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Systems biology, metabolic modelling
and metabolomics in drug discovery
and development
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Unlike signalling pathways, metabolic networks are subject to strict stoichiometric constraints.

Metabolomics amplifies changes in the proteome, and represents more closely the phenotype of an

organism. Recent advances enable the production (and computer-readable encoding as SBML) of

metabolic network models reconstructed from genome sequences, as well as experimental

measurements of much of the metabolome. There is increasing convergence between the number of

human metabolites estimated via genomics (�3000) and the number measured experimentally. It is thus

both timely, and now possible, to bring these two approaches together as an integrated (if distributed)

whole to help understand the genesis of metabolic biomarkers, the progress of disease, and the modes of

action, efficacy, off-target effects and toxicity of pharmaceutical drugs.
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Systems biology and metabolic modelling in
the 21st Century
Although there are many individual definitions, most commen-

tators (including this one [1,2]) take it that systems biology

involves an iterative interplay between more or less high-through-

put and high-content ‘wet’ experiments, technology develop-

ment, theory and computational modelling, and that it is the

involvement of computational modelling, in particular, in the

process that sets systems biology apart from the more traditional

and more reductionist molecular biology. Metabolomics illus-

trates this amply. There is also the view that the perceived decrease

in the effectiveness of the target-based drug discovery process

[3–5], including the still-high levels of attrition [6], means that

we must move towards understanding organisms at something

more akin to a whole-system level [7–11].

The question then arises as to what part of a system one might

first beneficially model? Although there has, unsurprisingly, been

considerable interest in modelling the major signalling pathways

(e.g. Refs [12,13]), there are several reasons why it is timely to turn

our attention to the level of small molecule metabolism, which is

the focus of this review.
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Metabolism is more discriminating
It has long been known, and proven through the formalism of

metabolic control analysis [7,10,14–16], that whereas small

changes in the concentrations of enzymes (and the transcripts

that encode them) have only small effects on the fluxes through

metabolic pathways, they have substantial effects on the concen-

trations of metabolic intermediates. Because the metabolome

(nominally the concentrations of ‘all’ the metabolites measured

in a system of interest [17]) is downstream of the proteome, it is

thereby ‘amplified’ both in theory [18] and in practice [19,20] and

represents a more sensitive level of organisation than do the

macromolecular ’omes for understanding a complex biological

system, and the changes in it that might be occasioned by disease

or pharmaceutical intervention [21,22].

Metabolic reconstruction is now mature and timely
An attractive feature for the purposes of modelling is that meta-

bolism, in contrast to signalling pathways, is subject to direct

thermodynamic and in particular stoichiometric constraints

[23,24]. As the product of one reaction is usually the substrate

of another, and we know a considerable amount at a baseline level

[25], the starting point for metabolic reconstruction is thus the

genome itself. A combination of automated and manual proce-

dures can help turn a genome sequence into a metabolic model,
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TABLE 1

Useful Internet resources for metabolic modelling, metabolomics and systems biology

Resource Website Comment

Portals

http://dbkgroup.org/metabol.htm#links Metabolomics links

http://dbkgroup.org/sysbio.htm#links Systems biology links

Metabolic pathways

BRENDA http://www.brenda.uni-koeln.de/index.php4 Enzyme database

Expasy http://www.expasy.ch/cgi-bin/search-biochem-index Classic maps

KEGG http://www.genome.ad.jp/kegg/kegg2.html A widely used site

Metacyc http://www.metacyc.org/ Many pathways included

Metabolomics

http://www.metabolomics.ca/ Human metabolome database

http://www.husermet.org/ Human serum metabolome project

Modelling

SBML http://www.sbml.org/ Links to most bio-modelling websites

SBGN http://www.sbgn.org/ An emerging standard for visualising SBML models

Metabolic models

http://jjj.biochem.sun.ac.za/ ‘Triple-J site’

http://www.ebi.ac.uk/biomodels/ Biomodels

Other

http://dbkgroup.org/memo/ MeMo data model

http://www.metabolomicssociety.org/ Metabolomics Society
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and a variety are available (e.g. Refs [26–30]). The qualitative

metabolic network or logical graph, popularised in the biochem-

ical wall charts [25] and resources such as Kyoto Encyclopedia of

Genes and Genomes (KEGG) [31], is then the starting point for

metabolic modelling. Given a homogenous compartment, the

normal strategy is to develop the qualitative model into a quanti-

tative model, in which each step is represented locally as an

ordinary differential equation (ODE) that obeys a typical biochem-

ical equation (such as that of Michaelis and Menten) and that can

then be parametrised (in terms of kinetic and related constants,

such as Km and Vmax). When the number of molecules is small, so-

called stochastic simulations are required [32]. However, such

detail can be more or less hidden from the modeller, as we now

have available a representation that enables interoperability

among many pieces of software, namely the Systems Biology

Markup Language (SBML) model [33].

Generalised representation of metabolic and other
biochemical models
SBML ([33]; http://www.sbml.org/; see also Table 1 for other

Internet resources) is an eXtensible Markup Language (XML) that,

in its present version, enables one straightforwardly to describe a

biological network and its local equations in a manner that can be

exchanged between any number of modelling systems, including

what is probably [34] the most popular modelling software, viz.

Gepasi [35]. A simple example of a model of glycolysis [36] is given

in Figure 1. SBML therefore encodes the model in a manner that

enables one to use it for any number of other desirable manipula-

tions (Figure 2) and, as such, the importance of the SBML cannot

be overestimated. As discussed later, SBML is one of the main ways
1086 www.drugdiscoverytoday.com
of integrating metabolism, metabolomics and systems biology

models.

Systems parameters and systems variables
Systems biology models make explicit the relationship between

the elements of a system, namely the parameters (here the fixed or

starting concentrations of proteins and controlled metabolites,

and all the kinetic constants of the proteins for their substrates,

products and effectors) and the variables (the time-dependent

metabolite concentrations and fluxes). Therefore, a major require-

ment is the measurement of parameters [2], but much of our

energy is expended on the measurements of the variables (i.e.

the concentrations and fluxes, metabolomics and fluxomics).

Systems biology needs to integrate all of these.

Metabolomics and technologies for its measurement
Metabolomics seeks to measure the concentrations of nominally

all of the [small molecular weight (MW)] metabolites in a parti-

cular system, for example, a body fluid such as serum or an

ensemble of cells [17,37,38], although normally a more restricted

subset, the ‘metabolic profile’ is measured in practice. This is

because of the huge chemical diversity, especially in terms of

polarity, among different metabolites. As part of the emphasis

on technology development above (and see Ref. [39]), the tech-

nologies that enable us to do metabolomics well have recently

increased in power [17,40–43]. They normally include a separation

step (gas or liquid chromatographies or electrophoresis) coupled to

an identification step (typically mass spectrometry). Sophisticated

optimisation methods are improving these still further. Thus,

following the development of the ‘Robot Scientist’ approach

http://dbkgroup.org/metabol.htm
http://dbkgroup.org/metabol.htm
http://www.hmdb.ca/
http://www.husermet.org/
http://www.lipidmaps.org/
http://w3.org/2002/ws/
http://www.mcisb.org/
http://genomebiology.com/2003/2004/2009/R2054
http://www.husermet.org/
http://www.sbml.org/
http://www.sbgn.org/
http://jjj.biochem.sun.ac.za/
http://www.ebi.ac.uk/biomodels/
http://dbkgroup.org/memo/
http://www.metabolomicssociety.org/


Drug Discovery Today � Volume 11, Numbers 23/24 �December 2006 REVIEWS

FIGURE 1

A typical metabolic model inGepasi. (a) A screenshot of the model set-up

and (b) the time series (in s) of variables that can then be compared with
experiment. Note that not all the metabolites have reached a steady state.
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[44], in which closed-loop methods of active learning are exploited

to design and perform serial experiments in an intelligent manner,

a comparable strategy has been exploited to increase hugely the

number of metabolites that can be detected chromatographically.

Using one-dimensional GC-tof-MS, the number of peaks observa-

ble in human serum was approximately trebled (compared with

another GC-tof-MS method that was the starting point and that we

thereby improved) to >1200 [45], which has already enabled the

discovery of several novel biomarkers for pre-eclampsia [46] (and

see later). Two-dimensional GCxGC-tof-MS has been exploited

further to treble this number to >4000 raw peaks, which equates

to �1800 metabolite peaks [47,48]. Comparable liquid-phase

chromatographies based on reverse-phase UPLC-MS [49,50] can

measure thousands of peaks, and a new version of normal-phase
UPLC-MS using HILIC [51,52] columns provides complementary

measurements. Although what one measures can be influenced

strongly by the means of extraction [53], how do these numbers

compare with the known or inferred size of the human metabo-

lome?

Sizes of the human and other metabolomes
An attraction of the metabolome has always been that it is

numerically smaller, and thus more tractable, than the transcrip-

tome or proteome [37]. In the case of baker’s yeast (Saccharomyces

cerevisiae), the latest models (e.g. Ref. [26]) give some 1200 reac-

tions and 650 metabolites, with slightly smaller but broadly simi-

lar numbers for bacteria such as Escherichia coli [54–56] and

Streptomyces coelicolor [28], most with a MW <500 [27,55]. The

curated human metabolome [as reconstructed semi-manually

from the consensus human genome sequence, build 31 [29] or

35, (Bernhard Palsson, pers. commun.)], presently contains respec-

tively some 1100/3300 reactions and 700/2700 metabolites. (The

number of enzymes inferred to be gene products is more than the

number of reactions owing to the common existence of isozymes.)

The availability of an accurate human metabolic network will

revolutionise metabolomics, although the number of reactions

and metabolites will be an underestimate for several reasons. First,

it is recognised that some areas of metabolism are more ‘repre-

sented’ than others; transporters especially are highly underrepre-

sented in terms of the literature. (This is particularly true for their

activities in transporting xenobiotics and pharmaceuticals [57].)

Second, many enzymes will have currently unknown substrates.

Third, without the use of ‘untargeted’ metabolomics strategies (see

below), it is hard to discover molecules whose existence one does

not suspect, and so some molecules might be reasonably prevalent

but of unknown chemical identity. (In plants and yeast, most

metabolites measured by gas chromatography-mass spectrometry

are presently of uncertain identity.) The measured metabolome is

greater than that encoded by the genome, as it will include

molecules acquired exogenously as drugs, foods or food additives,

and will also include molecules derived from the microflora of the

host [58].

Coming from the experimental end, Siuzdak and colleagues

have measured some 3000 metabolite peaks in human serum [59],

and nearly 2000 can be seen by GCxGC in serum, a similar number

to that seen by Soga and colleagues using capillary electrophoresis-

mass spectrometry in liver extracts [60]. An exciting initiative led

by David Wishart and Lori Querengesser is the Human Metabo-

lome Database (http://www.hmdb.ca), which is seeking to catalo-

gue all the human metabolites with a concentration >1 mm in

serum, and to confirm their identity using authentic standards.

The current number of metabolites identified in this way is >800,

with the expectation of reaching 1400 by the end of 2006. A

broadly related goal is part of ‘HUSERMET’ (‘the human serum

metabolome in health and disease’) project (http://www.huser-

met.org), where the database is based on the open-standard MeMo

data model [61]. It is likely that the number of endogenous

metabolites at significant concentrations in the human serum

metabolome in the range of 1–10,000, and is likely to asymptote

at�3–3500. This statement somewhat ignores the large number of

lipid combinations that are being picked up by the LIPIDMAPS

consortium (http://www.lipidmaps.org).
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FIGURE 2

Integrating metabolic models into a systems biology workflow. (a) The representation of a metabolic model in SBML has many possibilities, including its
creation, editing, visualisation, running, sensitivity analysis, comparison with experimental data, model merging, nonlinear dynamics analysis and so on. It is likely

that the pieces of software that do any of these well will differ from each other, and so it is necessary to integrate them with each other in a distributed manner.

Environments such as Taverna [100,102,105] enable the specification of the necessary bioinformatics workflows. (b) A workflow based on some of the

components in (a).
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What and where to measure?
One question that arises for those contemplating a metabolome

project using measurements on biofluids, is whether to study urine

or plasma and/or serum (there seems little difference between the

latter; Dunn, W.B. et al., unpublished). Overall, the general feeling

is that urine reflects a more short-term state of the organism,

whereas fasting serum and/or plasma changes represent more

chronic or long-term snapshots of the system. There is also the

influence of ethnicity, diet, diurnal rhythm, and so on, on the

experimental metabolome to consider [62,63].

What is the metabolome potentially useful for?
Biomarker detection
In a certain sense, the metabolome is chemical pathology writ

large, and just as many disease conditions are now assessed by

measuring small molecule concentrations in biofluids, we can

expect the metabolome to be of significant utility in various kinds

of diagnosis [21,64]. Of course, the entire field of ‘inborn errors of

metabolism’ is based on seeking diagnostic changes in the meta-

bolome, and these are now measured routinely [65,66]. Such

diagnostic biomarkers can of course be surrogates [67], as well

as being genuinely diagnostic. However, studies that seek novel

biomarkers are not without their difficulties, and bias is an ever-

present danger [68,69]. In addition, because we measure multiple

metabolites, their statistical analysis involves multiple hypothesis

testing and there is a profound danger of false discoveries, espe-

cially when sample sizes are low [70–72]. This said, and although

these are early days, there have been some interesting and unex-

pected findings, often from the perhaps more obscure parts of

intermediary metabolism. Indeed, the great attraction of metabo-
1088 www.drugdiscoverytoday.com
lomics (and other omics) is that specific hypotheses are not tested;

instead, the data are left to tell us the answer [39,73]. Thus,

Ringeisser and colleagues proposed that N-methylnicotinamide

and N-methyl-4-pyridone-3-carboxamide were potential urinary

and plasma biomarkers of peroxisome proliferation in the rat [74];

Soga et al. [60] discovered that the metabolite ophthalmic acid, g-

glutamyl-2aminobutyryl-glycine, was a novel biomarker for oxi-

dative stress occurring as a result of glutathione depletion caused

by the administration of acetaminophen (paracetamol).

He and colleagues were interested in finding ligands for the

orphan GPCR GPR91, and discovered that these were in fact the

citric acid cycle intermediates succinate and 2-oxoglutarate [75],

thus opening up an interesting and novel area, and drawing

attention further to the poorly recognised signalling roles of small

molecules normally considered to be intermediary metabolites.

Using liquid chromatography-mass spectrometry, Sabatine,

Gerszten and colleagues identified several biomarkers for exer-

cise-induced myocardial ischaemia [76], including six members of

the citric acid pathway that were among the 23 most changed

metabolites. Furthermore, changes in six metabolites (citric acid,

uric acid and GABA plus three unidentified metabolites) differ-

entiated cases from controls with a high degree of accuracy. Using

gas-chromatography-mass spectrometry [46] (Kenny, L.C., Dunn,

W.B., Broadhurst, D.I., Brown, M.C., Ellis, D.I., Myers, J., Baker,

P.N., The GOPEC Consortium and D.B. Kell, unpublished), a series

of novel small MW metabolites have been discovered that serve as

diagnostic biomarkers for pre-eclampsia (Figure 3). A separate

study compared humans suffering from Huntington’s disease with

a mouse model of the disease, finding that the same metabolites

were observed to have changed in each, thus confirming the utility



Drug Discovery Today � Volume 11, Numbers 23/24 �December 2006 REVIEWS

FIGURE 3

An example of modern metabolomic data. The importance of each of some 286 metabolites in discriminating pre-eclamptic from normal sera [46] is

displayed as a plot of the area under the univariate ROC curve [127] versus the statistical p value in a non-parametric test [72].
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of the mouse model [77]. Other examples include nucleosides for

liver cancer [78], various lipids for type II diabetes [79], and a series

of biomarkers for caloric restriction [80]. An attraction of many of

these methods is that they can begin to give mechanistic insight

into the relevant aetiologies of often progressive and complex

physiologies and pathologies.

Mode of action studies
The notion that one might infer the site of action of an inhibitor in

biology via the measurement of observable variables goes back to

at least the crossover theorem (If you have a pathway A!B!C!D,

the crossover theorem says that if you inhibit the step B!C then B

will increase and C will decrease in concentration, thereby allow-

ing you to assess the site of inhibition by looking at A, B, C, D.

Except it doesn’t work because of feeedback loops.) [81], albeit now

discredited in general [82]; a more common view is that the site of

a pharmaceutical intervention or genetic lesion can be inferred by

using modern machine learning or pattern recognition techniques

to look at the pattern of metabolic changes that ensue [42,83–86],

calibrating as appropriate with molecules for which the answer is

known [87] and validating using samples not involved in the

formation of the predictive model.
In a similar vein, measurements of the metabolome can be

coupled to appropriate breeding experiments so as to infer

gene/QTL-metabolite linkages [88,89] Another related, useful

and powerful strategy, at a genome-wide systems level, but which

does not involve metabolomics directly, is based on the analysis of

the differential effects of drugs on cells in response to specific gene

dosages [90,91]. In principle, metabolomics measurements could

add considerably to the value of such analyses in terms of under-

standing the effect of intervening with metabolic networks at

known locations.

Toxicity analyses
Inferring the mode or target of action of a compound by measuring

its effects on the metabolome is conceptually equivalent, in prin-

ciple, to inferring mechanisms of toxicity by looking for ‘tell-tale’

metabolomic patterns, signatures or biomarker molecules,

although one might hope that toxicity markers would be both

more obvious and more greatly altered. (Indeed, I reviewed above

two studies [60,74] under ‘biomarkers’ that were really looking at

toxicological endpoints, i.e., some markers referred to as BIO

markers are really TOX markers) As with the ‘calibration’ method

for functional genomics [87], one obvious strategy is to build up a
www.drugdiscoverytoday.com 1089
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database of the time- and dose-dependent metabolite patterns that

occur when organisms are challenged with substances of ‘known’

toxicity (recognising that few, if any, are ‘clean’), with a view to

finding equivalent markers when ‘unknown’ drugs are tested; this

is beginning to be undertaken [92]. Although it is early days, it is

gratifying that the kinds of molecule being observed do correlate

with what is to be expected consequently, e.g. upon nephrotoxi-

city or hepatotoxicity [93].

Efficacy
If one can infer a pattern of disease progression by measuring the

metabolome, it is possible that the efficacy of a drug in more or less

reversing that process might similarly be determined from the

metabolome, and this is the motivation for some studies [22].

Although I am not aware of relevant data that show this clearly, it

is likely to be part of the general strategy of theranostics [94], where

modern diagnostics and therapeutics are integrated intelligently

to assess the success or otherwise of therapeutic interventions. The

personalised medicine agenda (e.g. Ref. [95]) will rely heavily on

the availability of suitable biomarkers for all of the above.

Integrating metabolomics and metabolic modelling for
systems biology
The methods for carrying out metabolic modelling, and the means

for collecting, storing and analysing metabolomic data are con-

siderably different, will normally be performed by individuals or in

laboratories with different skill sets, and yet necessarily will deal

with the same molecules. It is therefore extremely timely to bring

together the known or inferred metabolic maps of suitable organ-

isms with measurements of their metabolomes to provide a sys-

tems-level understanding of the metabolic fluxes and metabolite

concentrations in these organisms, and how they might change

under different conditions. The means by which this is to be

accomplished is presaged in Figure 2, where it is recognised that,

notwithstanding the core importance of the SBML representation,

it needs to be exploited in an integrated environment. This,

however, does not mean that we have to try and make an inte-

grated environment by starting from scratch (and the legacy of

excellent software and data would make this an act of folly), or that

the integration has to be undertaken locally. What is needed is to

link together the various elements and modules in which we are

interested.

As was implicit almost from the beginning of such bioinfor-

matic studies [96], the concept of the pipeline [97,98] or workflow

[99–102] is now common in bioinformatics for the analysis of

data. Here, the tools involved in the data analysis are stitched

together using standardised environments or interfaces to form a

workflow, after which they can then be enacted in a more or less

automated manner. A convergence of various technologies now

makes this easier [103]. Specifically, Web Services (WS) (http://

w3.org/2002/ws/) is a distributed computing framework that

enables computational resources such as databases and analysis
1090 www.drugdiscoverytoday.com
tools to communicate with each other by the exchange of

messages in XML based on the Simple Object Architecture Pro-

tocol (SOAP). All of this is well within the spirit of the Systems

Biology Workbench [104] and of software Application Program-

ming Interfaces more generally. Thus, distributed environments

using systems such as Taverna [100,102,105] or others [106,107]

to enact the necessary bioinformatic workflows provides an

attractive way forward [2,108].

Future directions: bringing cheminformatics to
metabolic systems biology
It is often the case that what are intellectually reasonably closely

related subjects or disciplines can develop with little overlap, and

two subjects that pertain closely to metabolic systems biology are

cheminformatics and chemical genetics. Cheminformatics [109–

111] is the application of informatics methods to solve chemical

problems. Although it has largely been driven by the interests of

the pharmaceutical industry whose concerns lie with xenobiotics,

it is obvious that the same methods can be applied to the compu-

tational systems biology of natural metabolic systems, and we

need to integrate the ideas and knowledge of cheminformatics

into metabolomics, just as is happening with chemometrics [112].

Recent developments are increasing the richness of the represen-

tations that we can exploit [113], and bring the hope of adding

chemical structure mining [114] to the emerging possibilities in

literature and text mining (e.g. Refs [115–117]).

The modulation by small molecules of biological activities has

proven of immense value historically in the dissection of biolo-

gical pathways (e.g. in oxidative phosphorylation [118,119]).

Chemical genetics or chemical genomics (e.g. Refs [120–123])

describes an integrated strategy for manipulating biological func-

tion using small molecules (the integration aspect specifically

including cell biology-based assays and the databases necessary

to systematise the knowledge and from that quantitative structure-

activity relationships may be discerned [124]). Again, it is clear that

the tools, including informatics tools, that are valuable for che-

mical genetics bear closely on those of value to the metabolic

modeller, and having all of the data in a sensible, computer-

readable form will enable the emergence of comparative metabo-

lomics, which I predict will be as useful and powerful as compara-

tive genomics is proving to be [125,126].
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