data
set is recursively split into smaller subsets where each subset
contains objects belonging to as few different classes as possible.21

There are two main strategies for finding the best object
partitioning which in general can be described as univariate and
multivariate rule induction. In univariate rule induction a single
variable xi at each recursion step is found that gives rise to the
purest subsets. A univariate rule is interpreted as a decision plane
parallel to the original coordinate axes. In multivariate rule
induction methods, however, each recursion step uses a linear
(or nonlinear) combination of the original variables and thus the
decision planes can point in any direction in the multidimensional
space.

Three different methods of rule induction were used: (1)
univariate (classification and regression trees), (2) (CART) multi-
variate OC1 rule induction, and (3) multivariate Breiman rule
induction. All rule induction techniques were performed using the
OC1 program39 (Department of Computer Science, Johns Hopkins
University, Baltimore, MD). All programs run under Windows NT
4.0.

Genetic Programming. A genetic algorithm (GA) is an
optimization method based on the principles of Darwinian selec-
tion.23,40 A population of individuals, each representing the
parameters of the problem to be optimized as a string of numbers
or binary digits, undergoes a process analogous to evolution in
order to derive an optimal or near-optimal solution. The param-
eters stored by each individual are used to assign it a fitness, a
single numerical value indicating how well the solution using that
set of parameters performs. New individuals are generated from
members of the current population by processes analogous to
asexual and sexual reproduction.

In the steady-state version of the GA used herein, “asexual
reproduction”, or mutation, is performed by randomly selecting
a parent with a probability proportional to its fitness and then
randomly changing one (or occasionally more) of the parameters
it encodes. The new individual then replaces a less fit member of
the population, if one exists. “Sexual reproduction”, or crossover,
is achieved by randomly selecting two parents with a probability
proportional to fitness, generating two new individuals by copying

(28) Mattu, M. J.; Small, G. W. Anal. Chem. 1995, 67, 2269-2278.
(29) Jolliffe, I. T. Principal Component Analysis; Springer-Verlag: New York, 1986.
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parameters from one parent, and switching to the other parent
after a randomly selected point. The two new individuals then
replace less fit members of the population as before. The above
procedure is repeated, with the overall fitness of the population
improving at each generation, until an acceptably fit individual is
produced.

A genetic program (GP) is an application of the GA approach
to derive mathematical equations, logical rules, or program
functions automatically.22,41 Rather than representing the solution
to the problem as a string of parameters, as in a conventional
GA, a GP uses a tree structure. The leaves of the tree, or terminals,
represent input variables or numerical constants. Their values are
passed to nodes, at the junctions of branches in the tree, which
perform some numerical or program operation before passing on
the result further toward the root of the tree. Mutations are
performed by selecting a parent and modifying the value or
variable returned by a terminal or changing the operation
performed by a node. Crossovers are performed by selecting two
parents and swapping subtrees at randomly selected nodes within
their trees. The new individuals so generated replace less fit
members of the population chosen probabilistically on the basis
of their unfitness.

For the GP implementations used here, three types of GP were
used: (1) arithmetic GP, which used the node operator functions
“add”, “subtract”, “multiply”, and “protected divide” (where n/0
) 1); (2) transcendental GP, which used the four arithmetic
functions plus “inverse (1/x)”, “negate (-x)”, “square”, “square
root”, “absolute value (|x|)”, “exponent (ex)”, “natural logarithm”,
“sine”, “cosine”, and “tangent”; (3) conditional GP, which used
the four arithmetic functions plus the function “if-then-else”. All
GP analyses were carried out using an in-house program,41 which
runs under Microsoft Windows NT on an IBM-compatible PC;
on a Pentium 133, with 128 MB of RAM, a typical run took 1
(PyMS) and 5 min (FT-IR). The GP analyses used the following
reproductive strategy: when a parent is chosen, there was a 0.7
probability of a crossover, 0.2 probability of mutation, and a 0.1
probability of direct duplication.

The GP used five independent subpopulations (demes) with a
5% migration every 10 generations. The deme size was set to 300
individuals (therefore the population size was 1500). The maxi-
mum number of generations was set to 5000 (therefore the total
number of allowed operations was 5000 × 1500). Convergence
was taken to have been achieved when the fitness of the best
individual, defined as the root-mean-squared (rms) error between
the training set estimates, and the true values was within 0.1%. In
order for relatively simple rules to be developed, the tree
complexity was constrained by setting the maximum number of
nodes used to 100 and the maximum depth of the trees to only 8
layers; in addition, a penalty of 0.001 multiplied by the number of
nodes in the individual’s function tree was implemented to reduce
verbose trees. Finally, to assess the GPs reproducibility each type
of GP was run 10 times using different randomly chosen starting
populations.

RESULTS AND DISCUSSION
Raw Data. Typical normalized PyMS and FT-IR spectra of B.

subtilis in its vegetative and sporulated states are shown in Figures
1 and 2, respectively. Visual inspection of these spectra indicates
that there was very little qualitative difference between the spectra
(and indeed between the others collected), although at least some
complex quantitative differences between them were observed.
Such spectra, essentially uninterpretable by the naked eye, readily
illustrate the need to employ multivariate statistical techniques
for their analyses.

Cluster Analyses. PyMS analyses of all the vegetative cells
(Figure 3A) showed that Bacillus amyloliquefaciens, Bacillus
licheniformis, and B. subtilis comprised one tight group, while B.
cereus and Bacillus megaterium formed another cluster, and Brevi
laterosporus and Bacillus sphaericus were recovered separately.
Similar groupings from the cluster analysis of FT-IR spectra from
these bacilli was also observed (Figure 3B). Moreover, the
discrimination found by both these hyperspectral methods, which
measure the total biochemistry of these bacterial cells, was in
agreement with discrimination based on their DNA homologies

(41) Gilbert, R. J.; Goodacre, R.; Woodward, A. M.; Kell, D. B. Anal. Chem. 1997,
69, 4381-4389.

(42) Naumann, D.; Helm, D.; Labischinski, H.; Giesbrecht, P. In Modern
techniques for rapid microbiological analysis; Nelson, W. H., Ed.; VCH
Publishers: New York, 1991; pp 43-96.

Figure 3. Cluster analyses (as detailed in the text) of both the
Bacillus spp. vegetative cells (V) and spores (S) by PyMS (A) and
FT-IR (B) spectra. In part B: 1, A ) B. sphaericus, 2, B ) B. subtilis,
3, C ) B. licheniformis, 4, D ) Br. laterosporus, 5, E ) B. cereus, 6,
F ) B. amyloliquefaciens, and 7, G ) B. megaterium (where numbers
are vegetative cells and letters are spores).
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as judged by phylogenetic analysis of 16S rRNA sequences from
representatives of these organisms.13

Also shown in Figure 3 are the same PyMS and FT-IR analyses
of the vegetative cells with the sporulated bacilli. The taxonomic
relationship shown by the PyMS analyses (Figure 3A) of the
spores was very different from that afforded by the vegetative cells,
a phenomenon observed previously with Bacillus.25 However, the
phenotypic extent to which the sporulated biomass is different
from the vegetative cells was inconsistent. To illustrate this, both
physiological types of B. megaterium are recovered in the same
cluster with the vegetative cells of B. cereus, at an 85% relative
similarity, but the spores from B. cereus are grouped with the
spores from B. sphaericus, and this group had only 45% relative
similarity with vegetative B. cereus. The phenotypic relationship
between vegetative and sporulated biomass by FT-IR was also
inconsistent, although the DFA plot (Figure 3B) did show that
there was an overall trend in discriminant function 1, which may
explain whether the bacteria were sporulated or not. A similar
trend was seen in the DFA plot based on PyMS data (not shown),
suggesting that this difference in physiology might be detected
automatically.

Supervised Analyses. To distinguish between spectra from
spores or vegetative cells, supervised learning was implemented
using training and test sets detailed in Table 1. The output was
encoded as either “0” for vegetative biomass or “1” for spores.
MLPs, RBFs, and PLS were calibrated on the training set as
detailed above and then interrogated with both the training and
test sets. All three methods predicted all 216 spectra correctly
for both the PyMS and FT-IR spectra (Table 2). Therefore it was
possible to distinguish the different bacterial physiological states,
but only after having used supervised analyses. However, to find
a good biomarker for bacterial sporulation, an additional question
that needs to be answered is, “which inputs (either PyMS m/z
intensities or FT-IR wavenumber absorbances) were indicative of
spores?”. Although MLPs, RBFs, and PLS are excellent methods
of supervised learning, the information of which masses in the
mass spectrum or wavenumbers in the infrared spectrum are
important is not readily available. For MLPs and RBFs, the
information used by these neural networks can nominally be found
in their weights; however, this information is very abstract and
almost impossible to extract realistically, especially when these
ANNs are interconnected, and for the MLPs trained with the PyMS
and FT-IR spectra these contain 1217 and 8841 weights, respec-
tively. For PLS, the interpretation is theoretically simpler as the

PLS model is a summation of the dot products of linear weighting
vectors (latent variable loadings) and the original data; but when
plotted (data not shown) they are as complex as the original
spectra, and no single m/z intensity or IR absorbance was seen
to be especially important.

Spore Biomarker in PyMS. Rule induction and GP tech-
niques were performed on the same training sets as before and
the results are shown in Table 2. For the unseen test set, the
best GPs assess the physiological status of the bacilli more
accurately than any of the rule induction techniques. However,
some of the GPs are not as accurate as rule induction; this is
presumably because the initial starting populations are chosen
randomly and by chance some of the 10 GPs had converged to
local minimums. Each of the rule induction methods produce only
a single rule because they are deterministic and do not use
random starting points.

The next stage was to inspect the rules created by each of the
methods. Both the univariate CART and multivariate OC1 rule
induction methods produced the same single rule

while the multivariate Breiman rule induction method produced
the single rule

where the multivariate rule only consisted of the intensity of m/z
105.

The genetic programs all produced different function trees,
again indicative of local minimums being found rather than a
global one, but these also used predominantly m/z 105, and an
example of one of the rules from a GP trained with transcendental
functions was

where the output was 1 for spores and 0 for vegetative cells. While

Table 2. Percentage of Correct Estimations from Each of the Supervised Analysis Methods, PyMS and FT-IR

PyMS FT-IR

training set test set training set test set

MLPs 100 100 100 100
RBFs 100 100 100 100
PLS 100 100 100 100
CART (univariate rule induction) 96.4 95.5 97.6 93.9
Breiman (multivariate induction) 100 97.7 97.6 96.2
OC1 (multivariate induction) 96.4 95.5 97.6 93.9
GP using arithmetic functionsa 85.7-100 86.4-100 92.9-100 87.1-97.7
GP using transcendental functionsa 95.2-100 90.2-100 96.4-100 84.1-93.9
GP using arithmetic and conditional functionsa 100 100 95.2-100 84.1-93.2

a The minimum and maximum are shown from 10 different GP rules.

IF m/z 105 < 0.3985, THEN vegetative cells ELSE spores

IF multivariate rule < 0.4282,
THEN vegetative cells ELSE spores

output ) {log(2 × m/z 105) + cos[(m/z 154 × m/z 84) -

(2 × m/z 105)]}1/16
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one from a GP using arithmetic and conditional functions was

where the output was 1 for spores and 0 for vegetative cells.
The next stage was to find the biochemical substance char-

acteristic of the physiological difference between vegetative cells
and spores, which was characterized by m/z 105 in the PyMS
spectra. It is known that Bacillus spores contain 5-14% (dry
weight) DPA and have elevated protein levels in the spore coat.
Therefore, DPA (Sigma) was analyzed by PyMS and its spectrum
is shown in Figure 4. It can be seen that DPA has very intense
peaks at m/z 79, 105, and 123; the molecular ion at m/z 167 is
also just visible. Under thermal degradation in vacuo, one would
expect DPA to decarboxylate (lose one or two CO2 molecules at
either the 2 or 6 position on the pyridine ring), and this was indeed
found to be the case because m/z 123 and 79 are from pyridine-
2-carboxylic acid (MPA; monopicolinic acid) and pyridine, respec-
tively. Initially it was difficult to assign the molecular fragment
responsible for the m/z 105 peak with a known structure, so Py-

GC/MS was used to analyze pure DPA and the MS was
programmed to scan for fragments with a molecular weight of
105. It was found that the m/z 105 fragment came from pyridine-
2-carboxylic acid rather than directly from pyridine-2,6-dicarboxylic
acid, and this allowed us to elucidate that the pyrolytic degradation
and electron impact fragmentation of dipicolinic acid proceeds as
shown in Figure 5; DPA decarboxylates to MPA, and then this
(and any other MPA in the spore coat) undergoes electron impact
fragmentation and hydrogen abstraction, and hydrolysis occurs
to produce a pyridine ketonium ion (C6H3ON+).

Subtraction spectra of each strain in both physiological states
confirmed that m/z 105 was very significant, and more so than
m/z 79 or 123 (data not shown). Other plots showed that m/z 91
was also elevated in spores (shown in Figure 1), which is not
surprising since this ion is from toluene, the base peak of
phenylalanine found in proteins. It might be supposed that the
rule induction and GPs should have indicated that m/z 91 was
important for the differentiation between spores and vegetative
cells, but while the protein content in spores is quantitatively
higher than in vegetative cells, this is not as characteristic a
difference as the qualitative presence of an entirely new biochemi-
cal substance.

Spore Biomarker in FT-IR. For the analysis of the FT-IR
spectra from vegetative cells and spores, CART and OC1 rule
induction methods produced the same rule:

while the multivariate Breiman rule was more complex and was

where the multivariate rule was dominated by wavenumbers 3896,
3861, 3854, 3842, 3811, 3541, 3533, 1443, and 933.5 cm-1.

Again the GPs produced many different complex function trees,
but many of these used the vibration at peak 1443 cm-1 (as well
as the two wavenumbers at 1447 and 1439 cm-1 collected either
side of this vibration) as the discriminating variable(s). A typical
function tree in reverse Polish notation from an arithmetic GP
was

Figure 4. Curie-point pyrolysis-MS spectrum of dipicolinic acid.

Figure 5. Pyrolytic degradation and electron impact fragmentation
of dipicolinic acid.

IF [m/z 65 × (m/z 105 + m/z 76)] g m/z 121,
THEN spores ELSE vegetative cells

IF 1443 cm-1 < 0.0135 AND 3827 cm-1 < 0.0005,
THEN vegetative cells

IF 1443 cm-1 < 0.0135 AND 3827 cm-1 > 0.0005,
THEN spores

IF 1443 cm-1 > 0.0135, THEN spores

IF multivariate rule < 0.0099,
THEN vegetative cells ELSE spores
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this complex tree has been chosen to illustrate that the vi-
bration at 1443 cm-1 is used many times. To simplify this rule,
the following procedure was adopted: first the program “un-
polish”, written in-house by Alun Jones was used to turn this
function tree into normal algebra; next Maple (Waterloo Maple
Inc.), also running on a UNIX workstation, which uses symbolic
mathematical calculations was used to simplify this algebra furthur
to

where the output was 1 for spores and 0 for vegetative cells. While
an example of a relatively simple rule generated from using
transcendental functions which used only two wavenumbers was

where the output was 1 for spores and 0 for vegetative cells.
Pure DPA was analyzed by FT-IR and the resultant spectrum

is shown in Figure 6. An AM1 semiempirical force field method
using Hyperchem version 5.1 (HyperCube Inc.) was used to
elucidate which parts of the vibrational normal mode of the DPA
(as the dipicolinate ion solvated in H2O) occurred at around 1443
cm-1, and it was found that this peak area was dominated by two
vibrations (indicated in Figure 6) from two different flexing modes
of the pyridine ring. It is noteworthy that the rule induction and
GP homed in on this specific small pyridine vibration rather than
the large broad vibrations from the two carboxylic acids (also
shown in Figure 6), since the later will have arisen from many
other biochemicals present in cells and spores. The large amide
I vibration from proteins at 1666 cm-1 shown in Figure 2 was not
highlighted as being important for differentiation of spores and
vegetative cells; subtractions of spore and vegetative cell spectra
using integration under this amide I vibration showed no signifi-
cant elevation of proteins in spores compared with those of
vegetative cells.

To illustrate the significance of this biomarker for spores,
vegetative and sporulated biomass from B. cereus B0002 was
applied to the surface of a 7 cm by 7 cm metal plate at a
concentration of ∼200 µg/cm2 (dry weight); various cartoons of
vegetative cells, vegetative cells containing spores, and free spores
were drawn with the biomass. FT-IR spectra were acquired at a
spatial resolution of 1 mm (therefore these maps are 71 pixels by
71 pixels, by 882 wavenumbers). Figure 7 shows two slices from
this data cube, the first slice (Figure 7A) is from the simple
integration from 1682 to 1651 cm-1 under the amide I band at
1666 cm-1. This chemical image indicates where proteins are
found on the plate, and shows, as expected, that proteins are found
in both the vegetative and sporulated biomass, although this is
to a variable degree. The second chemical image (Figure 7B) is
of DPA from the integration from 1458 to 1427 cm-1 under the
pyridine vibration at 1443 cm-1 and clearly shows where the
sporulated biomass has been applied to the surface of the plate.
This highlights the point that now that the spore biomarker DPA
has been detected at a single reproducible vibration that simple
integration is sufficient for the detection of spores compared to
vegetative cells; indeed, there is now no need to use complex
mathematical calculations.

Figure 6. Diffuse reflectance-absorbance FT-IR spectrum of
dipicolinic acid. *, vibrations from dipicolinic acid at 2044, 1747, 1643,
1582, 1470, 1435, 1342, 1281, 1261, 1180, 1088, 999, 922, 891,
783, 760, 744, 710, 694, and 652 cm-1.

output ) [(6 × p1443) + (2 × p1389) + (5.09 × p1539) +
(9.79 × p609) + (p2287/p2855)]

output ) {tan[(p1443 + p602)1/16]}1/4

Figure 7. Chemical images of (A) amide I vibration at 1666 cm-1

and (B) pyridine vibration at 1443 cm-1. Vegetative and sporulated
biomass from B. cereus B0002T was applied to the surface of a 7 cm
by 7 cm metal plate (∼200 µg/cm2). Data were acquired at a resolution
of 1 mm (therefore, these maps are 71 by 71 pixels; 5041 spectra).
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CONCLUDING REMARKS
The “whole-organism fingerprinting” techniques of Curie-point

PyMS and diffuse reflectance-absorbance FT-IR were used to
analyze a diverse group of 36 bacterial strains which belong to 1
of 7 species. Unsupervised cluster analyses were used to reduce
the dimensionality of these hyperspectral data, and while from
vegetative biomass the discrimination found was in agreement
with phylogenetic data, this discrimination changed when spores
were analyzed, highlighting that for these seven species the
biochemistry of the physiological change was not wholly con-
sistent.

Neural network analyses and PLS regression of the PyMS and
FT-IR spectra showed that these supervised analyses could
discriminate easily between spores and vegetative cells; however,
the information in terms of which mass intensities or wavenumber
absorbances in the MS and IR were important was not available.
Therefore, three rule induction methods and three GPs with
varying levels of complexity (arithmetic, transcendental, to con-
ditional) were used to classify the physiological state (vegetative
biomass versus spores) correctly, with the added benefit that they
all produced mathematical rules that could be interpreted bio-
chemically.

In the mass spectrometric studies, it was found that m/z 105
was highly characteristic for spores and is a pyridine ketonium
ion (C6H3ON+) obtained from the thermal degradation in vacuo
of dipicolinic acid. For FT-IR, a pyridine ring vibration at 1447-
1439 cm-1 from the same dipicolinic acid biomarker was found
to be highly characteristic of spores.

Rather than the rule induction and GPs replacing ANNs and
PLS for the identification of this physiological difference, since

all are very complex multivariate mathematical techniques, one
can now use a very simple univariate approach since a specific
mass ion in the PyMS and specific vibration in the FT-IR have
been detected. Indeed, now that a specific characteristic spore
biomarker has been elucidated, then it would be possible to fine-
tune these two analytical spectroscopies specifically for dipicolinic
acid. In the case of FT-IR, it may be possible to devise a simple
dispersive spectroscope based on the integration of the absorbance
centered at 1443 cm-1, thereby reducing the cost of this analysis,
since the necessity for a complex inteferometer-based instrument
would be removed.

In conclusion, these results demonstrate that PyMS and FT-
IR can be used to detect rapidly whether a Bacillus culture is
sporulated or not and more importantly that this discrimination
can be assigned unequivocally to the spore biomarker dipicolinic
acid.
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