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‘Metabolite-likeness’ as a criterion in the
design and selection of pharmaceutical
drug libraries
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Present drug screening libraries are constrained by biophysical properties that predict desirable

pharmacokinetics and structural descriptors of ‘drug-likeness’ or ‘lead-likeness’. Recent surveys,

however, indicate that to enter cells most drugs require solute carriers that normally transport the

naturally occurring intermediary metabolites and many drugs are likely to interact similarly. The

existence of increasingly comprehensive summaries of the human metabolome allows the assessment of

the concept of ‘metabolite-likeness’. We compare the similarity of known drugs and library compounds

to naturally occurring metabolites (endogenites) using relevant cheminformatics molecular descriptor

spaces in which known drugs are more akin to such endogenites than are most library compounds.
Introduction
The search for pharmaceutically active drugs with desirable prop-

erties and negligible side effects can be considered as a multi-

objective optimisation problem over an enormous search space of

‘possible’ drugs [1,2]. It is usual to start the search by looking for

hits and then leads [3], because, according to Oprea et al. [4], ‘lead

structures exhibit, on the average, less molecular complexity (less

MW, less number of rings and rotatable bonds), are less hydro-

phobic (lower cLogP and LogD), and less druglike’ than actual

drugs (see also [5]). The process of optimising a lead into a drug

with favourable ADMET properties [6,7] results in more complex

structures [8] and system approaches [9–13] that consider not only

a molecular target but also biochemical networks may be of value

in understanding why.

In seeking to narrow the search space of chemically diverse

candidate compounds, cheminformatic methods are used to con-

strain the compounds screened such that they tend to display

‘lead-likeness’ [4,14–16] or ‘drug-likeness’ [16–23] (and even ‘CNS-

likeness’ [24]). The same concepts hold true for drugs with multi-

ple intended targets (promiscuous drugs [25] or poly-pharmacol-

ogy [2,26]).

The most common cheminformatic filter used to constrain

pharmaceutical drug libraries is Lipinski and colleagues’ celebrated

‘rule of five’ (Ro5) [27]. This states that poor absorption or permea-
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tion of a compound is more probable when there are more than

five hydrogen-bond donors, the molecular mass is above 500 Da,

the lipophilicity is high (clogP > 5) and when the sum of nitrogen

and oxygen atoms is greater than 10. Other rules or filters consider

generic and calculable properties such as the number of rotatable

bonds and the polar surface area [28,29] or the ligand efficiency

[30–33], and a ‘rule of three’ has been proposed [34] for fragment-

based lead discovery (see e.g. [35,36]). It was recognised explicitly

in the original review [27] that the Lipinski rules do not normally

cover drugs that are derived from natural products [37,38], in

which transporters are clearly involved in their disposition and

it is, in fact, probable that this involvement of carrier molecules

holds true for most other compounds too [39–41].

Descriptors such as those of Lipinski and colleagues [27] are

essentially biophysical rather than structural in nature, and

despite the widespread use of these measures it is not completely

obvious how they should be understood mechanistically, given

the enormous structural diversity of both drugs and libraries.

Clearly, if drugs are mainly transported by carriers, this gives a

ready explanation of why general descriptors are not normally

going to be entirely effective in individual cases [41]; it also

promotes the view that we need to understand the specificities

for existing and candidate drugs of known drug transporters much

better than we do now at a mechanistic level. Indeed, it is con-

sidered difficult to design for the use of active transporters because

transporter selectivity is not well understood [42]. This said, at
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least for those uptake transporters that are known, it is reasonable

to assume that they normally exist to transport common biochem-

ical compounds involved in primary (intermediary) metabolism

and the knowledge of these molecules may provide useful con-

straints for identifying other potential substrates by direct struc-

tural comparison or by SAR.

A drug may also interact with its target or targets in a manner

that emulates native substrate binding (e.g. [43]). This will also

constrain drugs towards metabolite space, given that the number

of known protein folds is comparatively restricted and that once

found they appear to be conserved in evolution [44,45]. Similarly,

drugs may regulate activity allosterically at a native control site

and this will also constrain such drugs towards metabolite-like-

ness. The guiding principle is that interacting with targets in any

native-like manner imposes native-like constraints, and this will

manifest itself in the drug discovery process by a tendency to

develop towards the regions of chemical space occupied by meta-

bolites, although other concerns in the drug development pipeline

will also impinge upon the final drug structure(s) chosen.

Much of post-genomic drug discovery has concentrated on

proteins and proteinaceous drug targets [19,46]. In recent years,

however, we have witnessed the development of freely available,

curated, reconstructed genome-scale metabolite networks (e.g.

[47–51]) and of databases of human and other metabolites [52–

59], where here the term ‘metabolite’ is used to refer to small

molecule components of primary metabolism and not the pro-

ducts of the reaction of drugs with drug metabolising enzymes. To

this end, we shall sometimes use the term ‘endogenite’ in this

article to describe these endogenous, naturally occurring mole-

cules. Nobeli and colleagues [60,61] have produced a very inter-

esting summary of some of the properties of the known

metabolome of Escherichia coli in particular (and we note that

many microbially derived gut metabolites may also influence their

human host (e.g. [62])). In a similar vein, the existence of databases

of endogenite molecules allows us to ask the question as to

whether existing drugs, that is those that have been successful

in passing through the various phases of drug discovery to the

marketplace, are more metabolite-like (i.e. endogenite-like) than

are the typical contents of pharmaceutical screening libraries. To

address this, known drugs and library compounds, representing

the sorts of pre-drugs that might be screened in hit discovery, are

compared to human metabolites in a variety of appropriate mole-

cular descriptor spaces. We find that drugs are indeed considerably

more similar to endogenous metabolites than are library com-

pounds, and conclude that endogenite-likeness might be a useful

filter in the design and analysis of pharmaceutical libraries for drug

discovery.

Related comparisons between metabolites and other types of

molecules have been considered previously. Gupta and Aires-de-

Sousa [63] compared the distributions in chemical space of meta-

bolites drawn from KEGG and compounds from the supplier

library ZINC [64], concluding that discriminatory features include

hydroxyl groups, aromatic systems and molecular weight when

combined with other global descriptors.

In the major analysis of Karakoc et al. [65] relationships between

drugs, drug-like compounds, antimicrobials, and human and bac-

terial metabolites were considered. One result finds that bacterial

metabolites and antibiotics are highly similar and this mirrors the
32 www.drugdiscoverytoday.com
similarity between human metabolites and drugs we observe.

There is also the suggestion, however, that human metabolites

form a distinct class of molecules that are unlike bacterial meta-

bolites, drugs or drug-like molecules, and they occupy a separate

region of chemical space. This seemingly counter-intuitive result

does not concur with that presented here. The set of 5333 meta-

bolites used here is much larger (compared to 1104), giving far

greater coverage of ‘metabolite space’ and so more fully represents

the total diversity of human metabolites. Moreover, the redun-

dancy measures of Karakoc et al. only removed exact duplicate

molecules and this allows highly similar molecules to remain

within the set. Inevitably this biases the set’s properties towards

the properties of over-represented molecules. Indeed their own

analysis indicates the over-abundance of scaffolds drawn from

sugar- and nucleotide-like molecules. Through the application

of clustering to choose representative molecules for multiple

represented ‘types’ of molecules the influence of redundancy

within our sets is negated. We suggest that the differences

observed between human metabolites and other classes actually

reflect the construction of their human metabolite set and not a

fundamental difference between the properties of human meta-

bolites and other classes of molecule, and this is reinforced by our

analysis. Also note that we do not claim that all human metabo-

lites are similar to drugs; many clearly are not. If the human

metabolite set of Karakoc et al. contains many of these (sugar

scaffolds are prevalent among their metabolites but not their

drugs) then this could also underpin the differences observed.

Finally, Ganesan [38] has very recently compared natural pro-

ducts and synthetic molecules released as drugs, in terms of their

‘Lipinski-likeness’, commenting that (only) ‘half of the 24 natural

products lie in what can be called the ‘‘Lipinski universe’’.’

In this article, the metabolites are drawn from human-specific

databases and genome-scale metabolic reconstructions, and are

greater in number than in previous studies, although many of the

carbohydrates and especially lipids [66,67] that might usefully be

considered metabolites in this context still remain undetermined.

This said, it emerges that the types of drugs that exhibit virtually

no metabolite-likeness in our analysis are very atypical and will

probably remain so even when the missing metabolites are

included.

Comparing drugs and library compounds to
metabolites
To assess the relationship between drugs and metabolites we

compare against a background of compounds of the kinds that

typically make up screening collections for hit discovery, which we

refer to as library compounds. These represent pre-drugs and can

be considered as starting points for drug discovery and develop-

ment. During these processes candidate drugs are selected and

modified to enhance properties favourable to drug action and our

hypothesis suggests that this optimisation process drives such

starting molecules towards the regions of chemical space occupied

by metabolites, because of the necessity to participate in native-

like reactions (including those with transporter molecules).

In the analysis we therefore distinguish metabolites (endogen-

ites), drugs and library compounds (Table 1). The molecules

retrieved from source databases contained duplicate records and

over-represented structural types. Thus, to avoid [68] biasing the
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TABLE 1

Sources of drug, metabolite and pre-drug structures.

Class Source Compounds Total

Metabolite HMDB [58] 2835 5333 (5560)

Metabolite Palsson [94] 806

Metabolite BioCyc [95] 772

Metabolite BiGG [96] 698

Metabolite Edinburgh [48,51] 2048

Drug DrugBank [97] 4152 7330 (8002)

Drug KEGG Drug [98] 4435

Pre-drug Zinc [64] 62,390

‘Compounds’ is the number of unique structures after washing and filtering. ‘Total’ is the total number of unique compounds for each class. The figures in brackets are before the semi-

automatic correction of annotation errors in sources.
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analysis towards common structural forms, the compounds were

clustered and cluster centres used as representatives. Physicochem-

ical distributions are shown in Fig. 1a–d. Figure 1a illustrates (i)

that the distribution of the number of atoms among metabolites is

markedly different from that of drug and library compounds, but

(ii) that the similarity between drugs and library compounds

suggests that screening sets do cover drug space in a sensible

manner, at least with respect to atom number.

The distribution of clogD [69], a calculated value of lipophilicity

able to account for charged species, is shown in Fig. 1b. Positive

values indicate a preference for a hydrophobic environment and
FIGURE 1

Histograms, normalised by class sizes, for different simple molecular properties. (a) N
representative sets. Of note is the fact that above 40 atoms there are very few library

a lipophilicity calculation that takes charge into account. The distribution of librar

Number of hydrogen bond acceptors. The number of hydrogen bond acceptors in
illustrates that both known drugs and metabolites are still found above this num

related measures of ‘drug-likeness’ have been used as a constraint in library desi

donors in Lipinski’s rule of five is suggested to be not more than five. As in (c), library

that do not.
negative values a preference for a hydrophilic environment. The

difference between metabolites and drugs is clear, and again the

library compound distribution conforms to the drug distribution

and suggests appropriate representation of existing drug space in

the screening set. That drugs and libraries have similar distribu-

tions is expected because considerations of lipophilicity have

played a major role in designing drugs and libraries with useful

bioavailability, with the Ro5 being particularly influential, despite

the fact that only approximately half of the marketed drugs obey it

[70]. The fact, however, that metabolites are in general much more

hydrophilic than are both drugs and library compounds is very
umber of atoms (excluding hydrogens) over the drug, library andmetabolite
compounds, although drugs and metabolites are still represented. (b) clogD,

y compounds is similar to that of drugs, but metabolites differ markedly. (c)
Lipinski’s rule of five is suggested to be not more than ten. The histogram

ber, although the library compounds are rare, suggesting that Lipinski and

gn. (d) Number of hydrogen bond donors. The number of hydrogen bond

compounds largely follow the rule, but there are many drugs andmetabolites
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noticeable, and is at least consistent with the requirement for

specialised carriers to transfer them into and out of cells and

between intracellular compartments.

Figure 1c and d shows the distributions of the numbers of

hydrogen bond donors and acceptors. The Ro5 suggests that the

number of hydrogen bond acceptors be not more than ten, and the

number of hydrogen bond donors be not more than five. Both

figures illustrate that whilst the library sets mostly follow these

suggestions, there are numerous drugs (and metabolites) that do

not. From this perspective, endogenites are considerably more like

drugs than are library compounds.

Metabolite-likeness curves
Whilst physicochemical distributions provide a general overview

of the relationships between types of molecules, it is their dis-

tributions in chemical space that are of most relevance. If the

processes of drug discovery and development drive towards meta-

bolite-likeness then this should manifest itself through consider-

able overlap between the distributions of drugs and (a subset of)

metabolites, and one greater than seen between library com-

pounds and metabolites. The notion of chemical space is abstract,

but it can be represented and operated on by the techniques of

cheminformatics that allow molecular similarity to be quantified.

The similarity of drug and library compounds to metabolites is

here assessed by calculating the Tanimoto distance to the closest

metabolite. A variety of molecular descriptors were computed, and

similarities calculated using the Tanimoto coefficient [71]. The

molecular descriptors used were connectivity fingerprints [72,73],

paths [74,75], MDL Public Keys [76] and electrotopological state

(E-state) keys [77,78].

Representative sets of drugs and library compounds were calcu-

lated in each space at thresholds that removed high-level redun-

dancy, which will be described later. Redundancy within the

metabolites was not addressed because it does not negatively affect

the outcome because similarity is measured only with the closest

metabolite.

Figure 2a–d shows the proportion of drugs and library com-

pounds within a given distance to the closest metabolite, using the

above four sets of molecular descriptors. For example, in Fig. 2a

one can determine that 12% of drugs have a Tanimoto distance of

0.5 or less to their closest metabolite. By contrast, less than 2% of

library compounds fall within the same threshold. Although the

shapes of the curves vary for the different descriptors used, the

drugs are consistently closer, often considerably so, to endogenous

metabolites than are the contents of typical screening libraries.

That the drug curves are consistently higher than the curves for

library compounds, in a variety of descriptor spaces covering

various ways of assessing molecular similarity, indicates that suc-

cessful, marketed drugs are indeed much more like metabolites

than are the typical library compounds.

Molecular similarity can be represented in different ways.

Because of this, metabolite-likeness is calculated in several mole-

cular descriptor spaces that capture different aspects of structure,

and so illustrate that metabolite-likeness is not simply an artefact

of a particular descriptor but a general phenomenon in each of the

chemical spaces assessed. It appears to be generally true that drugs

that are very close to metabolites are typically analogues of the

native substrate of their targets. For example, Fig. 3 illustrates how
34 www.drugdiscoverytoday.com
the closest metabolite differs in the various spaces using the

example query of atorvastatin (Lipitor). Different metabolites

are retrieved in each space, and whilst there are features common

to the query and each of the retrieved structures, the connectivity

fingerprint-retrieved structure particularly recalls the native pro-

duct structure (mevalonate) of the main atorvastatin target HMG-

CoA reductase (although we note that statins can exhibit many

pleiotropic effects, see e.g. [79–81]). Generally, the closest meta-

bolite to a drug is quantifiably more similar than in the example

shown in Fig. 3.

The valyl-ester prodrug of ganciclovir (valganciclovir), which

is taken up by peptide transporters [82] of solute carrier family 15

[83], retrieves nucleoside-like metabolites that more closely

resemble the active drug than do the valine modification that

one might expect, although the relative contributions of the

large drug and small valine probably bias molecular similarity

measures towards the drug, and maximal common substructure

methods may be of use. Another type of prodrug modification

couples bile acids and drugs [84], including those designed to

target the human apical sodium-dependent bile acid transporter

(hASBT) [85], which transports bile acids including chenodeox-

ycholate, deoxycholate, cholate and ursodeoxycholate. By cou-

pling bile acids via valine to acyclovir, enhanced uptake was

observed in vitro and in vivo, most successfully for the prodrug

acyclovir valylchenodeoxycholate, which lead to a twofold

increase in acyclovir bioavailability in rats. Using acyclovir

valylchenodeoxycholate as the drug query in the metabolite

search all spaces retrieve bile acids (taurochenodeoxycholate)

or intermediates in bile acid biosynthesis (choloyl-CoA). This

emphasises that metabolite-likeness can be because of drugs

mimicking metabolites in a pathway as opposed to those inter-

acting with a specific target.

Dissimilar drugs
Whilst drugs are generally more similar to metabolites than to

library compounds, certain drugs do not conform to this trend.

The fraction that does not depends upon how one chooses to

define the boundary between ‘similar’ and ‘dissimilar’. In the

connected fingerprint space a realistic choice for the limit of

molecular similarity is a Tanimoto distance between 0.7 and

0.8, equating to 50–80% of drugs being metabolite-like. An illus-

trative selection of these ‘remote’ compounds is shown in Fig. 4,

but clear trends towards particular types of drug or structural

classes are not immediately discernable, although many remote

compounds are heavily halogenated or sulphurated.

Discussion
That the processes of drug discovery and development lead largely

to regions of chemical space already occupied by metabolites,

although a novel discovery, is both expected from the arguments

given in the introduction and observed experimentally in our

analyses. This has major implications for future library design,

which might beneficially take account of the structures and prop-

erties of endogenous metabolites now that usefully complete

structural metabolomes are available. Of course, further efforts

to elucidate the measured metabolome are ongoing, but it is of

note that many metabolites observed experimentally have yet to

be identified chemically [86–88], particularly lipids [66,89,90].
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FIGURE 2

A comparison of drug and library distances to closest metabolites in various molecular descriptor spaces. (a) Connectivity fingerprint space. The proportion of the

representative sets that lie within the specified Tanimoto distance can be seen for each class; the dashed line illustrates that 25% of drugs have a distance to their
closestmetabolite of less than or equal to 0.6, but fewer than 5%of library compounds are foundwithin the same threshold closeness. (b) Path descriptor space. In
this space some drugs and metabolites are equivalent, these being 2% of drugs with a Tanimoto distance to their closest metabolite of 0. Only 3.5% of library

compounds are within a distance of 0.2 of a metabolite, compared with 22% of drugs. (c) MDL Public Keys space. The closeness of both kinds of compound to the
nearestmetabolite (endogenite) using these descriptors is numerically rather smaller than that using the extended connectivity fingerprint space (a) but again the

distances are considerably smaller for endogenites than for library compounds. Only 2% of library compounds are within a Tanimoto distance of 0.2 of a

metabolite, compared with 20% of drugs. (d) E-state keys space. The closeness of both kinds of compound to the nearest metabolite (endogenite) using these

descriptors is numerically rather smaller than in (a) and (c), but the distances to closest endogenites are again considerably lower for drugs than for library
compounds. Only 6% of library compounds are within a Tanimoto distance of 0.05 of a metabolite, compared with 23% of metabolites.
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Understanding why drugs are more similar to metabolites than

library compounds are is complex. High levels of similarity imply

considerable structural equivalence between drug and metabolite

molecules, whereas lower similarity levels might suggest that

something more general has been derived that relates the mole-

cules, such as similar physicochemical properties, but it is difficult

to generalise any such interpretation over the set. The conclusion

that drugs are more like metabolites than library molecules, as

demonstrated using multiple molecular descriptor spaces, how-

ever, is clear and will, we believe, be of considerable value in

shaping future drug discovery efforts. Unlike drugs, metabolites

have not been through a human-guided development process that

considers important factors such as developability, desirable PK/

PD properties and other concerns that dictate how hits become

leads and then drugs. This is, however, information that should be

inductively learned by a well-constructed model of drug-likeness
[19]. Conversely, such models are largely bounded by the limits of

existing information and only describe the types of drugs already

known. The search for new types of drug that exist outside the

current drug space (see e.g. [70]) might usefully begin in the

unexplored regions of metabolite space, particularly given that

drugs probably do not cover the whole of metabolite space, our

knowledge of which continues to grow. Furthermore, the spaces in

which drugs exhibit enhanced metabolite-likeness will be of use in

predicting drug–metabolite interactions.

For problems of molecular similarity it is important to consider

the scope of descriptors and the extent to which they are able to

capture useful relationships between molecules. As with any other

kind of clustering, where utility is the most significant criterion

[91], molecular similarity has no innate or absolute meaning and

the appropriateness of one descriptor ahead of another is largely a

subjective choice, and this problem of representation is well
www.drugdiscoverytoday.com 35
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FIGURE 3

An example of metabolite-likeness. The query atorvastatin (Q), and its closest metabolites from E-state key (a; dityrosine), connectivity (b; 3-hydroxyisoheptanoic
acid), path (c; 5-methyldihydrofolic acid) and MDL Public Key spaces (d; thymidine). Note the similarity of the connectivity-retrieved metabolite to the HMG-CoA

reductase product mevalonate (E).
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known [92]. In practice, certain descriptors are more useful than

others in common tasks, such as learning and retrieval, and the

ability of the chosen descriptors to capture relevant chemical

information underpins their utility in such tasks. In approaching

the question of metabolite-likeness through different spaces, dif-

fering views of molecular similarity are afforded, and in all there is

clear evidence that drugs exhibit a high level of endogenite-like-

ness. Future approaches may consider utilising data fusion or

consensus approaches [93,94] to combine multiple descriptors

into a new descriptor that can draw information from all input

spaces to define a still more useful space optimised particularly for

assessing the metabolite-likeness of drugs.

A drug that displays a high level of similarity with its closest

metabolite is likely to interact with the same target(s) as the

metabolite in a native-like manner. This underpins much of the

rationalisation of metabolite-likeness, but interactions with non-

target molecules are also clearly important. Owing to the increas-

ingly acknowledged role of transporters in drug uptake, the rele-

vance of similarity to native transporter substrates (metabolites

and digestion products) will be of crucial importance in drug

delivery [39–41]. The promiscuous nature of certain drug trans-

porters, however, appears to impose far fewer constraints than

would be expected for drug–target reactions, which are typically
36 www.drugdiscoverytoday.com
more specific. This said, promiscuity is a strong function of lipo-

philicity, especially for certain chemical classes such as bases [5],

and the greater hydrophilicity of metabolites may help users of

‘endogenite-likeness’ as a filter to avoid unwanted promiscuity.

Among the solute carrier family of transporters are certain families

that exhibit extremely broad substrate specificity, particularly the

peptide (SLC15), organic anion (SLCO) and organic anion/cation/

zwitterion (SLC22) transporters, which are known to transport

many drugs and other xenobiotics [41].

Conclusion
The space of potential biologically relevant pharmacophores is

enormous, even large libraries populate it only sparsely, and

attrition remains severe. Consequently it is desirable to develop

‘filters’ that help to bias the drug discovery search in our favour.

Lead-likeness, drug-likeness and the Ro5 have all been used to

advantage, but as our knowledge of systems biology grows there is

a need to move towards more mechanistic approaches [12,95].

This will also require prediction of where and how drugs interact

with metabolism, which can be addressed by cheminformatic

methods to assess molecular similarity between putative drugs

and metabolites. This is a strategy in which we begin to understand

those features of candidate hits and leads that interact not only



Drug Discovery Today � Volume 14, Numbers 1/2 � January 2009 REVIEWS

FIGURE 4

A selection of the ‘drugs’ that are not close to metabolites, including ultrasound contrast agents (sulphur hexafluoride and others, leaving aside a debate on

whether these really constitute drugs), general anaesthetics (the structurally similar desflurane, roflurane and methoxyflurane), the convulsant flurothyl, an

antibacteriurial (methenamine), the acetaldehyde dehydrogenase inhibitor disulfiram and the non-steroidal anti-inflammatory tenoxicam.

FIGURE 5

An overview of the data processing workflow. Drugs, libraries and

metabolites are read (1) and standardised by the ‘washing’ algorithm (2). The

circle indicates a manual check of drug and metabolite definitions (3). Drug

and library compounds are clustered in different descriptor spaces (4) to
remove redundancy. Cluster centres form representative sets (5). The

similarity of representative set members to the total metabolite pool is then

calculated.
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with specific biomolecules (e.g. kinases), but also with other parts

of biochemical pathways, such as transporters.

Compound set sources
Three classes of compounds are defined: endogenous human

metabolites (‘metabolites’ shown in Table 1), drugs and pre-drug

compounds. Definitions are inherited from source databases; for a

compound to be labelled as a human metabolite it need only be

present in one of the source human metabolite databases or

models. Sources are not considered if it is not possible to derive

structures and human origin from the source. Source databases are

listed in Table 1.

The pre-drug set is drawn from Zinc (http://zinc.docking.org).

It was established that a random subset of 2.5% of Zinc that

was clustered in extended connectivity fingerprint (diameter 4)

space at a Tanimoto threshold of 0.6 produces sufficient

clusters to assign >75% of the whole Zinc database at the same

threshold.

The source databases contain misannotated drugs and metabo-

lites, molecules that fall into both categories, and molecules that

do not belong in either. Similar compounds from different classes

potentially represent misannotations. A semi-automatic strategy

to correct errors identified tight clusters in extended fingerprint

space containing both drugs and metabolites, which were then

examined manually for errors. Molecules were assigned to the

classes: ‘drug’, ‘metabolite’, ‘both’ (such as thyroxine), or ‘neither’

(illicit drugs, food additives and pharmaceutical aids). Molecules

that are both metabolites and drugs are considered solely as

metabolites when in comparisons. The final set consists of 5333

metabolites, 7330 drugs and 62,390 library compounds.
Overview of protocol
A summary of the procedure to characterise the metabolite-like-

ness of query compounds is illustrated in Fig. 5.
www.drugdiscoverytoday.com 37
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TABLE 2

Sizes of representative sets in each of the descriptor spaces
following clustering to remove similarity.

Descriptor space Drug Library

Connectivity fingerprint 5723 44,275

Path fingerprint 5835 44,318

MDL Public Keys 5813 44,325

E-state 6028 44,419R
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Processing structures
Before the analysis all compounds were ‘washed’ in Pipeline Pilot

[96]. Washing involved isolation of the largest fragment in the

structure, the removal of salts and hydrogens and the standardisa-

tion of stereochemical and charge information using the Pipeline

Pilot ‘Standardize Molecule’ component. Only compounds with

more than three atoms were considered. The washing procedure is

available as a Pipeline Pilot workflow at http://www.myexperi-

ment.org/ and http://dbkgroup.org/.

Molecular descriptors
Four molecular descriptors were calculated using Pipeline Pilot.

Extended connectivity fingerprints [72,73] operate by identify-

ing the substructural environment of each atom up to a diameter

of 4. The descriptor is then the set of substructures in a molecule

calculated thus, with similar molecules sharing more substructures

than dissimilar molecules.

Path fingerprints [75] describe a compound by all paths through

the molecular graph, here up to length 4, using the Pipeline Pilot

implementation of a Daylight-like path fingerprint [74]. In con-

trast to connectivity fingerprints, paths are not branched and

therefore represent the molecule differently.

The MDL keys [76] are substructural features observed to be of

utility in retrieval tasks such as database searching, and have also

been used in learning problems. Of the full set of 960 useful

substructures the definitions of 166 were released as the MDL

Public Keys.

E-state indices [77,78] capture the electronic and topological

properties of atoms. The indices capture both electronegativity

and topological information for each atom in the molecule via

electronic interactions with neighbouring atoms, and by distance

on the molecular graph, in an index. The set of indices over all

molecules forms a descriptor space.

Clustering and representative sets
Compound libraries are typically distributed such that certain

regions of chemical space are more highly populated than others,

reflecting the types of chemistries that are accessible and consid-

ered interesting, and it is still relatively rare in cheminformatics to

consider the effects of this redundancy [68]. In consequence,

global analyses that ignore this may be biased towards over-repre-

sented types and not reflective of the whole set, one result of which

can be overstated performance on learning tasks, as has been

suggested to have occurred in the previous analyses of drug-like-

ness predictors [97].

To avoid this problem the total library is sub-sampled by

clustering to remove redundancy, with cluster centres used as

representative compounds. Using the Pipeline Pilot component

‘Cluster Molecules’, based upon maximal dissimilarity partitioning,
38 www.drugdiscoverytoday.com
clusters are derived by the imposition of a distance threshold, where

the threshold specifies the maximum distance from a molecule to its

cluster representative. Representative sets of drug and library com-

pounds were produced by combining both sets and clustering, with

closest compounds to the cluster centre from each cluster represent-

ing thatcluster in the final set.Note that for clusters containingboth

drug and library compounds one of each class is selected so as to

represent each class even when overlap occurs within the distance

threshold.

Determining appropriate Tanimoto values for the threshold is

non-trivial. Jónsdóttir et al. and Frimurer et al. [68,97] suggested a

threshold similarity value of 0.85, which captures high levels of

similarity between compounds, although this depends upon the

molecular descriptors chosen. In all descriptors it generates very

tight clusters, many of which are singletons, and only very high

levels of redundancy are addressed. Here the centres of diverse

clusters covering 70% of the total set are selected as representa-

tives. For clusters containing more than one class the closest

member to the cluster centre is selected as the class representative.

Representative sets in the different descriptor spaces are sum-

marised in Table 2. The representative sets of Table 2 are available

in the supplementary material as SD files.

Property distributions
Counts and physicochemical properties were calculated using

Pipeline Pilot, which implements the clogD method of Csizmadia

et al. [69], here calculated at the default pH of 7.4.
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