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1. Introduction

The metabolome is defined by the authors as the quantitative
collection of endogenous and exogenous metabolites present in a
cell or biological organism, whether synthesised and catabolised
within the biological system or absorbed from its external envi-
ronment (pharmaceuticals, food nutrients or the components of a
growth medium or of symbiotic or passenger organisms). As well as
the transcriptome and proteome, the metabolome is an appropriate
functional level to explore [1,2] in the post-genomic era, given the
desirability to study the interaction of all functional levels in sys-
tems biology investigations [3,4]. Further, as shown by Metabolic
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entation can provide significant advantages to the volume and quality of
in metabolomic investigations. The interfacing of sub-2 �m liquid chro-
and LTQ-Orbitrap mass spectrometry systems provides many theoretical
f the interfaced systems was investigated using a simple 11-component
mammalian biofluid, serum. Metabolites were detected in the metabolite
ear with their concentration over 2.5–3.5 orders of magnitude, with cor-
an 0.993 and limits of detection less than 1 �mol L−1. Reproducibility of
hromatographic peak area (RSD < 15%) and a high mass accuracy (<2 ppm)
samples interdispersed with other serum samples, analysed over a period
gle deconvolution software package (XCMS) was performed and showed
nd bw) provided significant changes to the number of peaks detected and
r the dataset used. The data were used to indicate possible biomarkers of
the instruments and XCMS to be applicable to the reproducible and valid

s present in serum.
© 2008 Elsevier B.V. All rights reserved.
Control Analysis (MCA), changes in the concentration (but not nec-
essarily the flux) of metabolites are amplified and thus detectable
even when changes in the expression of proteins or transcripts are
small or not detectable [5] and this has been observed experimen-
tally [6,7]. Many metabolites are the final downstream products of
the genome and reflect most closely the operation of the biological
system, its phenotype. Finally, metabolomics can be described as
a high-throughput strategy as the costs per analysis are low com-
pared to those of proteomics and transcriptomics, and this allows
greater numbers of samples to be analysed so to define technical
and biological variance in a valid statistical manner [8].

Metabolomes are complex systems. The physical and chemical
properties, their size and the ranges of their physiological con-
centrations are diverse, and these all influence the experimental
strategy employed [9,10]. No single analytical methodology or plat-
form is applicable to detect, quantify and identify all metabolites in
a sample, the goal of metabolomics. Instead a strategy of metabolic
profiling (or untargeted analyses) is commonly performed to allow
the detection of a wide range of chemical classes and thereby obtain
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as broad a picture of metabolism as is achievable [2,9–11]. The
combination of a range of analytical platforms is advantageous so
to provide a greater coverage of the metabolome [6,12–16]. The
strategy of metabolic profiling is advantageous as generally no de
novo knowledge of the metabolites present is required. Instead a
hypothesis-generating strategy is employed [17] where valid exper-
iments are designed to collect a large volume of biological data that
are interrogated so as to define metabolic differences related to the
experimental objectives.

Within the toolbox, which researchers in metabolomics
apply, are a range of analytical platforms that are employed
[9,18–20]. These include gas chromatography–mass spectrome-
try (GC–MS) [6,21–23], comprehensive GC×GC–MS [24–26], liquid
chromatography–mass spectrometry (LC–MS) [27–30] and vari-
ants including Ultra Performance Liquid Chromatography (UPLC)
[31–33], capillary electrophoresis–mass spectrometry (CE–MS)
[34–36], direct infusion mass spectrometry (DIMS) [37–40], Fourier
transform infra red spectroscopy (FT-IR) and Raman spectroscopy
[41–43] and NMR spectroscopy [13,44–46]. Of these, mass spec-
trometry and NMR have played a key role in the development
of metabolomics (and the related discipline of metabonomics).
Chromatography–mass spectrometry platforms offer a number of
advantages to the study of complex metabolomes. High chromato-
graphic resolution is obtainable, and this enables the partial or
complete spatial separation of metabolites prior to detection, pro-
viding a ‘pure’ fragmentation mass spectrum or accurate mass
for each metabolite to assist identification. The mass spectrom-
eter provides the ability to detect metabolites at physiological
concentrations (�mol L−1 to mmol L−1) and the capability to iden-
tify metabolites through the application of retention times/indices
and accurate mass or fragmentation mass spectra. The identifica-
tion of metabolites detected is currently an important area where
improvements are required, as many metabolites are currently
classified as unidentified [47]. GC–MS was the first chromato-
graphic platform employed in metabolic profiling studies in the
1960/1970s and more recently as metabolomics (a term first used
in [48]) in 2000 for both the study of mammalian and plant sys-
tems [23,49–51]. Although LC–MS has lagged behind these early
developments, its applications have expanded rapidly for the inves-
tigation of microbial, plant and mammalian metabolomes in the
previous 5 years [19,27,52–54].

Recently, the introduction of two novel analytical platforms
(UPLC [33] and the Orbitrap mass spectrometer [55]) has increased
the volume of metabolic information obtained from any single

sample compared to other LC–MS platforms currently used. UPLC
operates with sub-2 �m chromatographic particles and a fluidics
system capable of operating at pressures up to 15,000 psi, providing
an increased chromatographic resolution compared to conven-
tional HPLC using larger particles. The system allows the use of a
wider range of linear velocities while maintaining good chromato-
graphic resolution and therefore can provide more rapid analysis
times. The high chromatographic resolution, which results in nar-
row peak widths and an increased S/N compared to conventional
HPLC, is advantageous in metabolic profiling to allow the detection
of a greater number of metabolites at physiological concentrations.
A number of applications using UPLC have been described recently
[13,32,56,57].

The Orbitrap mass spectrometer, otherwise defined as an elec-
trostatic Fourier Transform mass spectrometer, is constructed of a
spindle-shaped central electrode and two bell-shaped outer elec-
trodes between which ions are constrained by a combination of
electrostatic and centrifugal forces. Ions orbit the central electrode
in both the axial and radial directions. The frequency of the har-
monic oscillations in the radial direction is inversely proportional
to the square root of the mass-to-charge (m/z) ratio. The image cur-
r. B 871 (2008) 288–298 289

rents of these orbiting ions are detected by the outer electrodes
and converted from time to frequency domain by Fourier transfor-
mation. The Orbitrap provides a higher mass resolution and mass
accuracy over a wider dynamic range than is achievable with many
other mass spectrometers [58], allowing the potential detection of a
greater number of metabolites of similar accurate mass with a high
level of confidence of metabolite identification, especially when
coupled to retention times and the use of mass spectral libraries
constructed with authentic standards. The Orbitrap is operated
in combination with a linear ion trap in the hybrid LTQ-Orbitrap
analytical platform and offers extra options of operation. The com-
bination of two mass analysers allows two different scan types to be
acquired simultaneously, similar to the process of MSE described for
the hybrid Q-TOF instrument by Plumb et al. [59] except that these
scans were consecutive rather than in parallel. The two scan types
are the collection of an ‘accurate mass’ spectrum in the Orbitrap in
parallel to the collection of single or multiple MS/MS mass spec-
tra using data-dependent analysis (DDA) in the linear ion trap. This
provides multiple routes to identify metabolites on-line, though the
software required to apply on-line identifications automatically is
limited at present. With the coupling of UPLC and the LTQ-Orbitrap,
fast scan or acquisition rates are required so as to provide sufficient
data points across narrow chromatographic peaks. The mass reso-
lution of the Orbitrap is correlated to acquisition time with longer
acquisition times providing higher mass resolution. An acquisition
time of 0.4 s provides a mass resolution of 30,000 (1.5–6 times
greater than that observed for high resolution TOF instruments) and
25 data points across a peak of width at baseline of 10 s. Therefore,
the acquisition of MS/MS spectra in the linear ion trap rather than
the Orbitrap is advantageous, though collection of these data in the
Orbitrap operating at a lower mass resolution of 7500 with a scan
time of 0.1 s could be applied as an alternative with 20 data points
collected across a peak. A limited number of studies report the use
of the LTQ-Orbitrap instrument for metabolic profiling [60–63].

The validity and reproducibility of metabolic profiling data are
influenced not only by the experimental and instrumental proce-
dures but also by the data processing methodologies. A common
approach for chromatography–mass spectrometry data is to apply
deconvolution software to provide in-silico conversion of the three-
dimensional raw data (m/z, retention time, ion current) to time
and mass-aligned chromatographic peaks with associated peak
areas [64,65]. This allows the alignment and fusion of data across
multiple samples. An alternative is to employ feature selection
strategies to define regions of metabolic difference between mul-

tiple sample classes [66–68]. There are a number of deconvolution
software packages existing, available either freely (XCMS [69],
MZmine [70], Metalign, MSFACTS [71], COMSPARI [72], MathDAMP
[73] and METIDEA [74]) or commercially (ThermoFisher Scien-
tific SIEVE, Waters MarkerLynx, Agilent GeneSpring and MDSSciex
MarkerView). It has been observed for GC–MS and LC–MS data that
processed data can be highly variable in respect to the number of
peaks reported and reproducibility of peak areas, accurate mass and
retention time [75]. Small changes in a single software parameter
can greatly influence the validity and information content of results
[76] and validation of software operation is required [77].

In this paper the combination of UPLC with an LTQ-Orbitrap
mass spectrometry system for metabolic profiling of serum is eval-
uated with regards to sensitivity, reproducibility (retention time,
peak area, mass accuracy) and discriminatory power for disease
biomarker studies. The analytical advantages and limitations of
both systems will be discussed with the use of an 11-component
metabolite mix and with serum samples. The application of XCMS
is also investigated for the processing of data obtained from the
metabolic profiling of serum with a case–control study employing
data obtained from a pre-eclampsia investigation.
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2. Experimental

All reagents used were of HPLC Grade purity or Analytical Grade
purity and purchased from Sigma–Aldrich (Gillingham, UK).

2.1. 11-Component metabolite mix study

Single-component solutions of each of eleven metabolites
(leucine, glutamic acid, valine, phenylalanine, tryptophan, cyto-
sine, adenosine, dopamine, galactose, glucose-6-phosphate and
glucosamine-6-phosphate) were accurately prepared at concentra-
tions in the range 15–22 mmol L−1 and aliquots of each combined
to create a multi-component metabolite solution in which each
metabolite was present at a concentration of 1–3 mmol L−1. Dilu-
tion of this stock solution was performed to provide a series of
calibration solutions in the concentration range 0.1–1000 �M.

Analysis of these calibration solutions was performed employ-
ing UPLC interfaced to the LTQ-Orbitrap mass spectrometer system,
as described below. One technical replicate was analysed for each
of the calibration solutions with the exception of the blank solution
(water) where three replicates were analysed.

2.2. Preparation of serum and plasma samples

Serum samples (100 �L) were deproteinised by mixing with
methanol (300 �L) at room temperature, vortex mixing for 15 s
and centrifugation (13,487 × g, 15 min). Supernatants were trans-
ferred to Eppendorf tubes and lyophilised (HETO VR MAXI vacuum
centrifuge attached to a HETO CT/DW 60E cooling trap (Jouan,
Gydevang, Denmark)). Samples were reconstituted in 100 �L water
prior to analysis.

2.3. Reproducibility study using biologically identical quality
control (QC) samples

Two separate reproducibility studies of length 40 h were per-
formed for the separate analysis of serum samples in positive and
negative ion modes. The objectives of the studies were to both
assess the reproducibility of the UPLC/LTQ-Orbitrap coupled sys-
tem and report on the number of metabolites that can be detected
using the platform. Fourteen biologically identical serum samples
(designated as QC samples) prepared from a pooled serum sample
(available commercially from Sigma-Aldrich, Gillingham, UK) were
analysed at intervals during a 40 h period. Data for each QC sample

was acquired as analysis number 1, 2, 3, 4, 5, 18, 29, 41, 52, 65, 76,
88, 99, 111 and were interdispersed with 97 other serum samples.
Analysis of the samples was performed as described below.

2.4. Clinical case–control biomarker investigation

A small case–control clinical metabolomics study was per-
formed to investigate the potential of the technologies described
for application in the discipline of mammalian biomarker discov-
ery. This study was designed as a validation study for previously
published work on pre-eclampsia (a multi-system disorder of
pregnancy [78]). Briefly, plasma samples were obtained from
20 primiparous Caucasian women with pre-eclampsia diagnosed
according to ISSHP guidelines from a single maternity unit in
England. Controls were obtained from the same antenatal popu-
lation and were matched for maternal age, parity and BMI and for
gestational age at sampling. Plasma samples were only retained
from controls for this study if they subsequently experienced an
uncomplicated pregnancy. The full sample collection and match-
ing protocol has been reported [79]. Samples were prepared and
analysed in a random order.
r. B 871 (2008) 288–298

2.5. UPLC/LTQ-Orbitrap operation

Samples were analysed in positive and negative ion modes,
separately, with a method developed using a closed-loop, multi-
objective optimization experiment, similar to those described for
GC–MS, GC×GC–MS and ESI–MS [80–82]. Samples were analysed
in a randomized order using an Acquity UPLC (Waters, Elstree,
UK) coupled to a LTQ-Orbitrap mass spectrometry system oper-
ating in electrospray ionization mode (Thermo Fisher Scientific,
Bremen, Germany). Chromatographic separations were performed
employing an Acquity UPLC BEH 1.7 �m-C18 column at a flow rate of
0.4 ml min−1. The column was eluted with 0.1% formic acid in water
(A) and 0.1% formic acid in methanol (B). The column was held at
100% A for 1 min and subsequently ramped to 100% B (curve 5)
over 15 min, followed by a 4 min period at 100% B before a rapid
return to 100% A and an equilibration period of 2 min. The col-
umn and samples were maintained at temperatures of 50 ◦C and
10 ◦C, respectively. A 10 �L sample volume was introduced onto
the column. 50% of the column effluent was transferred to the mass
spectrometer. Centroided mass spectra were acquired in the mass
range of 50–1000 Th using the Orbitrap mass analyser operating
with a target mass resolution of 30,000 (FWHM as defined at m/z
400) and a scan time of 0.4 s. All samples for each analytical run
were prepared, stored at 10 ◦C in the UPLC autosampler and anal-
ysed within 48 h of reconstitution. Mass calibration was performed
according to the manufacturer’s guidelines using a manufacturer-
defined mixture of sodium dodecyl sulphate, sodium taurocholate,
the tetrapeptide MRFA and Ultramark 1621.

Data obtained in the instrument-specific data format (.RAW)
were converted to NetCDF files for further data analysis using a
conversion software program (file converter program available in
ThermoFisher Scientific Xcalibur software).

2.6. Deconvolution using XCMS software

After analysis, each three-dimensional data matrix (inten-
sity × m/z × time – one per sample) was converted (or deconvolved)
into a vector of peak responses, where a peak response is defined as
the sum of intensities over a window of specified mass and time
range (e.g. m/z = 102.1 ± 0.01 and time = 130 ± 10 s). In this experi-
ment the deconvolution was performed using the freely available
XCMS software (http://masspec.scripps.edu/xcms/xcms.php).

XCMS is an LC–MS-based data analysis approach which incorpo-
rates novel nonlinear retention time alignment, matched filtration,

peak detection, and peak matching [69,83]. The XCMS deconvo-
lution process can be broken down into four basic steps: peak
picking, peak grouping, and retention time correction, followed by
a second peak grouping. After retention time correction, the ini-
tial peak grouping becomes invalid and the resulting data needs to
be regrouped. A detailed description of the XCMS methodology is
available (http://masspec.scripps.edu/xcms/xcms.php).

The operation of the XCMS software is complex but flexible
allowing many parameters to be altered or ‘tuned’ by the user. The
peak picking step provides eight parameters to optimise (matched
filter method), the peak grouping provides five parameters, and the
retention time correction also provides five parameters. Preliminary
experiments (data not shown) showed that the raw data presented
in this study were insensitive to the majority of these parame-
ters (changing the parameter settings showed minimal changes
in the number of peaks detected and the reproducibility of peak
areas). Only two parameters significantly affected the number of
peaks found and the reproducibility of peak areas when they were
changed from their default settings. These two parameters were the
signal to noise threshold in the peak picking algorithm, snthresh, and
the “the inclusiveness of the grouping” parameter in the peak group-

http://masspec.scripps.edu/xcms/xcms.php
http://masspec.scripps.edu/xcms/xcms.php
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ing algorithm, bw (used only in the second pass of this algorithm).
In order to provide an indication of the effects of these two parame-
ters on the data obtained from metabolic profiling studies described
above, a set of in-silico experiments were performed. Each raw QC
dataset (positive and negative mode, n = 14) was processed using
XCMS such that snthresh was varied from 3–20 (default = 10) and
bw was set to either 5, 10 or 30 (default 30). The optimal parame-
ter settings were then compared to the default settings using the
pre-eclampsia dataset.

2.7. Statistical analyses

In order to assess and compare the reproducibility of the
metabolic profiles for different studies, or operating conditions,
some sort of statistical analysis and/or graphical representation of
response trends are required. Traditionally, in industrial process
quality control (QC), only a small number of measurements need
to be compared and thus the vast majority of QC analysis results are
depicted using variants of the Shewhart’s control chart plus asso-
ciated statistics [84]; (see http://www.multiqc.com/shewhart.htm
for demonstration). These charts independently monitor the varia-
tion in each QC measurement and then through the analysis of long
and short term variations (LTV and STV, respectively) and the cal-
culation of statistics such as Capability Index or Performance Index,
the quality of the process is estimated.

The quality of a manufactured product centres on its uniformity
about a target. There is no unique target in clinical chemistry, but
there is a true concentration for each sample. So experimental qual-
ity is defined as uniformity of assayed concentrations about true
concentrations. Tolerance limits tell us how much variation can be
accepted. They are laid down by national or international regula-
tions (for example, Food and Drug Administration, FDA) or derived
from clinical needs or biological variation. In metabolomic analy-
sis employing chromatography–mass spectrometry platforms, the
absolute concentration (represented by the chromatographic peak
area) of a particular metabolite in a QC serum sample cannot be pre-
dicted, thus analytical quality at a single metabolite level resolves
down to setting tolerances on the variance of QC responses over a
time period. The FDA suggests that variability of ±15% of the nom-
inal value represents an acceptable degree of reproducibility, in
addition the FDA allow 33% of QC samples to fall outside the accep-
tance criteria whilst accepting the analytical run as suitable for data
analysis [85]. In research, rather than industry, the tolerances may

need to be relaxed (acceptance of 20% and 40% are reported). So if
the LTV or STV of the QC samples move outside the tolerance limits
the process is said to be out-of-control and the cause/s of the intol-
erance need to be traced and eliminated, thus moving the process
back into statistical control.

For the QC experiment described above the results will be
reported in the following way. For each dataset generated by the
XCMS process, any peak vector (response for that peak across all
QC samples) with more than 40% missing values will be removed.
This is performed for two reasons. Firstly, because such lack of
consistency is a clear indication of poor reproducibility across
the experiment. Secondly, any subsequent statistical measures for
these peaks will be unrepresentative of the actual distribution of
the data. For each peak vector that passes the missing values cri-
teria the relative standard deviation (RSD – population standard
deviation divided by the population mean) was calculated and 15%
and 20% tolerance tests were performed. Also when comparing the
different XCMS settings, the number of peak vectors with an RSD
of less than 15% were compared with the number of peaks consis-
tently detected. This RSD value was arbitrarily selected as a good
threshold for a peak of suitable peak area reproducibility.
r. B 871 (2008) 288–298 291

For the pre-eclampsia study the statistical analysis follows the
protocols used in previous clinical metabolomics studies [22].
Univariate statistical analysis was performed in order to both pick
and assess the characteristics of each independent peak generated
using the above protocol. As the experimental design employed in
this study was that of a matched case–control study, and taking
into account that assumptions about population normality cannot
be assumed, the non parametric rank-based Mann–Whitney U-test
was used. For each metabolite, the null hypothesis (that the sample
metabolite concentrations from both classes came from popu-
lations with the same mean) was tested. The critical p-value for
rejecting the null hypothesis in a single test is usually 0.05 or 0.01
– i.e. there is a one in 20 chance or a one in 100 chance of randomly
finding a significant biomarker (a false discovery). In this study
many metabolites are tested in parallel. In order to compensate
for the possibility of Type I errors (or false discoveries) the p-value
for rejecting the null hypothesis for an individual metabolite
must be reduced. Due to the high chromatographic and mass
resolution of the technologies used in this study it is likely that
many metabolites will have more than one peak (due to chemical
adduction, isomerism, dimerization, etc); thus, in effect reducing
the number of parallel tests. As a guide, the critical p-value was
loosely set to 0.01. This value is still quite high but provides a useful
threshold for the comparisons presented in this paper.

3. Results

3.1. Linear dynamic ranges, detection limits and mass accuracy
for an eleven-component metabolite mix

The analytical capabilities of the combined UPLC/LTQ-Orbitrap
system were investigated with a simple mixture of eleven metabo-
lites present in a water matrix. This investigation was limited in the
number of metabolites studied and is an initial descriptive study to
define analytical capabilities. Data were collected as single tech-
nical analyses over the concentration range 0.1–1000 �M. Data for
three technical replicates were also acquired for a blank sample
(water only).

Typical chromatographic peak widths ranged from 7 to 15 s
at baseline, demonstrating that the achievable chromatographic
resolution is relatively high for the UPLC system. Peaks of nar-
rower width have been reported [86], though the authors prefer
these peak widths to ensure the satisfactory collection of data

points across a chromatographic peak while operating the Orbi-
trap mass analyser with a mass resolution of 30,000 which requires
a 0.4 s acquisition time. In general peak widths of 5–10 s allow the
collection of an adequate number of data points across a chromato-
graphic peak while maintaining good sensitivity and mass accuracy
for a wide range of mass spectrometers. The authors operate the
UPLC system at a less than optimal flow rate and temperature to
achieve good data sampling across a chromatographic peak. How-
ever, wider chromatographic peaks can produce greater co-elution
and a lower chromatographic resolution which can be surmounted
with appropriate data processing of accurate mass data. The prob-
lems of matrix effects can be observed with co-eluting peaks. It
is recommended to study narrower chromatographic peaks when
collecting nominal mass data where data processing is less effective
for co-eluting peaks. However, it should be noted that a number
of peaks displayed a peak width considerable greater than this
range (15–30 s) across the chromatogram. This is a compromise
in metabolic profiling of a wide diversity of metabolite classes, of
which not all classes are suited to the chromatographic phase and
methodology employed in this study. The application of reversed
phase and HILIC columns may be beneficial in metabolic profiling

http://www.multiqc.com/shewhart.htm
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Table 1
Data detailing the limits of detection (LOD), linear concentration ranges and correlation coefficients for 11 metabolites detected in positive and negative ion modes

Metabolite Ion mode Linear dynamic range (�mol L−1) Correlation coefficient LOD (�mol L−1)

Galactose Negative 0.9–900 0.9992 0.84
Glutamic acid Negative 0.8–800 0.9987 0.73
Glutamic acid Positive 0.8–400 0.9935 0.79
Phenylalanine Negative 0.8–800 0.9968 0.72
Phenylalanine Positive 0.08–400 0.9988 0.07
Glucose-6-phosphate Negative 0.3–600 0.9958 0.22
Adenosine Negative 0.6–600 0.9959 0.58

areas

RT

2.6
2.0
2.9
1.1
0.7
0.4
0.1

tion a
e is a
ic stan
Adenosine Positive 0.6–360
Dopamine Negative 0.8–800
Glucosamine-6-phosphate Negative 0.4–400
Leucine Positive 0.7–700
Cytosine Positive 0.9–900
Valine Positive 0.7–700
Tryptophan Positive 0.2–200

Table 2
Evaluation of the reproducibility of retention times (RT), accurate masses and peak

Metabolite Ion mode RT range (min)

Valine/norvaline Positive 0.97–1.04
Leucine/isoleucine Positivee 1.96–2.05
Phenylalanine Positive 2.90–2.94
Uric acid Negative 1.04–1.08
3-Methyl-2-oxobutanoic acid Negative 2.68–2.76
Alpha-hydroxyisovaleric acid Negative 3.45–3.48
Glycerophosphocholine Negative 14.89–14.94

The values for accurate mass mean error are acquired with external mass calibra
compensate for short-term variations in the mass calibration. Glycerophosphocholin
have been identified by comparison of retention time and accurate mass to authent

studies by providing a combined chromatographic resolution of a

greater number of metabolites [29].

The data for linear dynamic ranges and detection limits are
shown in Table 1, and were calculated using accurate mass sin-
gle ion chromatograms (mass, approximately ±0.01 Da). Linear
dynamic ranges extended over 2.5–3.5 orders of magnitude with
correlation coefficients greater than 0.993. Deviation from linear-
ity was observed at concentrations greater than the upper limit
defined. The gradient decreased at these concentrations compared
to the concentration range describing linearity. These are sat-
isfactory though wider dynamic ranges have been reported for
other instruments, including quadrupole mass spectrometers. Lim-
its of detection were less than 1 �mol L−1, which is important as
the physiological concentrations of many primary metabolites are
greater than this concentration (see http://www.hmdb.ca/). The
chromatographic resolution and S/N achieved combined with the
high sensitivity of the Orbitrap mass analyser is advantageous for
metabolic profiling of mammalian biofluids. A number of metabo-
lites were detected in both positive and negative ion modes.

An evaluation of the short-term mass accuracy for four metabo-
lites across a wide concentration range was also calculated and
is described in Fig. 1. The accurate mass was calculated using

Fig. 1. Mass accuracies (ppm) observed for galactose (�), glutamic acid (�), pheny-
lalanine (�) and dopamine (�) acquired in positive and negative ion modes over a
range of concentrations (1–1000 �mol L−1).
0.9995 0.58
0.9991 0.78
0.9986 0.35
0.9992 0.66
0.9999 0.86
0.9973 0.65
0.9998 0.18

for 14 QC samples analysed over a period of 40 h

RSD (%) Mean error in accurate mass (ppm) Peak area RSD (%)

−0.91 9.6
−0.38 7.7

0.04 14.7
−5.6 (−0.18) 13.6
−4.9 (0.48) 12.5
−5.4 (0.02) 13.8
−6.5 (−1.16) 10.5

nd those values in parentheses are calculated using an internal mass calibrant to
possible identifier of a metabolite as defined by metabolite class. Other metabolites
dards.

the single mass spectrum acquired at the chromatographic peak
apex. These mass accuracies were observed with an external mass
calibration only and show that sub-2 ppm mass accuracy is read-
ily achievable over a wide concentration range (extending over 3
orders of concentration) to concentrations approaching the limit of
detections for the four metabolites studied, though further inves-
tigations over a wider range of metabolites is required. This is
important in metabolomics because of the wide range of physio-
logical concentrations observed which allows narrow mass range
windows to be employed in deconvolution software and also pro-
vide more definitive metabolite identifications. The application of
an internal mass calibrant or stitching algorithms [87] may increase
this mass accuracy further.
3.2. Reproducibility of retention times, longer-term mass
accuracy and peak areas for a 40 h analytical run

The assessment with a pure metabolite mixture described the
analytical capabilities of the coupled UPLC and LTQ-Orbitrap plat-
forms, though for a relatively simple sample. The next assessment
investigated the reproducibility of retention times, accurate masses
and peak areas for a single analytical batch acquired using serum, a
considerably more complex sample. This was performed by assess-
ing results obtained for the analysis of biologically identical QC
samples, during an analytical run of 111 samples over a 40 h period.
The data were assessed and integrated using the Xcalibur software
package (ThermoFisher Scientific, Bremen, Germany) to determine
retention times, mass accuracy and peak areas for a randomly cho-
sen set of definitively identified metabolites (accurate mass and
retention time match of authentic standard and metabolite in sam-
ple). Many of the metabolites are relatively polar with only one
lipid-based metabolite chosen and metabolites were not chosen to
represent all classes present in the serum metabolome. The accu-
rate mass is calculated using the single mass spectrum acquired at
the chromatographic peak apex. The data are shown in Table 2 and

http://www.hmdb.ca/
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Fig. 2. A typical negative ion base peak chromatogram of serum showing the wide dynam
(RSD < 20%) in a set of QC serum samples across a 40 h batch analysis.

a typical base peak chromatogram is shown in Fig. 2. Retention time
is adequately reproducible with relative standard deviations of less
than 3%, which is acceptable for chromatographic peaks of typical
width 7–15 s. The reproducibility of peak areas are also within an
acceptable range of less than 15% RSD, a criterion described recently
for metabolic profiling applications [85,88]. The mean errors in
accurate mass were less than 3 ppm for positive ion mode employ-
ing external mass calibration only, though were typically between
−4.9 and −6.5 for negative ion mode showing a systematic bias.
This bias was compensated for with an internal mass calibrant (cit-
ric acid, [M−H]− mass 191.0192) and showed a decrease in the mean

Fig. 3. Assessment of peak area reproducibility and number of peaks reproducibly detect
and 5 (�)) and snthresh (1–20) settings for negative ion data for all XCMS in-silico exper
dataset. Values for the parameter setting snthresh = 1 was calculated only for bw = 10.
ic range of metabolites detected. More than 1000 peaks were reproducibly detected

error to the range of −1.2 to 0.48 ppm. These levels of mass accuracy
are acceptable and when combined with retention times are suit-
able for metabolite identifications by comparison of retention time
and accurate mass to libraries constructed using authentic stan-
dards. The authors would like to stress that at least two orthogonal
properties should be employed for metabolite identification when
employing one analytical instrument, though multiple identifica-
tion strategies should be employed [89]. In studies similar to those
reported here, the authors apply a strategy of retention time, accu-
rate mass and, where possible, MS/MS spectra for identification of
metabolites.

ed in more than 60% of the samples for a range of values for the bw (30 (�), 10 (�)
iments. Labels show the different snthresh parameter settings for each processed
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3.3. Reproducibility study of the XCMS software using QC samples

The evaluations described above describe the reproducibility
observed for the coupled analytical platforms for simple metabo-
lite mixes and complex mammalian fluids, in this example serum.

The process of converting analytical data to biological knowledge
requires the conversion of the raw analytical data (m/z vs retention
time vs ion response for chromatography–mass spectrometry-
derived data) to a data matrix that is aligned in both the m/z
and retention time dimensions. A range of deconvolution soft-
ware packages are available to undertake this process [69–74]. The
authors currently employ XCMS and an evaluation of the software
was designed employing 14 QC samples analysed over a period of
40 h so as to mimic real experimental conditions and variations. A
range of software settings are available and an initial study showed
that two of these (bw and snthresh) were sensitive, changing the
parameter settings showed large changes in the number of peaks
detected and the reproducibility of peak areas. These settings were
evaluated over a range of values to assess further the reproducibil-
ity of processed data and the volume of biological information
acquired.

Fig. 3 shows the variability of the number of peaks detected
with RSD less than 15% in comparison to the number of peaks
detected in more than 60% of samples investigated, while vary-
ing both the bw and snthresh settings. The plot shows that as the
snthresh increases fewer peaks are detected, though the ratio of

Fig. 4. The distribution of relative standard deviation (RSD) for all metabolites detected
snthresh = 10 (c). The distributions of peaks passing the tolerance test for RSDs of less tha
(d) are also shown.
r. B 871 (2008) 288–298

peaks detected to peaks with RSD less than 15% remains relatively
constant for all three bw values in the snthresh range of 5–20. In
the range of snthresh below 5 this linear ratio is not observed with
the increase in the number of peaks detected being greater than
the increase in the number of reproducible peaks observed. One

might expect that as the snthresh parameter is lowered (i.e. adding
in relatively noisy peaks) the number of peaks with less than 15%
RSD would level off to a constant value. However, although the gra-
dient reduces as snthresh decreases to a value less than 5 both the
number of peaks found and the number of ‘reproducible’ peaks con-
tinue to increase. Unexpectedly, employing a snthresh = 1 provides
a greater number of reproducibly detected and reported peaks than
using higher snthresh values. For example, an additional 100 repro-
ducible peaks are detected for bw = 10 when comparing snthresh = 1
and snthresh = 3. This is a surprising result as snthresh = 1 is ana-
lytically defined as the measured response for noise and signal
being of the same amplitude. The definition of snthresh for the
software is ambiguous. Although improbable, these peaks could
be reproducible noise peaks observed over a 40 h period although
a number can be expected to be authentic metabolite peaks. In
case–control studies where metabolic differences between sample
classes are being investigated, noise peaks can be filtered during
pre-processing steps using statistical methods, though this is not
necessarily true for multivariate methods where appropriate cross-
validation is required [8]. This unusual observation may be a result
of minimal noise being detected in the Orbitrap with the noise

in negative ion mode in a minimum of 60% of all samples for snthresh = 1 (a) and
n 20% and 40% for a range of signal intensities for snthresh = 1 (b) and snthresh = 10
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wide concentration range, important in metabolic profiling where
Table 3
The variability in the number of double peaks reported for a range of snthresh and
bw settings

snthresh bw Number of
peaks reported

Number of peaks reported
more than once (%)

3 30 3557 727(20.4%)
3 10 3882 36 (0.9%)
5 30 2566 377 (14.6%)
5 10 2737 15 (0.4%)
8 30 1794 183 (10.2%)
8 10 1855 9 (0.5%)

10 30 1479 120 (8.1%)
10 10 1517 9 (0.6%)
12 30 1257 79 (6.3%)
12 10 1285 3 (0.2%)
15 30 992 58 (5.8%)

15 10 1014 1 (0.01%)
18 30 796 41 (5.2%)
18 10 807 2 (0.25%)
20 30 695 28 (4%)
20 10 703 2 (0.3%)

thresholds applied when acquiring accurate mass data. This is a
relatively unique advantage of the Orbitrap mass analyser.

Fig. 3 also shows that across all snthresh values a bw parameter
value of 10 slightly improves the number and reproducibility of the
peaks found with respect to the default setting of 30. The bw setting
was investigated in a stepwise manner for a range of snthresh values.
The data is shown in Table 3 and indicates that for the data inves-
tigated the standard setting of bw = 30 is unsuitable as the number
of double peaks is significantly greater than when compared to a
bw = 10. The assumption can be made that the default setting of
bw = 30 is suitable for HPLC studies where peaks are observed with
greater peak widths but is unsuitable for UPLC conditions with nar-
rower peak widths. This highlights the requirement to evaluate and
validate software settings for the dataset of interest.

Fig. 5. An example of evaluating raw data for a single metabolite to ensure differences in
uric acid using the data acquired with settings for snthresh of 1 and bw 10 in negative ion
r. B 871 (2008) 288–298 295

The distribution of peak area variability for the 14 QC samples
was further assessed using the bw = 10 setting as shown in Fig. 4
for snthresh values of 1 and 10. The plots show the distribution
of RSD for all peaks detected and also the number of all peaks
observed with an RSD less than 15% and 20%, respectively, for differ-
ent response ranges. It is evident that the majority of peaks detected
were observed with an RSD less than 20%, though other peaks were
detected with RSDs up to 100%. The reduction of the snthresh to 1
significantly increases the number of peaks reported with intensi-
ties less than 1e+05. However, the proportion of these low intensity
peaks with RSDs less than 15% and 20% are similar as for peaks of
greater peak areas. This result shows that reproducible data can be
obtained for more than 1000 peaks over a 40-h analytical run for a
metabolite concentrations are varied. The low variability observed
for both mass accuracy and retention times can be expected to
underpin the low variability of peak areas observed across multiple
samples.

Similar trends were observed for positive ion data (data not
shown) as are shown for negative ion data.

From the results of the evaluation described above it was
decided that the most appropriate XCMS operating parameters for
these data (and given the type of univariate statistics being used in
the case–control study) were bw = 10 and snthresh = 1, with all other
settings used as described as default settings. It is recommended
that a similar evaluation be performed for data acquired on dif-
ferent instruments or collected with different methodologies that
influence peak width, retention time reproducibility and accurate
mass reproducibility.

3.4. Case–control metabolic biomarker study for pre-eclampsia

The technologies described (UPLC, LTQ-Orbitrap and XCMS soft-
ware) are to be employed in a range of metabolomic investigations

the median peak areas for the case and control sample sets. The data shown is for
mode.



296 W.B. Dunn et al. / J. Chromatogr. B 871 (2008) 288–298

ion of
the i

id is in
Fig. 6. The relationship between p-value and fold difference in intensity as a funct
increase in the intensity for the case group and empty circles indicate a decrease in
and a peak is therefore identified with different identifiers in each diagram. Uric ac

in the future because of their combined advantages. One of these
application fields will be that of the study of mammalian biofluids
to determine biomarkers indicative of disease and drug toxicity or
efficacy. A small case–control study was performed to assess the
efficiency of the technologies in these types of studies. A set of 40
samples (20 case and 20 control) obtained from a pre-eclampsia
study were analysed. The data and results are shown to evaluate the
applicability of the technologies and not to obtain biological conclu-
sions, since a larger sample set is recommended for this objective.

Due to the surprising results observed for the QC reproducibility
study it was decided to test the XCMS algorithm for the case–control

study using three snthresh settings (1, 5 and 10). Data were pro-
cessed using XCMS default settings with the exception of snthresh
(1, 5 and 10) and bw (10). Subsequent univariate data analysis was
undertaken to define metabolites describing statistically signifi-
cant differences between the two sample classes. The numbers of
metabolite peaks defined as statistically different between the two
classes using critical p-values of 0.01 and 0.001 are shown in Table 4.
As expected, the number of discriminatory metabolites decreases
when comparing results obtained using the two critical p-values
and also decreases as the snthresh is increased. If the extra peaks
reported are defined as metabolites it shows that setting a high
snthresh can reduce the biological information obtained from the
data. The authors recommend returning to the raw data to assess
the possibility of false positives and this process can be performed
in a number of ways. One of these is shown in Fig. 5 where both the
raw data are plotted and also the area under the Receiver Opera-
tor Characteristic (ROC) curve is calculated. The data are shown for
uric acid, a metabolite already identified as a possible metabolic
biomarker [90]. A p-value of 0.0004 and a ROC area of 0.89 were
observed for this metabolite. A similar trend is observed for positive
ion data.

Table 4
The influence of snthresh and critical p-value on the number of metabolites defined
as significantly different between the case and control samples for the negative and
positive ion datasets

S/N Mode p < 0.01 p < 0.001

1 Negative 125 25
5 Negative 61 14

10 Negative 30 7
1 Positive 103 26
5 Positive 57 16

10 Positive 32 10
snthresh = 1 (a) and snthresh = 10 (b) for negative ion data. Filled circles indicate an
ntensity for the case group. The peak identifiers are unique for each XCMS dataset
dicated by the arrow (→).

Fig. 6 shows the range of fold differences in mean peak area
and critical p-value for all metabolites tested for snthresh = 1 and
snthresh = 10. Critical p-values of less than 0.0001 were observed
with typical fold differences in the peak area (related to metabolite
concentration) being less than two. This indicates that the disease
phenotype is reflected in the composition of individual compo-
nents of the serum metabolome in a comparatively small way and
that large changes in individual metabolite concentration are not
observed. This may be taken to reflect the robustness of biological
networks [91] and suggests that more successful diagnoses are
likely to be based on multiple metabolites. As metabolic profiling
studies require the technical variability to be lower than the bio-
logical variability these kinds of results show that low analytical
variability is essential in these studies.

4. Conclusions

This study has highlighted the advantages of coupling a UPLC
chromatographic system with the LTQ-Orbitrap mass spectrome-
try system. Peaks of width 7–15 s, high mass resolution and mass
accuracy and linear dynamic ranges extending over 3 orders of
magnitude to concentrations less than 1 �mol L−1 are all advanta-
geous in metabolic profiling experiments. These advantages allow

the technologies to be applied to the metabolic profiling of complex
samples and this has been demonstrated for a case–control study of
pre-eclampsia where a number of metabolites were shown to differ
between the two classes in both positive and negative ion modes.
We emphasise that this small study was used to demonstrate the
applicability of the tools and is not intended to derive biological
conclusions, where a larger sample set should be employed [8].

An important observation is that of the variability introduced
to the results during the process of converting raw analytical data
to a data matrix which is both retention time- and mass-aligned.
The process of mass alignment, retention time alignment and peak
picking and subsequent matching of peaks across multiple sam-
ples can all introduce error and variability into the final dataset.
The reproducibility and validity of the final dataset is as depen-
dent on the software used to perform this as on the analytical and
clinical experimental design. In a number of studies, we have dis-
covered that optimal software settings are problem-specific and are
dependent on both the analytical platform used to acquire the data,
the methods employed for any given analytical platform and the
sample type. We have evaluated a single software package and cho-
sen ‘optimal’ settings for the data described with the aim of using
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univariate analysis methods. Different settings may be preferred
if multivariate analysis is performed without any preprocessing
to remove biologically irrevelant or non-reproducible peaks (e.g.
remove those peaks which fail the tolerance test). This study was
quite limited in the search space for optimal parameter settings. It
may be prudent to expand out this optimization process to include
all 18 XCMS settings, although this may be a very time consuming
and expensive process.

We have demonstrated an appropriate experimental design to
evaluate a single software but we would recommend evaluating
several deconvolution software packages with one’s own data. The
authors do commend the XCMS software developers for making
this process relatively straight forward. An appropriate experi-
mental design employs the use of QC samples interspersed in the
analytical run to assess reproducibility of the chromatograph and
mass spectrometer, as discussed previously [85]. We highly rec-
ommend this approach and apply this in all our experiments so to
assess the quality of our data acquired with UPLC–MS and GC–MS
platforms.

The combination of these technologies has described a number
of metabolites worthy of further investigation as time-of-disease
biomarkers, though further validation studies are required employ-
ing larger numbers of samples. However, it is also worth assessing
these biomarkers in a study investigating prognosis i.e. before
clinical symptoms are observed [4]. The identification of these
metabolic biomarkers is an ongoing complex process and will
greatly benefit from the use of accurate mass and MS/MS spectra
combined with confirmation of identity using authentic standards.
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