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A technique for the analysis of multivariate data by genetic
programming (GP) is described, with particular reference
to the quantitative analysis of orange juice adulteration
data collected by pyrolysis mass spectrometry (PyMS).
The dimensionality of the input space was reduced by
ranking variables according to product moment correla-
tion or mutual information with the outputs. The GP
technique as described gives predictive errors equivalent
to, if not better than, more widespread methods such as
partial least squares and artificial neural networks but
additionally can provide a means for easing the interpre-
tation of the correlation between input and output vari-
ables. The described application demonstrates that by
using the GP method for analyzing PyMS data the adul-
teration of orange juice with 10% sucrose solution can be
quantified reliably over a 0-20% range with an RMS error
in the estimate of ∼1%.

Genetic programming (GP) is an evolutionary technique which
uses the concepts of Darwinian selection1 to generate and optimize
a desired computational function or mathematical expression.2-5

An initial random population of individuals, each encoding a
function or expression, is generated and their fitness to reproduce
the desired output is assessed. New individuals are generated
either by mutation (the introduction of one or more random
changes to a single parent individual) or by crossover (randomly
rearranging functional components between two or more parent
individuals). The fitness of the new individuals is assessed, and
the best individuals from the total population become the parents
of the next generation. This process is repeated until either the
desired result is achieved or the rate of improvement in the
population becomes zero. It has been shown2 that if the parent
individuals are chosen according to their fitness values, the genetic
method can approach the theoretical optimum efficiency for a
search algorithm. Note that GP differs from genetic algorithms
(GAs)6-11 in that GAs have a fixed mapping between the genes

that are exchanged and manipulated and the variables or attributes
of the problem space.

There is a continuing requirement for rapid, accurate, auto-
mated methods to characterize biological systems, for instance,
in determining whether a particular foodstuff has the provenance
claimed for it or whether it has been adulterated with or
substituted by a lower grade material. One approach to the
solution of these problems has exploited pyrolysis mass spec-
trometry (PyMS) and various chemometric methods allowing the
assessment of the adulteration or otherwise of extra virgin olive
oil with lower grade seed oils,12,13 the contamination of goats’ or
ewes’ milk with cows’ milk to below 1%,14 and the geographical
origin of olive oils to be elucidated.15 More recently, PyMS has
been used quantitatively to assess the adulteration of orange
juice.16

PyMS is a high-resolution technique and in combination with
modern supervised learning techniques, such as artifical neural
networks (ANNs) and partial least squares (PLS), it has been
shown that it is possible to gain accurate and precise quantitative
information about the chemical constituents of biological
samples.17-19 However, the interpretation of the calibration models
from ANNs and PLS is often difficult. To simplify the deconvo-
lution of such complex spectra it is necessary to develop a system
that itself produces “rules” that are readily comprehensible.

In the present study, we therefore exploit GP for the quantita-
tive assessment of the adulteration of orange juice with beet
sucrose and compare the results with those obtained previously
using the classical approaches of ANNs and PLS. Furthermore,
the use of the output from GPs allowed, at least to some degree,
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the rational deconvolution of the spectra in terms of which masses
were important.

EXPERIMENTAL SECTION
Preparation of Adulterated Orange Juice. Twenty-five

oranges (Outspan; navelate from South Africa) were bought from
a local supermarket and were hand squeezed to give ∼2 L of raw
material as originally reported.16 This was then centrifuged at
6000g for 20 min to remove pith and particulates (the pellet was
found gravimetrically to be 6.36% w/w). Next a 10% solution of
beet sucrose (“Silver Spoon”, British Sugar) was prepared in
distilled water and was used to adulterate the orange juice from
0 to 20% in steps of 0.5%; these 41 binary mixtures prepared
therefore spanned the region 0-20 g‚L-1 of added sucrose.

Pyrolysis Mass Spectrometry (PyMS). A 1 µL aliquot of
the above materials was evenly applied on to iron-nickel foils to
give a thin uniform surface coating. Prior to pyrolysis, the samples
were oven-dried at 50 °C for 30 min. Each sample was analyzed
in triplicate. The pyrolysis mass spectrometer used was a Horizon
Instruments PYMS-200X (Horizon Instruments Ltd., Ghyll Indus-
trial Estate, Heathfield, E. Sussex, U.K.); for full operational
procedures, see refs 17 and 20. The sample tube carrying the
foil was heated, prior to pyrolysis, at 100 °C for 5 s. Curie-point
pyrolysis was at 530 °C for 3 s, with a temperature rise time of
0.5 s. The data from PyMS were collected over the m/z range
51-200 and were normalized as a percentage of total ion count
to remove the most direct influence of sample size per se. Typical
mass spectra of pure orange juice and the pure adulterant sucrose
are shown in Figure 1.

Variable Selection. The full PyMS spectral data sets con-
tained 150 m/z input variables. A large number of input variables
such as this leads to a high dimensionality in the search space
which must be traversed by the GP, with a consequent increase
in the time taken to derive low root-mean-square (RMS) error
expressions. To combat this, two methods to reduce the number
of variables were employed.

(1) Product moment correlation (PMC) is a method that uses
linear transformations to decide which variables (x) are most
strongly related to the output data (y) being modeled. The inputs
were ranked according to their PMC. The PMC (R) may be
calculated as follows:

where

R takes the sign of Cxy and thus ranges from -1 to +1, that is
from a perfect negative to a perfect positive correlation.

(2) Mutual information (MI)21,22 is a generalized version of
correlation.23 Whereas correlation assumes linear relationships
and Gaussian-distributed data, MI makes no assumptions about
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Figure 1. Representative pyrolysis mass spectra of pure orange
juice (A) and beet sucrose (B). Masses marked with an asterisk are
characteristic of orange juice and the others marked are from sucrose.
C is the subtraction spectrum of the normalized average of three
pyrolysis mass spectra of pure orange juice from the same adulterated
with 2% sucrose.
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the two data series being compared. It is based on calculating
the information content of one signal that is also contained in the
other.

Mutual information is derived by calculating the probability
distributions of the two series, p(x), p(y), and p(x,y). It then
compares the joint probability p(x,y) with p(x)p(y). For statistically
independent data, p(x)p(y) ) p(x,y).23 Hence, if these quantities
are not the same, there is a dependence between the two data
series and this dependence is free from all prior assumptions about
its form.

Since the standard way of producing probability distributions
by making histograms only works well for dense data, we used a
method based on kernel density estimation24 (and see http://
euler.ntu.ac.uk/ccb/html/densest.html), which is a convolution
of a smoothing function with the ordinate of the data.22 These
probability distributions are then used to form the mutual
information, I(x,y):23

The MI is high if one data series provides a lot of information
about the other and low if it provides little. Input variables can
be selected in a multivariate problem by deriving I(x,y) for each
of them and picking those for which this value is greatest. In a
purely linear Gaussian situation, I(x,y) reduces to correlation and
provides identical results.

MI values were calculated using Matlab version 4.2c. l (The
MathWorks, Inc., 24 Prime Par Way, Natick, MA, USA), which
runs under Microsoft Windows NT on an IBM-compatible PC and
were used to rank the inputs accordingly.

Multivariate Regression by Genetic Programming. In
order to implement a genetic optimization of mathematical
expressions or computer code, it is necessary to formulate the
expression in a notation that is amenable to mutation and
crossover. Attempting a genetic optimization using just the “text”
of a function either in standard mathematical notation or computer
program code will result, in all likelihood, in the generation of
nonfunctional individuals. To overcome this, the genetic program
method uses the concept of a function tree, comprising nodes and
terminals.2

A terminal is a logical unit containing an operator function (i.e.,
executable program code) which returns a single number: either
a numeric constant or the value of an input variable.

A node is a logical unit comprising an operator function and
one or more arguments, each of which are themselves either a
node or a terminal. The return value of a node is calculated by
calling its operator function, which then calls the operator
functions of its arguments in order to obtain its own input values.

The principle of closure, by which all nodes accept and return
data of the same type, is what allows the genetic program to
change and rearrange function trees while retaining a logically
consistent structure. A typical function tree is shown in Figure
2.

Operator functions may perform standard mathematical opera-
tions such as “A + B”, “sin(A)”, or ”(A*B) + C” or program
functions such as “if A <) B then return C else return D”, “while
A > B call C”, or “print A”, where A, B, C, and D are the node’s

arguments. The advantage of encoding the function in this way
is that mutations can be made simply by changing a node’s
arguments or operator function, and crossovers can be performed
by replacing one or more nodes from one individual with those
from another.

For the GP implementation described here, which was capable
of performing nonlinear multivariate regressions, the node opera-
tor functions were add, subtract, multiply, divide, inverse (1/x),
negate (-x), square, square root, absolute value (|x|), exponent
(ex), natural logarithm, sine, cosine, and tangent. The first four
functions on this list take two arguments, the others just one
(although the GP program as implemented allowed functions to
take any number of arguments). The return values of each node
were clipped into the range (1015 to avoid possible numeric
overflows, and all trigonometric functions took their argument to
be in radians. It was possible to disable operator functions
selectively in order to simplify the rationalization of the GP-
generated expressions and to reduce the dimensionality of the
search space of the optimisation task. However, this incurs the
penalty of the GP needing to approximate any “disabled” nonlinear
relationships between the inputs and outputs by using the linear
operators, resulting in the generation of longer and less accurate
expressions.

The GP generated initial individuals with random function trees
and assessed their fitness using a scoring function that compared
each individual’s estimate of the output with observed values. It
then carried out a number of reproductive generations using these
individuals in order to derive an expression describing the
relationship between one or more input variables and the desired
output.

A generation comprised sorting the individuals in a population
in descending order of fitness, mutating the best 30% of the
individuals (with the new individuals replacing the worst in the
population if found to be fitter), re-sorting in descending fitness
order a second time, and then crossing-over 30% of the population
(with the parents chosen from the best 30% and the offspring
replacing the worst individuals as before). This process was
reiterated until (a) an expression was found with a fitness that
matched the desired value to within a specified tolerance (an RMS
error of less than 0.1; not actually reached with the data sets
described here), (b) the rate of improvement fell to a low value
(arbitrarily, a zero fitness score change over 50 generations), or
(c) a specified maximum number of generations was reached

(24) Beardah, C. C.; Baxter, M. J. In Analecta Praehistorica Leidensia 28,
Interfacing the Past, Computer Applications and Quantitative Methods in
Archaeology CAA95; Kammermans, H., Fennema, K., Eds.; Institute of
Prehistory, University of Leiden Press: Leiden, 1996; pp 179-184.

I(x,y) ) ∑x∑y[P(x,y) log2{P(x,y)/P((x)P(y)}]

Figure 2. A typical function tree. The tree shown here represents
the expression (sin(A) + (cos(B)/4)), where A and B are input
variables. To evaluate the expression, the operator function of the
root node is called. When an operator function is called, it calls the
operator functions of its argument nodes to obtain its own input values.
It then calculates its output value and returns it to the calling function.
Terminals are nodes that have no arguments: they return either a
numeric constant or the value of an input variable.
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(arbitrarily set to 5000 generations). This process of “learning”
can be plotted as a learning curve where the RMS errors in the
training, cross-validation, and test sets are plotted against the
number of generations. A typical learning curve for the experi-
mental data used in this study is shown in Figure 3.

Six populations of 250 individuals each were run in parallel.
After every 10 generations, the population containing the individual
with the best fitness was duplicated into the other 5 populations,
replacing their individuals. This increased the efficiency of
traversing the search space by providing the means for a
population to escape from a relatively poor local minimum.

An individual’s fitness was assessed as the RMS of the
difference between expected values and the GP’s estimated values
for a training set of data, plus the absolute value of the difference
between the training set RMS error and the RMS error for a cross-
validation set, plus a penalty of 0.001 multiplied by the number of
nodes in the individual’s function tree. Fitter individuals had lower
fitness scores. The node count penalty was included to select
for shorter, simpler expressions: once a low score was achieved,
expressions that gave roughly the same RMS errors but had fewer
nodes replaced more complex expressions.

The described results for the quantification of orange juice
adulteration used a training set of 33 samples (the inputs were
(a) the full PyMS spectra of 150 mass ion counts, (b) a reduced
set of only 20 mass ion counts (vide infra), or (c) 20 principal
components scores derived from the full PyMS spectra, for
mixtures of adulterations of 0%, 2%, ..., 20% using a 10% sucrose
solution; each solution was relicated three times) and a cross-
validation set of 30 samples (three replicates of adulterations of
1%, 3%, ..., 19%). The current best individual of each population
(as judged by its ability to give accurate estimates for the percent
sucrose in orange juice; and vide infra) was then used to estimate
the percent adulteration with sucrose for a test set of 60 samples
(three replicates of adulterations of 0.5%, 1.5%, ..., 19.5%). The
use of a cross-validation set (whose expected outputs were chosen
to intercalate with those of the training set) ensured that the
generated expression was able to generalize when making its

estimates and reduced the likelihood of overtraining to the training
set.

An alternative training method (results not shown) was to use
a fitness function which, at each assessment, randomly picked
30 samples from the combined training and cross-validation sets
in order to calculate the the errors in the GP’s estimates. Since
the “training set” was different for each fitness assessment, the
problem of overtraining to any one data set was avoided, while
the selective pressure for generalization was retained. This
training method gave results similar to the previous method but
took longer to run due to the increased overhead incurred during
the fitness function evaluation step.

Terminals were initially assigned either a numeric value in the
range 0-1, 0-10, or 0-100 with a probability of 0.2 each, or the
value of one of the input variables with a probability of 0.4. Each
input had an equal chance of being chosen.

Nodes were created with initial function trees ranging ran-
domly from a single node (comprising a terminal) to a tree of
depth 8. Operator functions were chosen randomly with equal
probability.

The best 30% of each population were used to generate new
individuals by mutation. When an individual was chosen for
mutation, a node in its function tree was selected randomly. If
the selected node was a terminal with a numeric value, then (a)
its value was multiplied by a random scaling factor between 0.8
and 1.2 using a sinusoidal bell-shaped function (to select for values
close to 1.0) with a probability of 0.55, (b) its value was changed
to a new random constant with a probability of 0.15, (c) the node
was changed to an input-variable terminal with a probability of
0.15, or (d) the node was changed to a new random tree of depth
between 1 and 8 with a probability of 0.15. If the node was an
input variable terminal it was (a) given the value of a different,
randomly chosen, input variable with a probability of 0.7, (b)
changed to a numeric constant terminal with a probability of 0.15,
or (c) changed to a new tree with a probability of 0.15. If the
node was not a terminal, then (a) its operator function was
changed to a different one with the same number of arguments
with a probability of 0.7, (b) it was changed to a new random tree
with a probability of 0.15, or (c) it was changed to a terminal with
a probability of 0.15. If a node was changed to a terminal, it took
the same numeric value it returned as a function node. After each
mutation, there was a 0.3 probability of another mutation occurring
to the same individual. The fitness of the new individual was then
assessed, and the worst individual in the population was replaced
if the new individual was found to be fitter.

After the mutations were performed, the populations were
sorted in descending order of fitness. Crossovers were then
performed by randomly selecting two individuals from the best
30% of the population. Two nodes were randomly chosen, one
from each “parent” function tree, and were exchanged to generate
two new individuals. The new individuals replaced the worst two
in the population if they had a better fitness score. An index to
the “end” of the population was used to prevent the two new
individuals from being replaced by a subsequent crossover during
the current generation. With a probability of 0.15, the crossover
was performed not with two existing individuals but with a single
individual from the population and a new, random, tree of depth
1-8 nodes. The number of crossovers to perform in each
generation was calculated by multiplying the population size by
0.3.

Figure 3. A learning curve for the GP. A linear GP was run for
2000 generations, using the PC data sets. The final RMS errors in
the estimates for this run were 1.15 for the training set, 1.03 for the
cross-validation set, and 1.25 for the test set. The curve illustrates
the fact that a GP is able to escape from local minima: until ∼1000
generations, the RMS errors had settled to 1.30 for the training set,
1.12 for the cross-validation set, and 1.38 for the test set. Eventually,
the GP was able to find a lower minimum.
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The genetic programming method is widely assumed to
demand a high level of computational power. Using the param-
eters described, this implementation of the genetic programming
technique requires only ∼6 MB of RAM in which to operate and
is, therefore, suitable to be run on many desktop computers in
current use. The implementation described here was written in
ANSI C on a Power Macintosh 7200/90 following a procedure
similar to Singleton.25 With the orange juice adulteration data sets,
it typically takes ∼6 h to generate an expression with a low (∼1.1)
RMS error in its estimations. This time is drastically reduced, to
less than 45 min, when 20 selected input variables are used rather
than the full 150-input data set. Expressions with RMS errors
equivalent to those of ANNs and PLS (∼1.7) are frequently derived
in less than a few minutes using 150 or 20 data inputs. Use of
the nonlinear operator set typically increases the run time ∼5-
fold. The probable explanation for this is that each additional
operator function effectively adds an extra “degree of freedom”
to the search space traversed by the GP.

Once derived, the GP-generated expressions can be incorpo-
rated into a simple program or used in a spreadsheet to estimate
output values for additional input data sets without further
reference to the full GP program.

RESULTS AND DISCUSSION
After collection of the data, the first stage was to observe any

obvious features present in the pyrolysis mass spectra (Figure
1). From the spectrum of beet sucrose (Figure 1b), one can
observe the following series of peaks as being characteristic: m/z
55, 60, 69, 72, 77, 85, 97, 113, 126, 132, and 145. These peaks are
also seen clearly in the spectrum of pure orange juice; indeed,
sucrose occurs naturally in orange juice, and of the 10 g of
carbohydrates/100 g of orange juice, typically 2.9-5.6 g of this is
from sucrose;26 orange juice also contains some characteristic
peaks at m/z 67, 81, 109, and 119 (marked with an asterisk in
Figure 1A) which were absent, or at least very small, in the
spectrum of beet sucrose. Figure 1C is the subtraction spectrum
of the normalized average of three pyrolysis mass spectra of pure
orange juice from the same adulterated with 2% sucrose (20% of
the 10% solution), this spectrum highlights m/z 55, 57, 68, 69, 85,
97, 101, 119, 125, 144, and 159 as being important.

To observe simple relationships between our mass spectra and
the level of adulteration, product moment correlation and mutual
information (see above for calculations) were used to rank the
masses in order of importance to the single Y variable (i.e., the
determinand, sucrose) for only the training set. The first 20
masses were chosen to be (a) in order of PMC, best first m/z 68,
118, 119, 91, 67, 142, 101, 116, 117, 100, 143, 62, 120, 144, 90, 80,
56, 131, 57, and 109; and (b) MI, best first, m/z 119, 118, 68, 91,
142, 67, 101, 117, 100, 116, 143, 62, 110, 144, 61, 120, 56, 140, 80,
and 131. It was interesting that of the first 20 masses, 17 were
deemed to be significant by both methods, and for ease of
interpretation this is detailed in Figure 4. The discrepancies were
for PMC m/z 90, 57, and 109 (which were ranked 15, 19, and 20,
respectively) and for MI m/z 110, 61, and 140 (ranking 13, 15,
and 18, respectively). When the intensities of each of these
“significant” masses were plotted against the sucrose concentra-
tions, with the exception of m/z 62, 56, 131, 57, 61, and 140, which
were positively correlated, all the other masses were found to be

negatively correlated with sucrose concentration, while m/z 90,
although negatively correlated, was very noisy. That the majority
of these masses were negatively correlated was hardly suprising
since the samples analyzed were between 0% and 20% sucrose
solution in 100%-80% orange juice, and so the major spectral
components would have been due to the orange juice per se.
Indeed, one can observe that of the peaks chosen by visual
selection as being important components of orange juice (Figure
1a and c), m/z 119 (ranked third by PMC and first by MI), 67
(ranked fifth by PMC and sixth by MI), and 101 (ranked seventh
by PMC and MI), were also chosen by the variable selection
methods, while m/z 109 was found to be significantly correlated
only by PMC (although ranked 20th) and m/z 81 was not selected
by either method. Interestingly, the only visually evident sucrose-
specific peak chosen by the variable selection procedures was m/z
57 (ranked only 19th by PMC and not at all by MI).

In order to remove the most direct influence of sample size
per se the PyMS data had to be normalized, and in this instance
the intensities over the m/z range 51-200 were normalized as a
percentage of total ion count. Although this method of normal-
izing does have the disadvantage that if a given mass is relatively
greater in a particular spectrum then all of the other masses are,
although to a much lesser extent, necessarily relatively lower, we
did not find this to be a problem. Indeed masses choosen by
PMC, MI, and the GPs (vide infra) were all seen to be significant
from viewing the spectra of orange juice and beet sucrose and
the subtraction sepctrum (Figure 1).

Genetic Programming Results on the Full Mass Spectra.
The next stage was to investigate the ability of a “linear” GP (that
is to say a GP that used only “+”, “-”, “/”, and “*”) to assess
quantitatively the level of sucrose adulteration in mixtures with
pure orange juice. As detailed above, the training set comprised

(25) Singleton, A. Byte 1994, 19, 171.
(26) Robards, K.; Antolovich, M. Analyst 1995, 120, 1-28.

Figure 4. Ranking of the first 20 most significant masses as judged
by reducing the dimensionality of the mass spectral input space by
ranking variables according to the PMC or MI with the outputs. The
same masses that are chosen by both methods are joined by a line
and those masses that are shaded were frequently found in expres-
sions from linear and nonlinear GPs trained with the full mass spectra.
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the 11 normalized triplicate pyrolysis mass spectra from mixtures
containing 0, 2, 4, ..., 18, and 20% sucrose. The fitness function
used during calibration was the RMS of the training set plus the
absolute value of the difference between the cross-validation (1,
3, 5, ..., 17, and 19%) and training sets (this was used to enforce
at least some generalization to the cross-validation set), in addition
a node-count penalty was exploited to select for shorter expres-
sions.

Due to the high dimensionality (150 inputs) of the search space
traversed by the GP, calibration was necessarily slow and each
run took ∼6 h to converge on a Power Macintosh 7200/90. Each
run evaluated, typically, 3.5 × 103 generations, each comprising
1.5 × 103 individuals, a total of ∼5.25 × 106 individuals per run.
The GP runs were invariably able to converge successfully. The
shortest expression (of 10 runs; Table 2) was

where Pn is the normalized ion count for mass n.
This expression gave an RMS error in the estimations of 1.64

for the training set, 1.72 for the cross-validation set, and 1.87 for
the test set. For the test set error, the results for all 10 GPs
(average 1.93 with a standard deviation of 0.11) were slightly
higher than those found previously using the more classical
approaches of PLS and ANNs (Table 1).

The above GP expression, and others found in this set of
experiments (data not shown), often used the same mass ions
many times, the most common of which chosen were m/z 51, 62,

119, and 143. On inspection of the pyrolysis mass spectra of pure
orange juice and the adulterant beet sucrose (Figure 1), m/z 51
and 119 are much more abundant in pure orange juice, while m/z
62 is more characteristic of sucrose; by contrast m/z 143 is very
small in both. Therefore it would appear that these GPs are at
least using variables that are important and quantitative for the
description of sucrose adulteration in orange juice.

Ten more GPs were calibrated using the same population
parameters as detailed above with the same 150 m/z intensities,
but these differed in that as well as the linear functions used above
extra “nonlinear” functions were used [inverse (1/x), square,
square root, absolute value (|x|), exponent (ex), natural logarithm,
sine, cosine, and tangent]. Again, despite the high dimensionaility
of the inputs, these GPs were able to generalize and the shortest
expression was found to be

where Pn is the normalized ion count for mass n.
This expression gave an RMS error in the estimations of 1.29

for the training set, 1.19 for the cross-validation set, and 1.47 for
the test set. The test set results (average 1.51 with a standard
deviation of 0.11) for these 10 GPs were very similar to those
found previously using the classical approaches of PLS and ANNs
(Table 1). This implies that the ability to map nonlinear functions
(while also mapping the linear ones) was important; indeed,
functions such as sine, cosine, tangent, and exponent were found
in many of these expressions. It is likely that nonlinearity was
because of intermolecular reactions taking place in the pyrolysate,
leading to a lack of superposition of the spectral components and
to a dependence of the normalized mass spectrum on sample size,
a phenomenon seen previously.18 Unfortunately, due to the
nonlinear nature of the expressions, as illustrated by the GP above,
the interpretation of the GP expressions will be extremely difficult
and deconvolution is not realistic, although one can clearly see
that m/z 51 and 119 feature regularly (as seen with the linear
GP) and that m/z 61 and 68 are also important masses for the
quantification of sucrose in orange juice.

The best single GP was a nonlinear one and the RMSEP was
only 1.28 (Table 2); this was better than multilayer perceptions
(MLPs) trained with the standard back-propagation algorithm,27-29

which had an RMSEP of 1.64, and radial basis functions (RBFs),30,31

(27) Rumelhart, D. E.; McClelland, J. L.; Group, T. P. R. Parallel Distributed
Processing, Experiments in the Microstructure of Cognition; M.I.T. Press:
Cambridge, MA, 1986.

(28) Chauvin, Y.; Rumelhart, D. E. Backpropagation: theory, architectures and
applications; Lawrence Erlbaum Associates: Hillsdale, NJ, 1995.

(29) Werbos, P. J. The roots of back-propagation: from ordered derivatives to neural
networks and political forecasting.; John Wiley: Chichester, UK, 1994.

Table 1. Comparison between Different Analytical
Methods for Estimating the Adulteration of Orange
Juice

method
av test set

RMS errors
approx time
to computee

PLS, using all 150 m/za 1.26 20 s
PLS, using 20 most characteristic

masses calculated by PMCb,c
1.25 10 s

PLS, using 20 most characteristic
masses calculated by MIb,c

1.67 10 s

150-8-1 MLPa 1.64 1 min
20-4-1 MLP, using 20 mostcharacteristic

masses calculated by PMCb,d
1.20 20 s

20-4-1 MLP, using 20 most characteristic
masses calculated by MIb,d

1.82 20 s

8-4-1 MLP, using first 8 PCsa 1.61 15 s
150-50-1 RBFa 1.74 20 min

a These results are taken from ref 16. The same PyMS experimental
data sets were used for all the analytical methods shown. b Character-
istic masses were calculated using the PMC or MI as detailed in the
text. c PLS was calibrated using 10 factors as judged by RMS error of
cross-validation data set. d MLPs were trained to optimal point as judged
by RMS error of cross-validation data set. e All these times were from
use of an IBM-compatible PC (dual P133 processor, with 64 Mbytes
RAM).

% adulteration ) ((((6.823529/P100)/P51) + (P143 +

((P143P119) + (((P62 - P51)/((P62 × 2.901961) - P119)) +

((P62P73)((P62P73)((P62P61)(((P143 - 1.215686)/((P62P73) -

P119)) + ((((P62P73) - P100)P73) + (P51 + ((((P143 ×
2.901961) + (P143 × 4.117647)) - P100) + ((P62 ×

6.431373) + ((P62 × 6.823529) + (P143 + ((P143P61) +

(P143 + (P51 + ((P51 + P100)(((P51 - P119) - P119)

(4.352941 + (7.215686/P119))))))))))))))))))))) - P100)

% adulteration ) ((tan(cos(P68/0.225490))) +

((cos(P61/0.225490)) + ((tan(cos(P68/0.225490))) +

((cos(9.686275(P51 - P119))) + ((tan(cos((9.607843(P51 -

P68)) + 0.220392))) + ((tan(cos(tan(cos((P68/0.225490) -

(P51 - P119)))))) + ((tanP61) +

((tan(cos((P68/0.224314) - (P51 - P119)))) +

((tan(cos((P68/0.224314) - (P51 - P119)))) +

((tan(cos((9.686275(P51 - P119)) - 0.220392))) +

((exp(cos(P61/0.225490))) +

((cos((P68/0.225490)/P144)) + (((P61/0.225490) - P119) -

0.353725)))))))))))))
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where the RMSEP was 1.74, and as good as that found using the
linear regression technique of PLS32 where the RMSEP was 1.26
(Table 1).

Genetic Programming Results on Reduced Mass Spectra.
The training set for the above GPs contained only 33 spectra (11
samples in triplicate) described by 150 m/z intensities, and it is
well-known that if the number of parameters in calibration models
such as PLS and ANNs are significantly higher than the number
of exemplars in the training set, then these methods have a
tendency to overfit.33,34 It is likely that the same trends will be
true for GPs, athough the fact that these GPs were still able to
converge shows that this was not necessarily a problem for this
data set. However, convergence was slow, taking ∼6 h, and to
obey the parsimony principle as described by Seasholtz and
Kowalski33 the next stage was to reduce the number of inputs to
the GPs. Therefore, product moment correlation and mutual
information were used to select the 20 most well correlated (or
significant) masses (from the training set only) to the percent
adulteration; these were used as inputs to the linear and nonlinear
GPs.

For the PMC- and MI-reduced data sets, 10 linear and 10
nonlinear GPs were calibrated for 2 × 102 generations, each with
5 populations each of 2 × 102 individuals, and these typically took
between 1 and 1.5 h. The RMS errors for the test sets are shown
in Table 2. It can be seen that for PMC-reduced data the linear
and nonlinear GPs both give results very similar to one another
and the average RMSEP was 1.94 and 1.97, respectively. It was
interesting to observe that the linear GP gave a result very similar
to the linear GP trained on the full spectra, whereas the nonlinear
GPs estimates on the reduced data were worse than those when
the full spectra were used; 1.97 compared to 1.51. This implies,
for modeling the percentage adulteration of orange juice with
sucrose, that the spectra were not purely linearly separable and

that using the linear variable selection method PMC meant that
valuable information was lost. Although in previous studies (see
Table 1) PLS was better than nonlinear calibrations based on
MLPs and RBFs, we would expect that if a nonlinear method,
such as MI, was used to select the variables, then the nonlinear
GP would improve. This was indeed found to be the case, and
the average RMSEPs for the MI and PMC were 1.63 and 1.97,
respectively, compared to a RMSEP of 1.51 for the full spectra as
input to the GP (Table 2). However, the RMSEP for the linear
GP calibrated on MI-selected variables also decreases. To
investigate this phenomenon further, PLS was carried out on the
PMC- and MI-reduced data and the RMSEPs were found to be
1.25 and 1.67, respectively, compared to the full spectral PLS
approach where the RMSEP was 1.26 (Table 1). This indeed
shows that MI has selected at least some nonlinear variables;
however, and by contrast, MLP models showed that PMC was
better than MI and the RMSEPs were 1.20 and 1.82, respectively,
compared to an RMSEP of 1.64 from an MLP trained on the full
spectra.

In many instances, the linear and nonlinear GPs trained with
the 20 most characteristic using PMC or MI gave test set errors
very similar to GPs trained on the full mass spectra (Table 2), so
variable selection has not caused the modeling of the adulteration
of orange juice to get any worse.

The above GPs all produced different expressions, and it was
consequently impossible to write a single expression that could
be used as a general equation for calculating the level of sucrose
adulteration in orange juice. This shows that, by using the
simplistic genetic search algorithm described, the GP runs were
only able to find expressions corresponding to local optima in the
search space, rather than the single global optimum expression.
This is a common problem for heuristic or nondeterministic
approaches of this kind.

However, by visually examining the expressions generated
during the GP runs, it is possible to select m/z intensities that
occur frequently in the derived expressions and to determine,
albeit in a simplistic and qualitative way, how those intensities
are proportionally related to the level of adulteration with sucrose.
The term for m/z 119, P119, occurs in almost all of the GP-derived

(30) Moody, J.; Darken, C. Neural Comput. 1989, 1, 281-294.
(31) Broomhead, D. S.; Lowe, D. Complex Syst. 1988, 2, 321-355.
(32) Martens, H.; Næs, T. Multivariate calibration; John Wiley: Chichester, UK,

1989.
(33) Seasholtz, M. B.; Kowalski, B. Anal. Chim. Acta 1993, 277, 165-177.
(34) Bishop, C. M. Neural networks for pattern recognition; Clarendon Press:

Oxford, UK, 1995.

Table 2. Test Set RMS Errorsa

full spectra PMC reduction method MI reduction method PC data

run no. linear nonlinear linear nonlinear linear nonlinear linear nonlinear

1 2.16 1.55 1.76 2.29 1.59 1.67 1.42 1.02
2 2.08 1.60 2.40 2.23 1.56 1.69 1.25 1.04
3 1.87 1.55 1.76 1.87 1.69 1.58 1.18 1.09
4 1.82 1.28 1.93 1.65 1.72 1.57 1.07 1.24
5 1.80 1.48 1.64 2.43 1.73 1.66 1.59 0.92
6 1.88 1.63 1.89 1.74 1.54 1.57 1.05 1.15
7 1.90 1.38 1.75 1.83 1.71 1.70 1.14 1.33
8 2.00 1.47 1.62 2.05 1.52 1.67 1.67 1.37
9 1.89 1.52 2.33 1.87 1.66 1.60 1.51 0.99
10 1.91 1.67 2.30 1.77 1.56 1.64 1.13 1.06

average 1.93 1.51 1.94 1.97 1.63 1.63 1.30 1.12
std dev 0.11 0.12 0.30 0.26 0.08 0.05 0.23 0.15

timeb 6 h 6 h 45 min 45 min 45 min 45 min 45 min 45 min

a The GP runs were repeated 10 times to assess the variability in the accuracy of the estimates calculated by using the generated expressions.
Four sets of input data were used: (1) the normalized ion counts (m/z from 51 to 200) from the PyMS spectra, a reduced set of 20 characteristic
masses calculated using (2) the PMC, (3) MI (see text for details), or (4) the first 20 PCs derived from them. Two types of GP were run: a
“nonlinear” GP, using all of the operator functions described in the text, and a “linear” GP, using only add, subtract, multiply, and divide. Entries
in italic type are the best result from each set of 10 runs. b All these times were from using a Power Macintosh 7200/90 (601 processor, with 24
Mbytes RAM).
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expressions and is almost always negated. This suggests that
one of the most significant “rules” derivable from the GP results
is that P119 is proportional to the level of adulteration, A, in a
negative and linear way:

This is supported by the fact that both the MI and PMC variable
selection methods rank P119 very highly (third and first, respec-
tively), with a strong negative correlation, and that this m/z is
prominent in the subtraction spectrum of the pyrolysis mass
spectra of pure orange juice from the same adulterated with 2%
sucrose (Figure 1C). A similar negative linear relationship can
be observed for P67 (ranked fifth and sixth) and P116 (ranked eighth
and tenth). Note that P119 and P67 were both selected by visual
inspection as being characteristic peaks for orange juice.

A term approximately equivalent to cos(4P68) also occurs with
a high frequency in the expressions derived by GPs using the
nonlinear function set. This suggests the rule

The approximate factor of 4 in this rule is, presumably, correcting
for the fact that the argument to the cosine function, which is
assumed to be in radians, needs to be scaled appropriately to give
the correct nonlinear relationship. Note that P68 is ranked first
and third by MI and PMC, respectively, and is seen to be
prominent in the subtraction spectrum (Figure 1C), supporting
the significance of this peak.

Genetic Programming Results on Principal Component
Scores. PCA is an excellent dimensionality reduction technique,
and the use of PC scores as inputs to neural networks, without
deterioration of the calibration model, has previously been applied
to the analysis of UV/visible spectroscopic data,35,36 for the
identification of bacteria from their FT-IR spectra,37 and for the
quantification of binary mixtures of Escherichia coli from their
PyMS spectra38 and the adulteration of orange juice.16 Therefore
the first 20 PCs were extracted, which accounted for 99.58% of
the total variance in the spectral data, and these were used as the
inputs to other GPs (PC-GPs).

The best expression found using the first 20 principal compo-
nents derived from the PyMS data was by a nonlinear PC-GP and
was

where PCn was the nth principal component score.

This expression gave an RMS error in the estimations of 0.81
for the training set, 0.81 for the cross-validation set and 0.92 for
the test set. The estimates of adulteration calculated by using
this expression are shown in Figure 5, and the test set errors for
this and the 10 linear and 10 nonlinear PC-GPs are shown in Table
2.

The expressions derived using the first 20 PCs gave substan-
tially better RMS errors in their estimation of the degree of
adulteration than the previous GPs trained on the full mass spectra
or on a subset of this. Moreover, the RMSEPs were much lower
than those seen previously when the adulteration was estimated
by PLS, MLPs, or RBFs (Table 1).

That the nonlinear GPs reproducibly gave better estimates than
linear GPs (Table 2) implies that the ability to perform a nonlinear
map is still very important, and although PCA is a linear
dimensionality reduction technique, it is worth stating that
combinations of linear PCs will allow the emergence of the
nonlinear properties. Unfortunately, the additional level of ab-
straction introduced by using PCs makes the rationalization of
these expressions unfeasibly difficult, particularly when the GP
expression includes nonlinear functions.

CONCLUSIONS
PyMS is a physicochemical spectroscopic method which

produces a complex fingerprint of the sample under investigation.
The spectral data recorded are in the form of the relative
intensities of 150 masses. It is obvious that these data are of high
dimensionality and necessarily difficult to interpret visually. We
have previously shown that the neural cognition-based methods
such as MLPs and RBFs and the linear regression technique of
PLS could be employed successfully for the quantitative assess-
ment of the adulteration of orange juice with sucrose.16 However,
the deconvolution of which masses were important, in a readily
interpretable fashion, was not possible.

(35) Gemperline, P. J.; Long, J. R.; Gregoriou, V. G. Anal. Chem. 1991, 63, 2313-
2323.

(36) Blanco, M.; Coello, J.; Iturriaga, H.; Maspoch, S.; Redon, M. Anal. Chem.
1995, 67, 4477-4483.

(37) Goodacre, R.; Timmins, EÄ . M.; Rooney, P. J.; Rowland, J. J.; Kell, D. B. FEMS
Microbiol. Lett. 1996, 140, 233-239.

(38) Timmins, EÄ . M.; Goodacre, R. J. Appl. Microbiol. 1997, 83, 208-218.

A ∝ -P119

A ∝ cos(4P68)

% adulteration ) (((((((10.783312 + ((PC1 - ((((PC9 +

(PC13 - PC11)) + PC13) + PC13) + (PC13 - PC5))) ×
3.981746)) + (18.966914(-PC3))) + (12.727644(-

PC2))) + (22.313057(-PC4))) + (4.652989 tan(PC2))) -

((7.259247 + (19.076536PC4))PC4)) exp(PC11))

Figure 5. Estimated vs actual adulteration of orange juice with a
10% sucrose solution. The results shown are for the best expression
generated using the PC data sets and a nonlinear GP. The final RMS
errors in the GPs’ estimates were 0.81 for the training set, 0.81 for
the cross-validation set, and 0.92 for the test set. The estimate for
the 9.5% adulteration sample in replicate 1 of the test set was a
consistent outlier, so the estimates for this sample were discarded
for the RMS error calculations.
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Evolutionary programming is a new and exciting method for
extracting meaningful correlations between inputs and outputs.
We have previously shown that genetic algorithms can be used
as a method for the selection of relevant variables from mass
spectra prior to analysis by PLS.11 An obvious extension of this
approach is to use genetic programming to evolve a mathematical
solution to the correlation of the relevant features of an X-matrix
(e.g., mass spectra) to a Y-variable representing information of
biological interest (e.g., percent adulteration).

In conclusion, this is the first study that has shown that even
a relatively simplistic genetic programming approach can be
applied successfully to the accurate quantification of orange juice
adulteration by analyzing PyMS spectral data. This approach
provided estimates for the adulteration that were at least as good
as those from more widespread analytical methods such as ANNs

and PLS, but with the additional benefit of enabling the rationaliza-
tion of the correlation between the input data and the calculated
outputs, something extremely difficult to do using the more
conventional methods.
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