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There is intense interest in the identification of novel biomarkers which improve the diagnosis of heart failure. Serum samples

from 52 patients with systolic heart failure (EF <40% plus signs and symptoms of failure) and 57 controls were analyzed by gas

chromatography – time of flight – mass spectrometry and the raw data reduced to 272 statistically robust metabolite peaks. 38

peaks showed a significant difference between case and control (p<5·10)5). Two such metabolites were pseudouridine, a modified

nucleotide present in t- and rRNA and a marker of cell turnover, as well as the tricarboxylic acid cycle intermediate 2-oxoglutarate.

Furthermore, 3 further new compounds were also excellent discriminators between patients and controls: 2-hydroxy, 2-

methylpropanoic acid, erythritol and 2,4,6-trihydroxypyrimidine. Although renal disease may be associated with heart failure, and

metabolites associated with renal disease and other markers were also elevated (e.g. urea, creatinine and uric acid), there was no

correlation within the patient group between these metabolites and our heart failure biomarkers, indicating that these were indeed

biomarkers of heart failure and not renal disease per se. These findings demonstrate the power of data-driven metabolomics

approaches to identify such markers of disease.
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1. Introduction

Biomarkers are essential tools in diagnosing disease
and monitoring progression as well as response to
therapy. In heart failure, BNP has proved its usefulness
as a diagnostic marker and there are some limited data
on monitoring response to therapy (Troughton et al.,
2000; Zaphiriou et al., 2005). Other markers such as
TNF alpha, IL-1beta and IL-6 have also been shown to
be elevated and are likely to reflect peripheral processes
distinct from cardiac overload and/or hypertrophy
which is predicated by BNP secretion (Pan et al., 2004).

There is intense interest in the identification of further
biomarkers in the syndrome of heart failure. Distinct
patterns of the ensemble of several such markers may
eventually help in identifying specific classes of the
syndrome with improved predictive power in terms of
diagnosis, prognosis and treatment options.

In a first step towards this goal, we here present a new
approach to identifying biomarkers by focusing on
metabolic changes during heart failure. Metabolomics is

the data-driven study of the different patterns of
metabolites within living organisms, in which we seek
measurements that are as comprehensive as possible.
Conceptually, metabolomics lends itself ideally to
studying heart failure and other diseases. In contrast
say to malignancy, where tissue is readily available for
transcriptomic and proteomic analysis, routine labora-
tory tests for heart failure are limited to serum samples.
Furthermore, metabolic alterations have been well doc-
umented in the heart (Neubauer et al., 1997; Finck and
Kelly, 2006) and peripheral tissues (Drexler et al., 1992;
De Sousa et al., 2000) in heart failure and other diseases
(Orešič et al., 2006; van der Greef et al., 2006). Meta-
bolomics is also expected on theoretical grounds to be
more discriminatory than proteomics (Oliver et al., 1998;
Raamsdonk et al., 2001; Kell, 2004; Kell, 2006a, b).

The present metabolomic study of serum from
patients with heart failure and appropriate controls
detected 272 candidate metabolite peaks, of which 38
showed highly significant differences between cases and
controls. At least two of these metabolites, pseudouri-
dine and 2-oxoglutarate, have the potential, alone or
together, to improve on or add to BNP in terms of their
sensitivity and specificity as biomarkers.
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2. Methods

2.1. Participants

The study was approved by the local ethics committee
for clinical studies. Patients attending the heart failure
clinic at the South Manchester University Hospital
Regional Cardiothoracic Centre and Heart Transplant
Unit were invited to participate in the study by pro-
viding samples of venous blood. 52 patients were
recruited with an established diagnosis of left ventricular
dysfunction (LVD, EF <40%) and heart failure.
Ejection fraction was determined echocardiographically.
All patients belonged to NYHA (New York Heart
Association) classes II-IV. The age-matched control
group were mainly taken from an ENT clinic, though
some were from an ophthalmology clinic and others
were the healthy partners of the patients. They com-
prised subjects with no history of cardiac disease, and
were examined clinically to this end at recruitment.
Subjects with acute or chronic inflammatory conditions,
malignancies and significant respiratory pathology were
excluded. See Table 1 for the patient characteristics.

2.2. Sample collection

Venous blood was collected from the antecubital
veins by venepuncture, left to coagulate for 10 min,
followed by centrifugation (2200 g, 15 min). The
supernatant serum was then aliquoted into 2.5 mL
cryotubes and stored at ) 80�C until required.

2.3. Sample preparation and GC-TOF-MS analysis

Serum samples were prepared for Gas Chromatog-
raphy-Time of Flight-Mass Spectrometry (GC-tof-MS)
analysis as described (Kenny et al., 2005; O�Hagan
et al., 2005; Underwood et al., 2006). 200 lL serum was
spiked with 100 lL internal standard solution
(0.18 mg.mL)1 succinic d4 acid; Sigma-Aldrich, Gill-
ingham, UK) and vortex mixed for 15 s. Protein pre-
cipitation was performed by addition of 600 lL
acetonitrile and vortex mixing for 15 s followed by
centrifugation (13,385 g, 15 min). The supernatant was
transferred to an Eppendorf tube and lyophilised
(HETO VR MAXI vacuum centrifuge attached to a
HETO CT/DW 60E cooling trap; Thermo Life Sciences,
Basingstoke, UK). To increase metabolite volatility and
thermal stability a two-stage chemical derivatisation
procedure was performed. 50 lL 20 mg.mL)1 O-meth-
ylhydroxylamine solution was added and heated at 40�C
for 90 min followed by addition of 50 lL MSTFA (N-
acetyl-N-(trimethylsilyl)-trifluoroacetamide) and heating
at 40�C for 90 min. 20 lL of a retention index solution
(3 mg.mL)1 n-decane, n-dodecane, n-pentadecane, n-
nonadecane, n-docosane dissolved in hexane) was added
and the samples were analysed using an Agilent 6890 N
gas chromatograph and 7683 autosampler (Agilent
Technologies, Stockport, UK) coupled to a LECO
Pegasus III electron impact time-of-flight mass spec-
trometer (LECO Corporation, St Joseph, USA)
employing previously described optimised instrumental
conditions for serum (O�Hagan et al., 2005). Initial data
processing of raw data was undertaken using LECO
ChromaTof v2.25 software to construct a data matrix
(metabolite peak vs. sample no.) including response
ratios (peak area metabolite/peak area succinic-d4
internal standard) for each metabolite peak in each
sample. The number of peaks in this matrix is 1467,
based on a series of studies of serum samples additional
to but including those in the present sample set (and
note that some metabolites can produce more than one
derivative). This matrix was then further reduced by
removing any peak which had more than 60% missing
values. In this way if any class was not being consistently
matched with a given peak, that peak was considered
not robust enough for further statistical analysis.

2.4. Pro-BNP

N-terminal pro-BNP was measured on the Roche
E170 immunoassay analyser using the manufacturer�s
chemiluminescence kit according to their instructions.

2.5. Urea and creatinine

Urea and creatinine were measured enzymatically in
serum using a Roche analyser according to the manu-
facturer�s instructions.

Table 1

Summary of patient characteristics. IQR = inter-quartile range

Cases HF

(n = 52)

Controls

(n = 57)

Age,±1SD, range 68, 10, 46–86 67, 9, 44–87

Sex M:F 43:9 22:35

Median NYHA Class (IQR) 2 (0) 0

Median Ejection Fraction (IQR) 25(5)

Mean Ejection Fraction (IQR) 27(6)

Etiology ischemic:non-ischemic 33:19

Bean BMI ±1SD 27(5) 26(5)

Hypertensive: normotensive 8:44 15:42

DM:nonDM 9:43 4:53

Smoker:non-smoker 5:47 8:49

Na+, mean,±1SD, Range 141, 3, 133–145 140, 3, 132–146

K+, mean,±1SD, range 4.2, 0.7, 3.3–5.2 4.2, 0.3, 3.7–5.2

Urea, mean,±1SD, range 12, 8, 3 – 56 6, 2, 3–12

Creatinine, mean,±1SD, range 139, 57, 70–352 81, 18, 51–142

Hemoglobin, mean,±1SD, range 142, 13, 110–182 144, 14, 111–152

Beta-blockers Y:N 44:4 7:52

ACE inhibitors Y:N 43:8 6:50

Diuretics Y:N 44:7 7:49

DM = Diabetes mellitus. The p-value for the difference in creatinine

between cases and controls was 2.5·10)12. Spearman�s rank correla-

tion coefficient between creatinine and BNP was 0.66 with a signifi-

cance p-value of 8·10)13
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2.6. Statistical analyses

Univariate statistical analysis was performed in order
to assess the characteristics of each independent
metabolite peak generated using the above protocol. As
the experimental design employed in this study was that
of a matched case–control study (Rothman and
Greenland, 1998), single-factor analysis of class distri-
bution was performed for each metabolite peak. Before
choosing which significance test to apply, each metab-
olite peak was checked for within-class kurtosis, and for
within-class goodness of fit to a normal distribution
using the Lilliefors test. For a given metabolite peak, if
either control or case samples had kurtosis >3, or
failed the Lilliefors test (where the null hypothesis, that
the sample set has a normal distribution, is rejected if the
p-value<0.05) then the non parametric rank-based
Wilcoxon rank sum (Mann–Whitney) test was used
(Hollander and Wolfe, 1973); otherwise the classical
one-way ANOVA test was used. For each metabolite,
the null hypothesis (that the sample metabolite con-
centrations from both classes came from populations
with the same mean) was tested. Generally if a p-value of
less than 0.01 is calculated then the two sample popu-
lations for that metabolite are deemed to be significantly
different; however, when many parallel tests are per-
formed care has to be taken regarding Type I errors (i.e.
falsely rejecting the null hypothesis). To help reduce the
possibility of Type I errors the critical p-value was
modified using Bonferroni correction. Bonferroni cor-
rection is considered to be overzealous in its reduction of
Type I errors (Bland and Altman, 1995; Perneger, 1998;
Broadhurst and Kell, 2006), leading to the conclusion
that any peak found to have a p-value below this level is
clearly significant. Nonetheless, Type I errors are an
ever-present danger in this type of study (Wacholder
et al., 2004). Thus, with 272 statistically usable peaks
detected (note that some metabolites have more than
one peak, though not all metabolites are identified), the
modified critical (p-) value was set conservatively to
0.01/200, or, 5·10)5.

All statistical analyses were carried out using the
Matlab� scripting language (http://www.mathworks.
com/). All algorithms used are implemented such that
any missing values are ignored. Scripts are available
upon request.

3. Results

Of the 272 metabolite peaks produced by the pre-
processing protocol, 38 showed a significant difference
between case and control (p-value<5.10)5) (figure 1,
Table 2), indicating changes in several metabolic path-
ways. We note that there was some gender bias between
the cases and controls (Table 1), but that this is not
responsible for the discriminating biomarkers observed
(Table 2) (cf. (Kirschenlohr et al., 2006) and see also

(Ransohoff, 2005; Broadhurst and Kell, 2006) for
reviews). There was also inevitable bias in the use of
pharmaceutical drugs between cases and controls
(Table 1) but this did not affect the distribution of the
biomarkers detected (see later, and all relevant data and
metadata will be made available electronically as sup-
plementary information). Analysis of these peaks indi-
cated that the metabolites that they represent came from
many different parts of metabolism including energy
metabolism and nitrogen metabolism. While it is known
that metabolites such as urea, uric acid and creatinine
are often raised in heart failure, reflecting impaired
renal excretion (Smith et al., 2006), a number of �novel�
metabolites which have not previously been implicated
in heart failure were also observed to be to be present at
considerably different levels in cases and controls. Five
such metabolites were identified chemically and consid-
ered to be of particular biological interest: pseudouri-
dine, 2-oxoglutaric acid, 2-hydroxy, 2-methylpropanoic
acid, erythritol, and 2,4,6-trihydroxypyrimidine. Fig-
ure 1a demonstrates the ROC curves for these metabo-
lites, as well as for BNP which is presently considered a
�gold standard� heart failure biomarker (Zaphiriou et al.,
2005). It is evident that pseudouridine and 2-oxoglutaric
acid are at least as good indicators of heart failure as is
BNP, while 2-hydroxy,2-methylpropanoic acid, erythri-
tol and 2,4,6-trihydroxypyrimidine are almost as good.
The area under the ROC curve and the statistical
p-value are not entirely unrelated, but they do never-
theless measure different properties; ROC curves are
more sensitive to the actual class distributions across the
total range, rather than being encoded as an estimate of
this distribution as calculated by variance-based signif-
icance tests. The relationship between these two values
for a series of metabolites is illustrated in figure 2b.
Figure 1 highlights the ability of the technologies
employed to identify metabolites from the mass spectra
produced, in this example, that of pseudouridine. There
are also two �unknowns� (peaks with mass spectra very
different from any of those in currently available mass
spectral libraries) which have areas under the ROC
curve greater than 0.85 (one being the third highest),
which may be taken to indicate that metabolomics is still
a youthful science (Harrigan and Goodacre, 2003; van
der Greef et al., 2004).

Figure 3a demonstrates the corresponding �box and
whisker� plots for the top 5 novel metabolites plus BNP.
A model combining pseudouridine and 2-oxoglutaric
acid discriminates visually between case and control
with only 3 false negatives (figure 3b). Furthermore, the
patients misclassified by this model differ from those
misclassified using BNP.

Bias or the influence of uncontrolled variables can
present a major headache in many omics studies,
including those seeking biomarkers (Ransohoff, 2005;
Broadhurst and Kell, 2006; Kirschenlohr et al., 2006;).
In a case–control study such as the present one, it occurs
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in particular when variables other than those of primary
interest are unevenly distributed between the cases and
the controls. It is then possible, and certainly possible to
argue, that the changed distribution of any proposed
biomarkers is not due to the presence of the disease but
to the differential distribution of these �confounding�
variables. One immediate potential source of bias arises

from the straightforward fact that �cases� are (presum-
ably considerably) more likely to be taking pharma-
ceutical medication than are controls. In the present
work, however, it transpired that while the distributions
of those taking particular classes of medication between
cases and controls is not at all even, simple inspection of
the data shows that quite a considerable fraction of the

Figure 1. GC-tof-MS analysis of pseudouridine. (a) Total Ion Chromatogram as a function of time obtained by GC-tof-MS for a diseased

subject. The inset shows an enlarged single ion chromatogram for pseudouridine (m/z 357) from a subject with heart failure (full line) and a

control subject (dotted line) showing the difference in peak area and therefore concentration between the two classes. (b) Mass spectra of a peak

identified as pseudouridine obtained from (i) clinical serum samples and (ii) an authentic standard. Note that several metabolites appear more

than once because one metabolite can form multiple derivatives during sample preparation. For (b) the ordinate is in count normalised to the

highest peak while the abscissa is the mass-to-charge ratio.
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controls were in fact also receiving the medications that
one might expect in heart failure patients (Table 1), and
we give the data for beta-blockers, ACE inhibitors,
diuretics and statins in figure 4 (and for these and other
metadata in tabulated form in the Supplementary
information). It is equally clear from the data shown in
figure 4 that the two main markers are still much larger
in the disease than in the control patients, although for
instance some of the patients taking ACE inhibitors do
have values of Psi lower than those who are not (fig-
ure 4c), possibly providing evidence of the efficacy of

these drugs. By contrast, diuretics have no (or rather
even a negative) effect in terms of lowering Psi (fig-
ure 4e) or 2OG (figure 4f) in patients, either indicating
that excretion has less of a controlling influence on the
steady-state values of these metabolites or (perhaps less
plausibly) that the drugs happen to have been given only
to patients with lower values of these metabolites in the
first place.

Another kind of potential for bias or misinterpre-
tation can come where A causes B and A causes C and
it might then be interpreted that C causes B as they

p-value (Mann-Whitney test)
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Figure 2. Receiver-operator characteristic (ROC) values for various metabolite peaks (a) ROC curves for BNP and five of the metabolites

determined in the present study, (b) relationship between area under ROC curve and p-values for the various metabolites. * indicates that the

metabolite has been chemically identified by analysing authentic chemical standards and determining that retention indices (±10) and mass

spectra (match>750) of metabolites and authentic standards are similar. In (b), the colour of the symbol indicates whether the metabolite levels

are greater (blue) or smaller (red) in the disease than the control.
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Figure 3. Metabolomics biomarkers for heart failure. (a) Box-whisker plots of the distribution of the most discriminating chemically identified

markers in heart failure described in this study. HF: Heart failure; C: Controls. In the ordinates, N-BNP is in units of pmol/L while the other

metabolites are unitless and described as a response ratio (peak area-metabolite/peak area-internal standard). The lower and upper lines of the

‘‘box’’ are the 25th and 75th percentiles of the sample. The distance between the top and bottom of the box is the interquartile range. The line in

the middle of the box is the sample median. If the median is not centred in the box, that is an indication of skewness. The ‘‘whiskers’’ are lines

extending above and below the box. They show the extent of the rest of the sample (unless there are outliers). Assuming no outliers, the maximum

of the sample is the top of the upper whisker. The minimum of the sample is the bottom of the lower whisker. By default, an outlier is a value that

is more than 1.5 times the interquartile range away from the top or bottom of the box. The notches in the box are a graphic confidence interval

about the median of a sample. A side-by-side comparison of two notched box plots provides a graphical way to determine which groups have

significantly different medians. (b) Relationship between 2-oxoglutarate and pseudouridine in controls (open circles) and heart failure patients

(closed circles). The BNP concentration from the same individuals is encoded via the size of the symbols (small = lower, large = higher), and

serves to illustrate that the three markers visually misclassify different samples and thus give different information.
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will tend to be correlated (Pearl, 2000; Mackay, 2003).
As mentioned above, it is, for instance, known that
patients with heart failure may tend to have problems
with renal function (Tsutamoto et al., 2006), and that
the impaired renal function might then be �responsible�
for an inference that biomarker X is a biomarker for
heart disease when it is �really� a biomarker for
impaired renal function (and known serum biomarkers
for renal dysfunction include creatinine and urea). The
concentration of any metabolite is clearly a function of

its synthesis, degradation, sequestering and excretion,
such that changes in its excretion might automatically
be expected to raise its concentration. Of course almost
any small molecule might then be raised due to renal
dysfunction, but the specificity that we see for our
biomarkers relative to other molecules makes this kind
of explanation a priori unlikely. There are several other
reasons why we do not consider that our new heart
failure biomarkers such as Psi and 2OG fall into this
category of renal dysfunction co-variates. First, these
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Figure 4. Lack of effect of pharmaceutical medications in increasing the values of pseudouridine (a, c, e, g) or 2-oxoglutarate (b, d, f, h) in

patients relative to controls. The medications involved were beta-blockers (a, b), ACE inhibitors (c, d), Diuretics (e, f) and statins (g, h), although

because of the numbers of samples involved these were not stratified further into individual drugs. Closed circles patients, open squares controls.

Drug status indicated by N/Y. Data points have been �jittered�.
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patients do primarily have, and indeed presented with,
heart failure. A combined aetiology that goes renal
failure causes our biomarkers causes heart failure is not
realistic. Secondly, as before (Kenny et al., 2005), to
distinguish this type of phenomenon it is appropriate
to look within as well as between classes. Thus
although they are reasonably well correlated (see also
(Niwa et al., 1998)), the relationship between Psi and
urea and between Psi and creatinine (both measured
enzymatically in the same serum samples) is little dif-
ferent between cases and controls (figure 5a, b), and it
is not suggested that the controls are suffering from
renal failure. Similarly, within a class, there is no
relationship at all between 2OG and these same renal
function markers (figure 5c, d). It is then even harder
to argue somehow that both Psi and 2OG should
therefore be renal dysfunction markers. This contrasts
markedly with the close relationship between the two
known renal dysfunction biomarkers urea and creati-
nine both within and between classes (figure 5e).
Finally, we mention again the relative lack of impact of
diuretics (figure 4e, f) on our biomarkers relative to
their apparent effect on creatinine (figure 5f).

Uric acid has been suggested as a marker of car-
diovascular mortality and its level is known to increase
in patients with heart failure (Leyva et al., 1998a, b;
Anker et al., 2003 Sakai et al., 2006), albeit not, it is
claimed, when adjusted for diuretic use (Culleton et al.,
1999b). It is probably a measure of impaired oxidative
capacity (Leyva et al., 1997, b) and it is of interest that
it too was observed as being among the most signifi-
cant biomarkers in our metabolomics data (figure 2,
Table 2). In this case, the GC method showed three
separate derivatives to be discriminatory (figure 2) and
the data for the two more significant ones are given in
figure 5g. Again, there is little relationship between uric
acid and creatinine within a class (i.e. controls or cases,
figure 5h) (and the uric acid levels in this case seem
little influenced by diuretic usage; data not shown).
The same is true for BNP against creatinine and urea
(figure 5i, j).

4. Discussion

The principal findings of this study are represented by
the identification of a fingerprint of serum metabolites
that characterize heart failure, and stress the potential of
pseudouridine and 2-oxoglutaric acid (a-ketoglutarate in
the traditional nomenclature) as novel diagnostic
markers of heart failure. Furthermore, this study high-
lights the potential of metabolomic analysis and, more
generally, of the systems biology approach (Kell, 2004,
2006a), in the evaluation of a disease condition.

An advantage of the metabolomic approach in the
identification of novel biomarkers is that it is not limited
by our current knowledge, and instead seeks to measure
the maximum number of metabolites in a given sample;
the total number in the native human metabolic network
is unknown (although leaving aside combinatorial lipids
a number around 3000 is a reasonable starting estimate
(Kell, 2006b; Duarte et al., 2007)) and a more restricted
number, a �metabolic profile�, is usually obtained. The
most common analytical technologies employed in
metabolic profiling applications (Dunn and Ellis, 2005)
involve chromatographic separation (gas chromatogra-
phy, liquid chromatography and capillary electropho-
resis) followed by sensitive mass spectrometric detection
(so-called hyphenated techniques). Gas chromatography
– time of flight-mass spectrometry (GC-tof-MS), which
was used in this study, probably provides the highest
one-dimensional chromatographic resolution, with
detection from nM to mM concentrations, and with
metabolite identification being provided via electron-
impact ionisation mass spectrometry. Two-dimensional
GCxGC can reveal yet more metabolites (O�Hagan
et al., 2007).

Pseudouridine is a modified nucleoside that is found
in ribosomal and transfer RNA and is produced post-
transcriptionally (Charette and Gray, 2000; Ofengand,
2002) such that it is then �fixed� inside these macromol-
ecules. It is not further metabolised other than by RNA
hydrolysis, and its appearance in blood and urine is
therefore considered to be an excellent measure for
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Figure 4. continued
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RNA degradation and thus of cell turnover. Tumour
cells exhibit an unusually high turnover, and conse-
quently it has also been proposed as a tumour marker
(e.g. (Higley et al., 1982; Salvatore et al., 1983; Russo
et al., 1984; Tamura et al., 1987; Amuro et al., 1988; Xu
et al., 2000; Zheng et al., 2005)) where it can have sig-
nificant prognostic value (Pane et al., 1993). In heart
failure its raised level may in part reflect the remodelling
process in the heart itself (Morgan et al., 1987), the
exact dynamics of which are unknown, but a substan-

tially raised turnover of peripheral cells including
skeletal muscle seems a more likely explanation.
Remodelling processes in peripheral muscle are well
described in heart failure (Drexler et al., 1992; De Sousa
et al., 2000) and are thought to be in part responsible for
symptoms such as fatigue and shortness of breath.
Conceptually, a biomarker for peripheral cell turnover
would therefore be a valuable addition to a matrix
of markers classifying subgroups of patients. It is of
interest that the differences in pseudouridine between
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Figure 5. Imperfect relationships between novel and existing heart failure biomarkers and known renal dysfunction biomarkers. Pseudouridine

against (a) urea and (b) creatinine. 2-oxoglutarate against (c) urea and (d) creatinine. (e) urea vs creatinine. (f) creatinine as a function of diuretic

usage. (g) the top two peaks from uric acid are plotted against each other, also showing that occasionally individual peaks can �disappear�. (h) uric
acid vs creatinine. BNP against (i) creatinine and (j) urea. Note that when urea is shown the scale has been increased for visual clarity, leading to

the disappearance of 3 samples (2 case, 1 control) whose urea levels were greater than 60. All data are in the supplementary information. Cases

closed circles, controls open squares, as in Figure 4(f) data are jittered for clarity.
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cases and controls also increased somewhat with age,
although the levels in the controls were essentially
unchanged with age, as was also true for creatinine (data
not shown, see also (Culleton et al., 1999a)).

We note that 2,4,6-trihydroxypyrimidine is often
displayed and described as its tautomer malonylurea
or barbituric acid. Its origin in mammals has not been

fully elucidated (http://www.genome.ad.jp/dbget-bin/
show_pathway?map00240±C02067), but the fact that
we identify it as a marker in an important syndrome
such as heart failure points to the value of further
research into this issue.

We note, too, that it is also possible that pseudouri-
dine and other metabolites whose concentrations are
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Figure 5. continued

Table 3

Bootstrap-calculated Pearson�s correlation coefficients (r)

2-Oxoglutaric Acid * N-BNP Uric acid* Urea Creatinine *

Pseudouridine* 0.219 ± 0.110 0.561 ± 0.177 0.299 ±0.139 )0.086 ±0.218 0.489 ±0.188

2-Oxoglutaric Acid * 0.005)0.409 2-Oxoglutaric Acid* 0.268 ± 0.109 0.247 ± 0.108 0.103 ± 0.104 0.041 ± 0.118

N-BNP 0.297)0.926 0.018)0.444 N-BNP )0.122 ± 0.119 0.164 ± 0.263 0.207 ± 0.116

Uric acid* )0.070–0.505 0.029–0.448 )0.344–0.125 Uric acid* 0.138 ± 0.159 0.291 ± 0.112

Urea )0.454–0.399 )0.108–0.304 )0.245–0.674 )0.186–0.431 Urea )0.103 ± 0.173

Creatinine * 0.007–0.751 )0.168–0.296 0.017–0.494 0.068–0.497 )0.430–0.248 Creatinine *

If r = 0 this indicates that there is no correlation; r = 1 indicates that the two compared measurements are perfectly positively correlated;

r = )1 indicates perfect negative correlation. The bootstrap procedure (see (Efron and Gong, 1983; Efron and Tibshirani, 1993)) involved

repeatedly (p times) choosing n random samples with replacement from the disease only data set (where n = the total number of available disease

samples; thus a particular data point from this original data set could appear multiple times in a given bootstrap sample set) and analyzing each

sample the same way – in this case using Pearson�s correlation coefficient equation. For this table p was set to 5,000. The upper right quadrant of

the table shows the mean of the 5,000 r values calculated for each pair-wise metabolite correlations, together with +/) the bootstrap standard

error. The lower left quadrant describes the same correlation data but in terms the 95% confidence interval for r for each pair-wise metabolite

correlation (calculated using the bias corrected and accelerated percentile method; see (DiCiccio and Efron, 1996)). The correlation data indicates

that all the metabolites are positively correlated with each other (i.e. r>0 for all comparisons). However, there are no strong correlations

(r>0.7). However, even the relatively high correlation between Pseudouridine and N-BNP (rest = 0.561 +/) 0.177) is questionable upon

inspection of such a small data set
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raised in heart failure are not merely innocent marker
metabolites but participate in the pathophysiology of
the syndrome, e.g. by inducing cellular alterations in the
heart or in peripheral tissues. Such may be the case for
uric acid (Sakai et al., 2006).

Pseudouridine is also related to creatinine in our
overall dataset. This might be expected, given that a
reduction in renal function is part of the pathophysiol-
ogy of heart failure and indeed, reduced renal function
has been considered to contribute to the increase in BNP
in heart failure (Tsutamoto et al., 2006).

Conversely, reduced renal function contributes to the
progression of heart failure. The mechanisms of the
intimate link between renal and cardiac function,
sometimes referred to as the �cardiorenal syndrome�
(Bongartz et al., 2005), are unclear, but our data raise
the interesting hypothesis that pseudouridine or the
other metabolites identified by us contribute to the
deterioration in renal function in heart failure. More
research is needed, but our present data clearly provide
novel and testable hypotheses to address these issues.

Overall, however, when we look at the heart failure
class alone, the correlation between BNP and creatinine
was weak (Table 3), as it was between any proposed
heart failure marker and any renal marker, and it
appears unlikely that a decrease in renal function is the
dominant explanation for the increase in pseudouridine,
2OG and the other heart markers.

As with other marker studies, it cannot be completely
excluded a priori that drug therapy influenced the level
of metabolites. Our analysis makes this highly unlikely,
but the ultimate proof of measuring the markers in
patients left untreated for several weeks is clearly not
ethical and this question may therefore be addressed
further by a combination of animal experiments and
indirect clinical investigations in future, e.g. by mea-
suring these parameters in patients with similar medi-
cation but other diseases, such as hypertension. By
definition, however, it will be impossible to identify a
non-heart failure group with identical combination of all
drugs in a large patient cohort and without the use of
inferential methods some questions may remain unre-
solved in the human situation, in close analogy to BNP
in human heart failure.

2-oxoglutarate is a major intermediate of the tricar-
boxylic acid cycle (also known as citric acid or Krebs
cycle) that occupies a central place in energy metabolism
and is one of the 12 major precursors for the synthesis of
most biochemical substances (Csete and Doyle, 2004)).
It was also substantially raised in the heart failure
patients. In recent years, it has become increasingly clear
that heart failure is characterized by alterations in
energy metabolism. In humans, the reduction of the flux
rate from creatine phosphate to ATP is characterized
best as it is amenable to in vivo NMR measurements
(Neubauer et al., 1997). The most straightforward
hypothesis therefore is that the raised levels of 2-oxo-

glutarate reflect a decreased flux through the Krebs cycle
and overflow of some metabolites into the circulation.
(In bacteria, 2-oxoglutarate is a classical product of
�overflow metabolism� in microbes (Neijssel and Tem-
pest, 1976) where as a partial oxidation product of
carbohydrate metabolism it signifies an insufficient oxi-
dative capacity.) Recent findings using metabolomics
to investigate alterations during cardiac ischemia
showed decreases in several constituents of the Krebs
cycle (though 2-oxoglutarate was not specifically
named) (Sabatine et al., 2005). This suggests that the
metabolic state of the heart and/or peripheral tissues is
at least in part reflected in serum metabolites, which can
be harnessed as markers of disease. Further mechanistic
studies regarding this issue are warranted.

The origin of the sugar alcohol erythritol in serum is
unclear. Although there are a few reports of its mea-
surement in serum and urine (e.g. (Bultitude and
Newham, 1975; Pitkänen, 1972; Schoots et al., 1979;
Roboz et al.,1984, 1990;Verhoeven et al., 2001; Wame-
link et al., 2005)) it is not entirely certain whether its
origin is exogenous/dietary (as well as being a compo-
nent of various plant and animal tissues it is a permitted
food additive and pharmaceutical congener), by bio-
synthesis within human tissues (it does not yet appear in
the human metabolic network reconstruction (Duarte
et al., 2007)), or from gut microflora (a significant con-
tributor to the metabolome (Nicholson et al., 2005)).
However, as a reducing compound (Jauniaux et al.,
2005) it shares with 2-oxoglutarate the potential impli-
cation of an impaired oxidative capacity. Consistent
with this, two other sugar alcohols (xylitol, myo-inositol)
also appear in the list of most discriminatory metabo-
lites (Table 2). The biological significance of 2-hydroxy,
2-methyl propanoic acid is unknown, although it too
may be of microbial origin (see (Hierro et al., 2005) for
some closely related metabolites).

In conclusion, an unbiased, hypothesis-generating
(Kell and Oliver, 2004) metabolomics strategy has
uncovered numerous novel candidate markers for heart
failure. Targeted analyses of these (using a method with
greater analytical precision) may be expected to prove
even more discriminatory, and a mechanistic biochemi-
cal and longitudinal analysis of their role as prognostic
indicators and in the aetiology of heart failure is clearly
warranted.
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