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Background The stability of mammalian serum and urine in large metabolomic
investigations is essential for accurate, valid and reproducible
studies. The stability of mammalian serum and urine, either pro-
cessed immediately by freezing at �808C or stored at 48C for 24 h
before being frozen, was compared in a pilot metabolomic study of
samples from 40 separate healthy volunteers.

Methods Metabolic profiling with GC-TOF-MS was performed for serum and
urine samples collected from 40 volunteers and stored at �808C or
48C for 24 h before being frozen at �808C. Subsequent Wilcoxon
rank sum test and Principal Components Analysis (PCA) methods
were used to assess whether differences in the metabolomes were
detected between samples stored at 48C for 0 or 24 h.

Results More than 700 unique metabolite peaks were detected, with over 200
metabolite peaks detected in any one sample. PCA and Wilcoxon rank
sum tests of serum and urine data showed as a general observation
that the variance associated with the replicate analysis per sample
(analytical variance) was of the same magnitude as the variance
observed between samples stored at 48C for 0 or 24 h. From a
functional point of view the metabolomic composition of the majority
of samples did not change in a statistically significant manner when
stored under two different conditions.

Conclusions Based on this small pilot study, the UK Biobank sampling,
transport and fractionation protocols are considered suitable to
provide samples, which can produce scientifically robust and valid
data in metabolomic studies.

Keywords Metabolomics, metabolic profiling, GC-MS, univariate analysis,
multivariate analysis, biofluid, serum, urine

Introduction
Life is structured on many levels of biological
organization. Only in the current post-genomic

era, after sequencing of many genomes
(http://genomesonline.org/), has the complexity of
biological organization at the cellular level become
fully recognized. To understand the function and
dysfunction of such complex systems requires inte-
grated, systems-level approaches.1,2 The UK Biobank
opens up the opportunity, through the provision of a
collection of biofluid and tissue samples representa-
tive of the UK population aged 40–69, to study the
interaction of the ‘omes’ (including the genomic and
expression levels) and the environment for the
integrated study of health and disease in humans.
This can be undertaken by studying single ‘omic’
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functional levels (genome, transcriptome, proteome
and metabolome), or alternatively in an integrative
systems biology approach quantitatively studying each
‘ome’ and the inter-ome connectivities.

We have a special interest here in the metabolome,
which is defined as the quantitative collection of
low molecular weight (MW) compounds present in
a biological system, which participate in metabolic
reactions required for growth, maintenance and
normal function.3,4 It is considered the optimal level
at which to study a cell or organism,5 since the
founders of Metabolic Control Analysis (MCA) long
ago proved that while changes in the expression level
of individual genes and proteins normally have only
marginal effects on fluxes, they can and do have very
large changes in the concentrations of metabolic
intermediates6,7 (as measured by the metabolome).
Operating at the functional level of the cell, and as
the final ‘downstream’ product of gene expression,
the metabolome reflects both genotypic8 and pheno-
typic information.9 The study of the metabolome
(termed metabolomics) is the integration of many
processes in a complex workflow, in effect a meta-
bolome pipeline,10 consisting of experimental design,
sample collection and preparation, analytical opera-
tions, data processing and data storage. Data pro-
duced from large-scale metabolomic studies are
extensive and require structured storage of both the
data and meta-data.10–12 Powerful multivariate ana-
lyses, either supervised or unsupervised, are required
to interrogate the data and define structure related
to biological similarities or differences of the
system.5,10,13 Appropriate experimental design,
sample numbers and statistical analyses are required
to ensure generation of accurate and valid hypotheses
and biological conclusions.14 In many metabolomics
studies the initial objective is that of an inductive,
data-driven, rather than hypothesis-driven, approach
to obtain the maximum overview of the biological
landscape before hypothesis generation and testing.15

This is not least because of the fact that it is hard to
make hypotheses about molecules one does not even
know may exist as they have not been detected or
reported (at all or in the relevant system).

A number of analytical strategies are employed in
the investigation of the metabolome,16,17 with its
study being analytically challenging because of its size
(the human metabolome is estimated to contain at
least 1500 metabolites not including gut microbiota
derived metabolites)18,19 and large variations in
chemical and physical properties (polarity, reactivity,
volatility, MW) and concentrations (sub pM-mM).
This complexity negatively influences the overall
objective of metabolomics, the unbiased quantifica-
tion and identification of all metabolites in a
biological system. Currently no metabolomic strategy
or technology can fulfil this goal. An approach
employing metabolic profiling (semi or fully quanti-
tative detection of 10s–1000s of metabolites of

differing functionalities present in many different
biological pathways), in combination with the use of
multiple analytical platforms, is preferred if one is to
obtain the maximum metabolomic information. The
goal of quantifying the complexity and variation of
the human serum metabolome is currently being
attacked by the HUSERMET project at The University
of Manchester (www.husermet.org) using the
approach described above.

Of the different analytical technologies employed
in metabolomics,17 chromatography-mass spectrome-
try systems are considered most favourable for the
detection of large numbers of metabolites by provid-
ing partial or full separation of metabolites by
chromatographic systems prior to sensitive mass
spectrometry (MS) detection, that also provides the
opportunity to identify metabolites. GC-TOF-MS,20

GCxGC-TOF-MS,21 HPLC-MS and the analytically
superior UPLC-MS22 and CE-MS23 have all been
employed in mammalian metabolomic studies, either
in a metabolic profiling or targeted analysis approach.
Gas chromatography provides the separation of
volatile and thermally stable metabolites, generally
after chemical derivatization to induce these proper-
ties, and has provided the detection of over 900 raw
peaks in pooled serum samples24 and over 4000 peaks
in the analytically superior technique of comprehen-
sive GCxGC-MS,25 though we note that a single
metabolite can produce multiple (generally 1–3)
products following derivatization. These large num-
bers of peaks were only achievable after multi-
objective optimization of analytical instrumentation,
in a closed-loop approach24,25 requiring minimal
human intervention, showing the necessity to operate
instrumentation at optimal settings to provide max-
imal biological information. GC-MS has been
employed in metabolic profiling for many years from
initial studies in the early 1970s26 through measure-
ments in tumour biology27 to applications in the
detection of inborn errors of metabolism28 and the
detection of diagnostic or prognostic biomarkers of
disease.20,29

Mammalian serum and urine are extra-cellular
biofluids (the ‘exometabolome’), reflecting a picture
of metabolic activity at a specific time (serum or
plasma) or over a period of time (urine), and can
be considered as a kind of metabolic ‘snapshot’7

or ‘footprint’, similar to the metabolic footprints of
yeast,30 that integrates the metabolic responses of
multi-cellular systems. The strategies for sampling
and storage of biofluids for metabolomic studies are
especially important in comparison with the pro-
teome and transcriptome, as metabolic activity is
significantly more rapid (intracellular metabolic reac-
tion half lives are often <1 s). Metabolic activity
during sampling and storage requires stopping, or
quenching, and further metabolic activity minimized
to stop changes in the metabolic profile or to
minimize chemical or biologically induced changes
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of metabolites either in concentration or structure. To
this end, reduced temperatures during sample pre-
paration (48C) and storage (�808C) are normally
employed.

The study described here, employing metabolomic
analytical and data processing strategies, assesses the
stability of serum and urine samples of 40 healthy
human volunteers using the proposed sample collec-
tion, transport and fractionation protocols of the UK
Biobank, and in particular assesses whether the
process yields samples which are fit for purpose for
metabolomic investigations. Specifically, the study
was designed using paired samples to determine
whether serum and urine samples retain the same
metabolomic composition when stored at 48C for
either 0 (T¼ 0 h) or 24 (T¼ 24 h) hours prior to
freezing and transportation. The variance observed by
replicate analyses of a single sample (analytical
variance) was compared with the variance observed
between replicates of paired samples (T¼ 0 h and
T¼ 24 h samples) to assess whether changes in
metabolomic composition occurred under the differ-
ent storage conditions.

Methods
Sample collection and storage
Blood and urine samples were collected from 40
volunteers at room temperature.31 Blood samples
were split into two separate aliquots; one aliquot
was allowed to clot for 30 min (48C) before the serum
fraction was separated and frozen immediately at
�808C (T¼ 0 h samples). The second aliquot was
stored at 48C for 24 h before the serum fraction was
separated and frozen at �808C (T¼ 24 h samples).
Urine samples were separated into two aliquots; one
aliquot was frozen immediately at �808C (T¼ 0 h
samples) and the other stored at 48C for 24 h before
being frozen at �808C (T¼ 24 h samples). Frozen
samples were transported in dry ice to Manchester
and stored at �808C.

Sample preparation
Serum and urine samples were thawed and stored on
ice (48C) and prepared in a similar approach as
previously described.29 The full sample preparation
protocol is available in Supplementary data A.

GC-TOF-MS analysis
Lyophilized samples were chemically derivatized and
analysed by GC-TOF-MS (Agilent 6890 gas chromato-
graph and Leco Pegasus III time-of-flight mass
spectrometer) as previously described.24 The complete
sample derivatization protocol is available in
Supplementary data B. All samples were randomised
and three technical replicates were analysed within
24 h of chemical derivatization completion.

Raw data were processed using LECO ChromaTof
v2.12 and its associated chromatographic deconvolu-
tion algorithm, with the baseline set at 1.0, data point
averaging of 5 and average peak width of 2.5.
A reference database was prepared, incorporating
the mass spectrum and retention index of all meta-
bolite peaks detected in a random selection of 10
serum and 10 urine samples so to allow detection
of all metabolites present, whether expected or not
expected from the study of metabolic pathways. Each
metabolite peak in the reference database was
searched for in each urine and serum sample and
if matched (retention index deviation <�10; mass
spectral match 4750) the peak area was reported and
the response ratio relative to the internal standard
(peak area-metabolite/peak area-succinic d4 acid
internal standard) calculated. These data (matrix of
N samples� P metabolite peaks) representing normal-
ized peak lists were exported in ASCII format for
further analysis.

Multivariate and univariate data analysis
Many multivariate data reduction and analysis tech-
niques are available for studying metabolomic data-
sets.5,10,13,16 Principal Components Analysis (PCA) is
an unsupervised technique that assumes no a priori
knowledge of class structure (in this study samples
stored at 48C for 0 or 24 h) and acts to reduce the
dimensionality of multivariate data whilst attempting
to preserve as much of the cross-dimensional variance
as possible. PCA reduces the dimensionality of the
multivariate data and projects the resulting data into
a lower dimensional space, usually two. These
dimensions are termed the principal components.
Those samples that are observed in close proximity
(small between-sample distances) in PCA space can
be described as metabolically similar when compared
with samples that occupy widely different positions.
Each subject was represented by six spectra [2 time
points (T¼ 0 h, T¼ 24 h)� 3 technical replicates].
All data sets were column normalized to median
absolute deviation.

Univariate statistical analysis was performed in
order to assess the characteristics of each independent
peak within the metabolomic fingerprint. As there is
no guarantee of normality in the data a non-
parametric, rank-based analysis of variance was
used (Wilcoxon rank sum test32). For each metabolite,
the null hypothesis that the sample concentrations at
each storage temperature came from populations with
the same mean was tested. Generally if a P-value of
<0.01 is calculated then the two sample populations
for that metabolite are deemed to be significantly
different; however when many parallel tests are
performed care has to be taken regarding type I
errors (i.e. falsely rejecting the null hypothesis). To
help reduce the possibility of type I errors the
modified critical P-value, a, was modified using a
Bonferroni correction which sets the P-value for the
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entire set of n comparisons equal to a; thus, requiring
the modified P-value value for each comparison to be
a/n.14 With �200 statistically usable peaks detected
for both the urine and serum experiments, the
Bonferroni modified critical P-value was set conserva-
tively to 0.01/200, or, 5� 10�5.

Results
GC-TOF-MS is a powerful analytical tool employed
in metabolomic studies, providing in this study the
detection of 706 different metabolite peaks with over
210 peaks detected in each sample. Typical total ion
current (TIC) chromatograms for urine and serum
are shown in Figure 1. Definitive identification of
metabolite peaks is highly recommended and uses
two orthogonal properties of the metabolite, retention
time (related to volatility/polarity) and mass spectrum
(related to metabolite structure). Matching of mass
spectra and retention indices of peaks in a sample to
those available in mass spectral/retention index
libraries prepared by analysis of pure (authentic)
chemical standards with the same analytical condi-
tions as for the analysis of samples provides a higher
accuracy of identification. Preliminary identification
can be undertaken by matching of mass spectra only
using commercially or publicly available mass spectral
libraries or laboratory-prepared mass spectral libraries,

but requires subsequent definitive identification.
Supplementary data C details all metabolites detected
including both endogenous metabolites (amino acids,
organic acids, sugars, sugar alcohols and lipids) and
various exogenous pharmaceutical-related metabolites
(paracetamol, diethazine and dothiepin). This shows
the power of the techniques to detect both endogen-
ous and exogenous compounds. Metabolites were
detected in the mM to mM range in this study.

The main objective of the study was to observe
whether the metabolomic composition of serum and
urine change when stored at 48C for 24 h before being
frozen at �808C, in comparison with being frozen
immediately at �808C after sample preparation.
A study was designed using paired samples: samples
frozen immediately after preparation (T¼ 0 h) and
samples stored at 48C for 24 h before being frozen
(T¼ 24 h).

Figure 2 details the variability observed for different
classes investigated for serum. Triplicate analyses of
the same derivatized sample (technical replicates,
shown in red) provided typical coefficients of varia-
tions (COV) of <20% for the majority of metabolite
peaks, which were detected in 450% of all samples.
The reproducibility of multiple sample preparation
procedures performed on the same sample is equiva-
lent to the reproducibility of replicate analyses (data
not shown). Similar levels of variance were observed
when comparing the population medians for T¼ 0 h
and T¼ 24 h samples (cyan), showing that there is

Figure 1 Typical GC-TOF-MS total ion current
chromatograms for three technical replicates of a single
volunteer for (a) serum and (b) urine

Figure 2 Variance observed in the dataset for serum.
The abscissa shows the metabolite peak identifier and
ordinate shows the coefficient of variance (non-parametric)
depicting (i) analytical variance (red); (ii) inter-subject
variability for T¼ 0 h samples (black); (iii) inter-subject
variability for T¼ 24 h samples (blue); (iv) variability
between the two class medians (cyan). Serum shows
a smaller analytical variance when compared with
inter-subject variance (for a given class) across the 210
peaks that were detected in the majority of samples
(i.e. peaks with <50% missing values). The coefficient of
variation between the two class medians is of the same
order of magnitude as the analytical coefficient of variation,
indicating that there is little measurable difference between
the two sample populations (T¼ 0 h and T¼ 24 h)
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no additional detectable variability when comparing
T¼ 0 h and T¼ 24 h samples. Therefore these samples
are metabolically similar. However, inter-volunteer
variability is significantly greater (as shown by the
black and blue lines) and hence the metabolomes
of different volunteers are significantly more variable
when compared with the variation caused by the
storage of samples at 48C for 0 and 24 h. In other
words the variability due to general differences in
metabolism for this human population is much
greater than the variability due to storage temperature
within an individual’s metabolism and also much
greater than the variation of the hypothetical average
individual due to storage temperature (calculated by
median metabolite level for each class).

In order to look at the multivariate nature of the
metabolomic data (rather than splitting it into
individual metabolites) PCA was used. PCA plots of
serum data are shown in Figure 3, it can be observed
that the distances between the three technical
replicate data points within a class depicting the
analytical variability (either red T¼ 0 h or blue
T¼ 24 h) are on average of similar magnitude to the
distances between the sample class which depict
variability resulting from the two different sample
storage conditions (shown by the differences between
the two coloured classes for the same subject). There
were no obvious trends across the whole sample
population. Although only PC1 and PC2 are shown,
which contain most variance, higher PCs (to PC5)
also show that the effect of storage at different tem-
peratures is minimal compared with inter-subject
variability, for serum. Out of the 40 volunteers a
small number are in fact separated by relatively large
distance (samples 1, 11, 28 and 30). If the loadings
plot is examined (Figure 3b) it can be seen that this
may be explained by a small number of metabolites,
relative to the large number of metabolites detected,
that are outside the 2 SD zone (see shaded area).
Upon closer inspection of these individual metabolites
(for example peak 449 - Figure 3c) it can be seen that
indeed these samples appear as outliers to a general
distribution. If these distributions are tested (using
either ANOVA or Wilcoxon rank sum test) the
resulting P-values are above the critical level and
therefore not statistically significant. As a further
statistical test, univariate Wilcoxon rank sum test was
performed on all of the reported metabolites using the
null hypothesis reported earlier. Out of 554 tested
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Figure 3 (a) Principal Components Analysis scores plot
for serum for all 40 volunteers studied. Red depicts T¼ 0 h
and blue depicts T¼ 24 h samples. PCs 1 and 2 represent,
respectively 8 and 5% of the variance (no further clustering

at higher dimensions). Labels represent subject identifiers.
Each sample was analysed in triplicate and all three
technical replicate analyses are shown. (b) Loadings plots
for Principal Components 1 and 2. Shaded area indicates the
metabolites responsible for the erroneous samples in the
PCA scores plot. Specific numbers refer to spectral peaks.
(c) Actual relative peak areas detected for metabolite peak
449. The order of appearance across the x-axis does not
reflect order of analysis but are ordered in pairs (T¼ 0
followed by T¼ 24) with respect to subject id
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peaks, 5 produced a P-value <0.01. However, using
correction for multiple tests no peak had a modified
critical P-value <5� 10�5 showing that these are
probably random correlations. These data are shown
in Supplementary data D.

PCA was also performed with the urine data as
shown in Figure 4. Urine samples showed a similar
trend to that observed for serum, where analytical
variability and biological variability are of similar
magnitude and are both much smaller than the

variability observed between the averaged urine
metabolomes of different volunteers. Again a few
samples were observed as outliers, though no meta-
bolite peak showed a modified critical P-value
<5� 10�5 using the univariate Wilcoxon rank sum
test and a similar conclusion as for serum can be
upheld. Although only PC1 and PC2 are shown,
which contain most variance, higher PCs (to PC5)
also show that the effect of storage at different
temperatures is minimal compared with inter-subject
variability, for urine.

Discussion
A metabolomic study, employing metabolic profiling
with GC-TOF-MS, was performed to assess the
stability of serum and urine when stored at 48C for
two different time periods (0 and 24 h) before being
frozen at �808C. More than 700 unique metabolite
peaks (4200 peaks per sample) were detected with
high reproducibility and studied, using multivariate
and univariate methods, to assess possible changes in
the metabolomes of these samples. No differences in
the variance were observed between technical repli-
cates, and the variance between samples stored at 48C
for 0 or 24 h were detected for serum or urine.
Although PCA analysis showed a small number of
samples as being metabolically different for serum
and urine, univariate analysis showed these differ-
ences to be related to a small number of metabolites
and not to be statistically significant. Therefore the
general observation for serum and urine was minimal
change in the metabolomic composition for these
biofluids was detected. Importantly, when studying
the intra- vs inter-subject variability for serum and
urine it can easily be observed that the variance in the
metabolome of a single subject stored at �808C or 48C
for 24 h is small when compared with the variance in
the metabolomes of 40 healthy volunteers and it is
known that as well as different genotypes, many
phenotypic factors influence the composition of the
human metabolome including diet, health and life-
style33 and diurnal and oestrus cycles.34 Therefore in
well-designed metabolomic studies, where samples
are derived from many volunteers, changes in the
metabolome caused by storage at 48C for 24 h are seen
to be minimal when compared with the variability
observed between subjects. In metabolomic studies
involving the investigation of biomarkers of disease,
drug toxicity or environmental stresses the variation
between classes of healthy and diseased individual’s
has been shown to be even greater in many
studies.20,29,35

In conclusion, small metabolic changes observed for
a small number of metabolite peaks in this study are
acceptable in metabolomic studies employing large
sample sizes, where variability between subjects is
greater than variability associated with sample storage
and preparation. We recognise that in a study of this
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Figure 4 Principal Components Analysis plots for urine
for (a) all 40 volunteers studied and (b) six randomly
chosen volunteers. Red depicts T¼ 0 h and blue depicts
T¼ 24 h. PCs 1 and 2 represent, respectively (a) 12 and
3% and (b) 19 and 8% of the variance. Labels represent
subject identifiers. Each sample was analysed in triplicate
and all three replicate analyses are shown
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type there can be a high level of false positives when
sample sizes are small, and that these conclusions
could be overturned for small subsets of metabolites if
the sample size were to have been increased
considerably.36 We note too the absence of bias in
this design.37 Thus, on the basis of the present
observations, and within the statistical limitations
presented, we conclude that the UK Biobank sample
collection, transport and fractionation protocols,
involving the storage of serum and urine samples at
48C for 24 hours and well-controlled UK-based
transport, are suitable for high-resolution metabolo-
mic studies.

Supplementary data
Supplementary data are available at IJE online.
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