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Despite the sequencing of the human genome, the rate of innovative and suc-

cessful drug discovery in the pharmaceutical industry has continued to

decrease. Leaving aside regulatory matters, the fundamental and interlinked

intellectual issues proposed to be largely responsible for this are: (a) the move

from ‘function-first’ to ‘target-first’ methods of screening and drug discovery;

(b) the belief that successful drugs should and do interact solely with single,

individual targets, despite natural evolution’s selection for biochemical net-

works that are robust to individual parameter changes; (c) an over-reliance

on the rule-of-5 to constrain biophysical and chemical properties of drug

libraries; (d) the general abandoning of natural products that do not obey the

rule-of-5; (e) an incorrect belief that drugs diffuse passively into (and presum-

ably out of) cells across the bilayers portions of membranes, according to

their lipophilicity; (f) a widespread failure to recognize the overwhelmingly

important role of proteinaceous transporters, as well as their expression pro-

files, in determining drug distribution in and between different tissues and

individual patients; and (g) the general failure to use engineering principles to

model biology in parallel with performing ‘wet’ experiments, such that ‘what

if?’ experiments can be performed in silico to assess the likely success of any

strategy. These facts/ideas are illustrated with a reasonably extensive litera-

ture review. Success in turning round drug discovery consequently requires:

(a) decent systems biology models of human biochemical networks; (b) the

use of these (iteratively with experiments) to model how drugs need to inter-

act with multiple targets to have substantive effects on the phenotype; (c) the

adoption of polypharmacology and/or cocktails of drugs as a desirable goal

in itself; (d) the incorporation of drug transporters into systems biology mod-

els, en route to full and multiscale systems biology models that incorporate

drug absorption, distribution, metabolism and excretion; (e) a return to

‘function-first’ or phenotypic screening; and (f) novel methods for inferring

modes of action by measuring the properties on system variables at all levels

of the ‘omes. Such a strategy offers the opportunity of achieving a state

where we can hope to predict biological processes and the effect of pharma-

ceutical agents upon them. Consequently, this should both lower attrition

rates and raise the rates of discovery of effective drugs substantially.

Abbreviations

NF-jB, nuclear factor-kappa B; Ro5, rule-of-5.
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Introduction

As illustrated in Fig. 1, classical drug discovery (or

pharmacology or chemical genetics) started with an

organism displaying a phenotype where there was a

need for change (e.g. a disease) and involved the assay

of various drugs in vivo to identify one or more that

was efficacious (and nontoxic). There was no need to

discover (let alone start with) a postulated mechanism

of drug action; for a successful drug, this could come

later (often much later) [1–3]. This approach is thus

‘function first’, and is equivalent in terms of (chemical)

genetic or genotype–phenotype mapping [4] to ‘for-

ward’ genetics, and has lead to the discovery of many

drugs that are still in use (and mainly still without

detailed knowledge of their mechanisms of action). By

contrast, particularly as a result of the systematic

(human) genome sequencing programmes, drug discov-

ery largely changed to an approach that was based on

the ability of chemicals to bind to or inhibit chosen

molecular targets at low concentrations in vitro [5].

This would then necessarily be followed by tests of

efficacy in whole organisms. This approach is thus

‘target-first’, and is equivalent to ‘reverse’ genetics, and

(despite some spectacular new molecules that work on

selected patients, as well as the important rise of bio-

logicals) has been rather ineffectual because the vast

majority of small molecule drugs (90–95%) fail to go

forward, even from the ‘first into humans’ phase, to

become successful and marketable drugs; a set of

phenomena known as ‘attrition’ [6–11]. This is not

unexpected to systems biologists, who would see the

distinction as being similar to the distinction between

hypothesis-dependent and data-driven science [12,13].

The present review aims to illustrate why this is the

case, as well as what we might seek to do to improve

matters. Figure 2 provides an overview of the present

review, which begins by recognizing the role of robust-

ness in biochemical networks.

Fig. 1. A contrast between classical (‘function first’) forward

chemical discovery with the more recent target-first or ‘reverse’

strategy. It is suggested that a reversion to the more classical

approach through phenotypic screening is likely to prove beneficial

from a systems point of view.

An example: 'statins'
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Fig. 2. A ‘mind map’ [436] summarizing the present review. The map should be read starting at the 12 o’clock position and working

clockwise.
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The robustness of biochemical
networks

Somewhat in contrast to designed and artificial net-

work structures such as roads, railways and process

plants [14], natural evolution has selected much less

for cheapness and efficiency than for robustness to

parameter changes (whether caused by mutation or

otherwise) [15–26]. This is straightforwardly under-

standable in that an organism with a mutation messing

up a whole pathway will soon be selected out, and so

the selection pressure for robustness is very high. Typi-

cally, it is the network topologies and feedback struc-

tures themselves, rather than the exact parameter

values involved, that are responsible for the robustness

to parameter changes [27]. However, another way to

think about this is that, by diminishing the sensitivity

of individual steps to particular changes in their

parameters (or to inhibitors), no individual enzyme or

target or inhibitor is likely to have much effect unless

it affects many other steps by itself. This is easily

achieved by having enzymes obeying Henri–Michaelis–
Menten kinetics operating at (or below) their Km val-

ues (Fig. 3), where a certain amount of inhibition of

them (other than uncompetitive inhibition) [28] simply

raises the concentration of their substrate and restores

flux. (If the substrate of an enzyme has a concentra-

tion that is maintained essentially constant by regula-

tory mechanisms, then competitive inhibition of an

enzyme that uses it in a minor pathway can be

expected to be as effective in vivo as it is in the spec-

trophotometer.)

The corollary is clear: to have a major effect on a

typical biochemical network, it is necessary to modu-

late multiple steps simultaneously (see below), such

that any drug that acts solely on a single (molecular)

target is unlikely to be successful. The same is true of

schemes designed to increase the fluxes in pathways of

biotechnological interest [29–35]. This distributed nat-

ure of flux control, which contributes to robustness,

has long been established, and indeed is proven mathe-

matically for certain kinds of networks via the theo-

rems of metabolic control analysis [36–42]. These show

that, by normalizing appropriately, the contributions

(‘control coefficients’, also known as their local sensi-

tivities) [43] to a particular flux of all the steps in a

biochemical pathway add up to 1, and thus most indi-

vidual steps are likely to have only a small contribu-

tion.

Polypharmacology as a desirable goal

If we are to design drugs that overcome this robust-

ness, we need either to find individual molecules that

hit a useful set of multiple targets [44–46] (for an

example from neuropharmacology, see [47–51]) or use

cocktails of drugs [24,52–54], each of which hits

mainly an individual target. The former is known as

polypharmacology [44,45,55–67] or multi-target drug

discovery [68,69] and the recognition that we need to

attack multiple targets in pharmacology is reflected in

names such as ‘systems pharmacology’ [6,70–88] or

‘systems medicine’ [89–93]. The use of cocktails is of

course commonplace in diseases such as cancer and

HIV-AIDS [94].

One issue is that finding a good subset of even a

small number of targets from a large number of possi-

ble targets is a combinatorial optimization problem

[95]. All combinations of n drugs specific for n targets

gives 2n possibilities [54], whereas finding the best com-

bination of even just three or four drugs or targets out

of 1000 gives 166 million or 41 billion combinations,

respectively, resulting in numbers that are too large for

typical experimental analyses (but easily accessible

computationally; see below).

Polypharmacology in
pharmacogenomics and personalized
medicine

An important recognition, if not that recent in origin

[96], is that every patient is different and thus their

response to drugs will also be different [97–102]. As

Fig. 3. The kinetics of a typical enzyme obeying Henri–Michaelis–

Menten kinetics; if the substrate concentration is near the Km,

initial inhibition of the enzyme increases the substrate

concentration that restores the local flux. The enzyme is said to

have a high elasticity towards its substrate. This is common in

biology. A rare [437] but highly important exception is the inhibition

of 5-enolpyruvoylshikimate-3-phosphate synthase (ESPS; EC

2.5.1.19) by the herbicide glyphosate, which is uncompetitive with

respect to one of the substrates, shikimate-3-phosphate [438,439],

such that the extent of inhibition is effectively increased by the

raised substrate concentration.
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neatly phrased by Henney [103], quoting an 18th Cen-

tury physician (Caleb Parry), ‘It is much more impor-

tant to know what kind of patient has a disease than

to know what kind of disease a patient has’. The

essential combinatorial argument is straightforward

[104]: if we define for any character, such as the fasting

low-density lipoprotein-cholesterol level, the ‘normal

range’ to be the middle 95 percentiles, then any indi-

vidual has a probability of 0.95 of being ‘normal’ (for

that character). (This is conventional but thereby

ignores systematic errors or biases [105].) The proba-

bility of being normal for two (independent) characters

is thus 0.952 and, for n independent characters, is

0.95n. This drops below 1% when n = 90, and there

are of course thousands of characters. What is proba-

bly more unexpected, therefore, is not that individuals

are different but that they display any similarity of

response at all (in part, this presumably reflects the

evolution and selection for robustness described above,

and the fact that many characters are not of course

entirely independent.)

From the point of view of polypharmacology, a

drug that interacts usefully with n targets can more

easily afford to ‘lose’ one of them (e.g. as a result of

an inactivating single nucleotide polymorphism or

other mutation) if n is large, whereas a drug that has

only one target may provide a very strong variation in

response between individuals. Assuming that adverse

drug reactions are taken into account, a drug with

multiple useful targets is thus likely to show signifi-

cantly less variation in the response across popula-

tions. Drugs do of course require transporters to reach

to their sites of action (see below) and this concept

should also be included as part of the relevant poly-

pharmacological analysis of multiple ‘targets’ (i.e. pre-

ferred macromolecules with which the drug is intended

to interact).

How target-specific are the presently
available marketed drugs?

The argument that one should seek to hit multiple

targets begs the question of which proteins do suc-

cessful (and thus marketed) drugs actually bind to,

given that many of them were in fact isolated on

the basis of their ability to bind to a specific and

isolated molecular target? What takes place in real

cells, tissues and organisms, however, is very differ-

ent: individual drugs [44,46,55,57,61,63,64,66,67,106–
145], and even intermediary metabolites [146–149],
are now seen to bind to a great many more entities

than just the single ‘target’ via which they were typi-

cally discovered. Drugs on average bind to six

targets [150], whereas ligands in some classes typi-

cally bind to many more [44,114]. This ‘drug promis-

cuity’ [151] can be accounted for in terms of the

comparatively limited number of protein motifs used

in evolution [152], which are often related to each

other [145,153], as well as the fact that only a small

number of biophysical forces determine binding;

together, these make complete specificity generally

implausible in small molecules and, as a conse-

quence, bioactivity in one species is often enriched

in other species [154,155]. A typical example of pro-

miscuity is outlined below.

An example: statins

Although low-density lipoprotein-cholesterol is widely

regarded as a major determinant of cardiovascular

diseases as a result of its appearance in atheroscle-

rotic plaques, its correlation with disease when in its

normal range is poor [115,156]. Nonetheless, subse-

quent to the discovery of a ligand (later marketed as

lovastatin) from Aspergillus terreus that would inhibit

HMG-CoA reductase, and thus lower cholesterol, a

great swathe of ‘statins’ have been marketed, and the

epidemiological evidence that they can prolong life is

good. It is again widely assumed that this is because

they lower cholesterol, whereas this is neither logical,

nor (as stated) true. Although there is a highly unfor-

tunate tendency to lump all such molecules as ‘sta-

tins’ (presumably because they were discovered via

their ability to inhibit HMG-CoA reductase), expres-

sion profiling studies straightforwardly show that they

have no such unitary mode of action [157]. The reso-

lution of the paradox [158] is uncomplicated [62]. All

statins consist of a substructure that mimics hydrox-

ymethylglutarate (and not, incidentally, its CoA

derivative), termed the ‘front end’, bound to a wide

variety of other structures (the ‘back ends’). In most

cases, it is likely the ‘back end’ that accounts for

most of the biological activity, and mainly because

such molecules are anti-inflammatory. In a previous

review [62], more than 50 literature citations up to

June 2008 were provided. More recent examples are

now available [159–165]. A similar tale can be told

for ‘glitazones’ [62].

Drug biophysics and the rule-of-5

Lipophilicity is widely seen as an important concept in

drug discovery, albeit that there is no doubt that drug

promiscuity tends to increase with lipophilicity

[107,119,122,124,126,127,144,150,166–172]. In an extre-

mely influential review [173] and later reprint [174],
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Chris Lipinski and colleagues, when seeking to mini-

mize the number of drugs that failed for reasons of

pharmacodynamics and pharmacokinetics, proposed

four rules (known as the ‘rule-of-5’ or Ro5 because

each rule contains elements that are multiples of 5).

They predicted that poor absorption or permeation

into cells for a molecule is more likely when the num-

ber of hydrogen-bond donors > 5, the number of

hydrogen-bond acceptors > 10, the relative molecular

mass > 500 and the calculated log P (cLog P) > 5.

This last in particular is a measure of lipophilicity,

and those who design chemical libraries will always

seek molecules that obey the Ro5, including through

experimental measurements of the partition coefficient

log P [175–177] and/or the distribution coefficient

log D [178]. Note, however, that natural product-

based drugs (still a major source of leads and indeed

marketed drugs; see below) very rarely, if ever, obey

the Ro5 and, indeed, even some synthetic drugs have

very large molecular weights [169]; for example, navi-

toclax dihydrochloride [179], a Bcl-2 inhibitor, has

seven ring systems and a relative molecular mass of

1047.5. Indeed, there is an increasing recognition

[154,155,166,180–186] that over-reliance on Ro5 com-

pliance would lose many desirable drugs, including

known ‘blockbusters’.

Designing chemical libraries: the role
of natural products in drug discovery

Originally, of course, all drugs were natural products,

and even now natural products (or chemical moieties

derived therefrom) continue to contribute to many use-

ful and profit-making drugs. Notwithstanding, many

drug companies have abandoned them. This makes lit-

tle sense [187] because they represent an exceptionally

rich resource that occupies a distinct chemical space

[188–204], and they continue to provide approximately

half of all useful drugs [205–212]. The ability to detect

novel and previously cryptic natural products, whether

via pheromone activity [213] and co-culture [214,215],

pharmacognosy [216], proteomics [217] and metabolo-

mics [218], or via (meta)genomics [219] and genome

mining [220], will increase greatly the utility of natural

products in drug discovery. Their common role as iron

chelators [221–224] makes them of special interest

[26,62,225].

One reason given for the otherwise very odd loss of

interest in natural products is that their high fraction

of stereocentres often makes them difficult to manipu-

late chemically. Probably a more pertinent reason is

that their failure to obey Lipinski’s rules has led to the

perception that they do not easily permeate cells. The

facts of permeation speak otherwise, not least because,

if they are active against intracellular targets as most

are (and, in humans, are active orally, and thus must

cross at least the gut epithelium), they must cross

membranes easily enough. There remains a question as

to how (Fig. 4).

The role of drug transporters

… what is certain today is that most molecules of

physiological or pharmacological significance are

transported into and out of cells by proteins rather

than by a ‘passive’ solubility into the lipid bilayer

and diffusion through it … [226]

Notwithstanding the above quotation (dating from

1999), it is widely assumed that drugs cross mem-

branes according to their lipophilicity, via what little

[227] phospholipid bilayer sections of biological mem-

branes may be uninfluenced by proteins (Fig. 4A).

Actually, the evidence for this mode of transport is

essentially non-existent (and, in truth, it is hard to

acquire directly). There is an alternative view that we

have reviewed extensively [151,228–231], for which

there is abundant evidence, as well as a number of

recent reviews (e.g. from 2012 alone: [84,232–267]); this
is that transbilayer transport in vivo is negligible, and

drugs cross biomembranes by hitchhiking on geneti-

cally encoded solute transporters that are normally

involved in the intermediary metabolism of the host.

In humans, there are more than 1000 of these [231],

and a number of online databases exist [151,250].

The evidence cited above comes in various flavours,

although the most pertinent for our purposes are the

many clear experimental examples that show precisely

which genetically-encoded transporters are used to

A B C

Fig. 4. Two means by which pharmaceutical drugs can cross

cellular (and intracellular) membranes, namely via ‘free’ diffusion or

via one or more carriers (A). In a first assumed method (B), they

can do so by ‘dissolving’ in any phospholipid bilayer portions of the

cell membrane. Alternatively (C), they can hitchhike on one of the

many hundreds of natural (genome-encoded) carrier molecules.

FEBS Journal 280 (2013) 5957–5980 ª 2013 The Author Journal compilation ª 2013 FEBS 5961

D. B. Kell Novel pharmaceuticals in the systems biology era



transport specific drugs. This is especially easily

achieved, and can be made quantitative, when the

drugs themselves are toxic (or can be added at toxic

concentrations), as in yeast [268] and trypanosomes

[269–272]. It is important that the assays are at least

semi-quantitative because binary (qualitative yes/no)

assays that look for resistance when carriers are

deleted may miss them. To emphasize once more, this

is because multiple carriers can often transport each

drug, and so the loss of just one is not normally

going to confer ‘complete’ resistance. It probably

underpins the widespread belief in ‘passive’ diffusion

across membranes because ‘passive’ is often used

erroneously as a synonym for ‘transporters that we

do not happen to know about and that are in fact

important’ [151,231].

A flipside of this is illustrated by examples where

there is clear evidence that the expression (profiles) of

a subset of transporters substantially determines the

efficacy of the drug in question. Gemcitabine, the best

drug against pancreatic cancer, provides an excellent

example because the drug is only efficacious when a

suitable nucleoside transporter is well expressed in the

target tissue [233,245,249,252,273–288].

Drug transporters: ‘barriers’, tissue and

interspecies differences

As well as the historical change in an understanding of

the mode of action of narcotics (‘general anaesthetics’),

which went from entirely lipid-only views to one where

the protein targets were identified and recognized

[151,231], there are at least three contrafactuals that

those who believe in lipid-transport-only theories need

to explain: (a) the fact that most drugs do not diffuse

across the blood–brain barrier (and others) where the

lipids are not significantly different [151,231]; (b) the

substantially varying tissue distributions [289–296];
and (c) the very large species differences in cellular

drug uptake [297–299]. By contrast, the transporter-

only view recognizes the possibility of varying degrees

of tissue/individual/species enzyme distribution

[289,291,293,296,300–305] and specificity [151], and

their requirement for effecting transport provides a

simple explanation for all these phenomena. In other

words, the primacy of the need for transporters to

effect drug transport into any cell at meaningful rates

means that we need to seek to understand which drugs

use which transporters. As noted above, if a drug can

hitchhike on half a dozen transporters, a knockout of

only one will tend to show little phenotypic effect, and

thus careful quantitative methods may be necessary to

discriminate which transporters are involved; in such

cases, therefore, although the knowledge of the multi-

ple transporters is interesting, it may not be that

important to the function of getting drugs to intracel-

lular targets.

Overall, this recognition of the importance of drug

transporters shows that the problem of understanding

how drugs get into cells is not so much a problem of

biophysics, but rather a problem of quantitative sys-

tems biology. What is meant by this is outlined below.

The need for quantitative biochemical
network models

It is a commonplace in engineering that, if one aims to

understand the system being designed, especially if it is

complex, then it is necessary to have a parallel mathe-

matical or computational in silico model of the arte-

fact of interest. This has long been recognized in a few

areas of biology (e.g. neurophysiology) [306,307],

although only more recently are we beginning to see

human biochemical and physiological (and especially

metabolic) network models of the type that we require

[92,308–319], both for the entire organism or for ele-

ments such as the liver [320], a liver cell [321] or a

macrophage [322,323]. The development of these is

best performed using crowd-sourcing or community-

based methods [319,324–326]. The great utility of such

reconstructed networks [327–330] lies in areas such as:

testing whether the model is accurate, in the sense that

it reflects (or can be made to reflect) known experi-

mental facts; analyzing the model to understand which

parts of the system contribute most to some desired

properties of interest; hypothesis generation and test-

ing, allowing rapid analysis of the effects of manipulat-

ing experimental conditions in the model without

having to perform complex and costly experiments (or

to restrict the number that are performed); and testing

what changes in the model would improve the consis-

tency of its behaviour; along with experimental obser-

vations.

They also provide the necessary ground substance

for inferencing modes of action of compounds with

unknown or off-target effects (see below).

The metabolite-likeness of successful
pharmaceutical drugs

Because we know the structures of successful, mar-

keted drugs, it is possible to develop concepts such as

drug-likeness [331–333] that capture the properties

possessed by successfully marketed drugs. However,

armed with the widely available metabolomics data

indicating the metabolites that cells, tissues or body

5962 FEBS Journal 280 (2013) 5957–5980 ª 2013 The Author Journal compilation ª 2013 FEBS

Novel pharmaceuticals in the systems biology era D. B. Kell



fluids typically possess [334–337], it is possible to

investigate whether (because we consider that they

must hitchhike on carriers used in intermediary

metabolism) successful (i.e. marketed) drugs are more

similar to human metabolites than to say the Ro5-

compliant molecules typically found in drug discovery

libraries. When such studies are performed, the answer

is that most synthetic compounds in chemical databas-

es are not metabolite-like [338], whereas successful

drugs are indeed commonly metabolite-like [339–341].
This adds weight to the view that those seeking to dis-

cover new drugs should consider the metabolite-like-

ness of their molecules early in the discovery process,

along with the question of which transporters they are

likely to use. It also leads to the obvious recognition

[84] that it is important to incorporate into human

metabolic network models the reaction steps that cover

the metabolism of candidate and marketed pharmaceu-

ticals (including their absorption, distribution and

excretion).

Frequency encoding as part of
biochemical signalling

Assays are an important part of the drug discovery

process, although a simple binding or inhibition assay

of a specific target (whether isolated or even when

within a cell) does not clarify whether the inhibition

serves any useful function. A particularly clear and

interesting example comes from signalling pathways in

which the signal is not based on amplitude (i.e. that

might reasonably reflect an inhibition) but on fre-

quency (that almost certainly will not, at least not

directly). The transcription factor nuclear factor-kappa

B (NF-jB) provides a good example.

Because a collection of nominally similar cells or

unicellular organisms is not even close to being identi-

cal (thermodynamically, an ‘ensemble’), for fundamen-

tal statistical reasons [104], there is the question of

how to correlate macroscopic measurements of meta-

bolic or signalling molecules with phentotypic effects.

In cases such as when the phenotype is the ability to

replicate or divide, which is necessarily a single-cell

property, one simply cannot make such as correlation,

even in principle [342–344], and sometimes the vari-

ability of the expression profiles between single, axenic

microbial cells of even single proteins is huge

[345,346].

Another specific case in which we cannot expect to

relate the properties of collections of cells to a pheno-

type of interest is when they are not in a steady-state,

and especially when they oscillate. This is exactly what

happens in the NF-jB system. What we found, on

comparing the behaviour of a mathematical model of

the system [347,348] (Fig. 5) with the behaviour of

individual cells determined microscopically [349,350],

was that there is indeed a substantial oscillation in the

distribution of NF-jB between the nucleus and the

cytoplasm, and that this dynamic behaviour (rather

than say a ‘static’ concentration of the NF-jB) can be

related to changes in gene expression controlled by the

transcription factor. More simply, macroscopic snap-

shots of the NF-jB concentration provide no informa-

tion on the dynamics (and their heterogeneity) [351],

and it is the dynamics that is important: the protein

signal is frequency-encoded [352,353]. This phenome-

non appears to be widespread, and also applies, for

example, to p53-Mdm2 [354–359], ERK [360], Stat/

Smad [361] and elsewhere [362,363]. Such studies indi-

cate the need to study their interaction (and effects on

biology) at as high a level of organization as possible,

and certainly not solely by focussing on individual

molecules. Analysis of cells (often called high-content

screening) [364–381] is a start, although we need to

return to ‘phenotypic’ screening at the level of the dif-

ferentiated organism.

Phenotypic screening

Thus, we come full circle to the distinction made in

Fig 1. If we wish to discover new drugs that work effec-

tively at the level of the organism, we need to move

towards initial analyses that are conducted in differenti-

ated organisms [382–394]. For financial and ethical

reasons, this mainly means model organisms, with

IKK
NFkBn

2000 25001000 15000 5000

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Time

NF-kB signalling pathway

Fig. 5. The behaviour of a model of the NF-jB pathway. At time

zero, after a 2000-s period of pre-equilibration in silico, NF-jB is

‘added’ at a concentration of 0.1 lM. For more details, see

Ihekwaba et al. [347].
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candidates including Saccharomyces cerevisiae [394,395],

Caenorhabditis elegans [154,396–402], Drosophila mela-

nogaster [403–405] and Danio rero (zebrafish) [405–
410]. (Because of the numbers of organisms involved,

fragment-based discovery methods [172,411–422] are

preferable.) This will find us the effects, under circum-

stances where transporters are not a major issue, and

will assess toxicity at once. What this will not

necessarily clarify is the modes of action of the drugs;

for this, appropriate analyses are needed, many of

which can now be performed on a genome-wide scale

[268,269,423,424]. An important additional strategy is

based on the use of inferencing methods.

Inferencing (parameters from
measurement of variables)

In a typical biochemical network, the parameters are

the topology of the network, the starting (or fixed)

concentrations of enzymes, their kinetic properties

(e.g. Km and Vmax) and the starting or ‘fixed’ concen-

trations of metabolites and effectors. pH and time are

also usually treated as honorary parameters. The vari-

ables of the system are then the changes in metabolite

concentrations or fluxes that occur when one of the

parameters is changed (e.g. by adding a substrate or

effector to the system). The issue (Fig. 6) is how to

identify which parameters have changed by measure-

ment of changes in the variable alone (i.e. what effec-

tors do is modify some of the parameters). The

welcome answer is that they can [139,425–435],

although many of these problems are quite under-

determined, and the numerical methods do not yet

scale well. However, what this tells us is that the avail-

ability of candidate networks, together with series of

‘omics’ measurements of variables, does indeed allow

the possibility of inferring the modes or molecular sites

of action of polypharmacological agents when added

to whole cells or organisms.

Concluding remarks

The present review has sought to identify a number of

areas where we might beneficially look again at how

useful medicines are discovered:

• recognizing that the solution to failed target-first

approaches that lead to attrition involves adopting

function-first approaches

• recognizing that this follows in part from the fact that

very few diseases (and no complex ones) have a uni-

tary cause, and thus poly-pharmacology approaches

are required

• recognizing the need for quantitative biochemical

models that we can interrogate in silico and then val-

idate

• recognizing the major role of drug transporters in

getting drugs to their sites of action (and stopping

their accumulation at toxic levels)

• recognizing that this involves a radical re-evaluation

of the utility of the Ro5 as commonly used

• recognizing that most transporters evolved and were

selected to transport natural, endogenous metabo-

lites, and that successful drugs are structurally ‘like’

metabolites

• recognizing that this invites a major consideration of

the benefits of natural products in drug discovery

• recognizing that phenotypic screening is important,

although establishing mechanisms and modes of

action requires genome-wide analyses coupled with

sophisticated inferencing methods.

Taking all these together will once again set us more

securely on a path to successful drug discovery.
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