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Background: When exploited fully, flow cytometry can
be used to provide multiparametric data for each cell in
the sample of interest. While this makes flow cytometry a
powerful technique for discriminating between different
cell types, the data can be difficult to interpret. Tradition-
ally, dual-parameter plots are used to visualize flow cytomet-
ric data, and for a data set consisting of seven parameters,
one should examine 21 of these plots. A more efficient
method is to reduce the dimensionality of the data (e.g.,
using unsupervised methods such as principal compo-
nents analysis) so that fewer graphs need to be examined,
or to use supervised multivariate data analysis methods to
give a prediction of the identity of the analyzed particles.
Materials and Methods: We collected multiparametric
data sets for microbiological samples stained with six
cocktails of fluorescent stains. Multivariate data analysis
methods were explored as a means of microbial detection
and identification.

Results: We show that while all cocktails and all methods
gave good accuracy of predictions (G94%), careful selec-
tion of both the stains and the analysis method could
improve this figure (to G99% accuracy), even in a data set
that was not used in the formation of the supervised
multivariate calibration model.
Conclusions: Flow cytometry provides a rapid method of
obtaining multiparametric data for distinguishing between
microorganisms. Multivariate data analysis methods have
an important role to play in extracting the information
from the data obtained. Artificial neural networks proved
to be the most suitable method of data analysis. Cytom-
etry 35:162–168, 1999. r 1999 Wiley-Liss, Inc.
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Flow cytometry (1) is a rapid method for the analysis of
single cells as they flow in a liquid medium through the
focus of a laser beam surrounded by an array of detectors.
When exploited fully, flow cytometry yields a multiparamet-
ric set of measurements relating to each cell that is
analyzed. These measurements may be of intrinsic cell
properties such as forward light scattering, which pro-
vides a measure of cell size (2–4), side scattering, which
gives a measure of granularity, or autofluorescence. Alter-
natively, the investigator may add one or more fluorescent
stains to the sample prior to analysis, allowing the measure-
ment of a variety of determinands (5,6). Many different
fluorescent stains, with a variety of cellular targets, have
been investigated by flow cytometry. These include stains
that have a high specificity for nucleic acids, proteins, or
lipids, and probes which reflect Ca21 concentration, pHin,
etc. (4,7,8).

When selecting a combination of fluorescent stains to
use together in a cocktail, there are several factors that
need to be considered. These include the facts that 1) the
stains must be excited efficiently by the light sources
available, 2) the emission wavelengths should not overlap
(although if they are excited by different light sources their

emissions can be separated by gated-amp electronics), and
3) the cellular targets of the constituents of the cocktails
should be different.

Flow cytometry enables the experimenter to analyze
large numbers of cells at high speeds (1,9,10). With typical
rates of data acquisition being on the order of 100–1,000
cells.s21 (thus enabling the collection of data from tens of
thousands of cells per sample rather quickly), large amounts
of data are produced. Flow cytometric data are collected in
many prototype or commercial instruments that reflect
3–8 (11,12) or even more (13–15) different parameters,
such that sophisticated data processing techniques are
desirable in order to extract the most useful information
from the data (5,16–18).

Principal components analysis (PCA) (19,20) is a useful
aid in the visualization of multivariate data. The aim of PCA
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is to rotate the data points into a new coordinate system,
such that the majority of the variance in the data set is
accounted for in the directions of a subset of these rotated
axes. Hence, by plotting the points in this new coordinate
system, the significant effects within the data can be more
easily visualized. PCA is an ‘‘unsupervised’’ method, in that
it examines only the measured variables in order to
perform the analysis, and does not take the class structure
of the data into account. Hence, PCA can (and is likely to)
highlight effects that are not of direct interest to the
experiment at hand.

Unsupervised methods are ideal for a preliminary exami-
nation of the data (21), but do not directly aid in the
formation of predictive models. For this application, one is
forced to use the more sophisticated ‘‘supervised’’ meth-
ods such as principal components regression (PCR), par-
tial least squares regression (PLSR) (22), and artificial
neural networks (ANNs) (23–27). PCR is a simple exten-
sion of PCA, in that a multiple linear regression (MLR) is
performed on a subset of the values of the principal
components. If the first few components do indeed reflect
relevant variations, PCR can give rise to a useful model,
where MLR would fail due to collinearity. PLSR is a more
useful supervised method, as it is designed to extract those
underlying linear effects which are of most relevance to
the Y data of interest (in this case the identity of the
microorganisms). PCR and PLSR are limited, in that they
can only take account of linear relationships within the
data. If the relationships are suspected to be nonlinear,
then ANNs are needed, as these can represent arbitrary
(continuously differentiable) nonlinear functions (28).

When using multiple variables as inputs to any multivar-
iate analysis, some variables will be found more important
than others. Indeed, it often happens that some variables
are detrimental to the multivariate calibration model (29).
This could be because they are measuring something other
than the searched-for correlation, or simply because the
information contained is also contained in other variables.
The parsimony principle (30) states that where two
models give the same result, the simpler model should be
preferred, as it will be able better to predict an unseen data
set. Therefore, variables which do not contain any addi-
tional information are undesirable (31). For this reason, a
suite of Microsoft Excel macros has been written to carry
out variable selection, with a view to establishing the best
variables from which to form a model (32).

The majority of flow cytometric research that has been
published to date has involved the study of mammalian
cells, although numerous areas of microbial research
would benefit greatly from the flow cytometric approach
(5). One common problem for the microbiologist is the
identification of cells within a given sample. This may be,
for example, when one is monitoring the progress of an
industrial fermentation, where the emphasis may be on
the detection of contaminants (33,34), or on the analysis
of the physiological changes occurring therein (35–38).
Alternatively, it may be that environmental samples are
being analyzed for the presence of pathogenic organisms
when the release of a biowarfare agent (where the most

credible threat is Bacillus anthracis (39,40)) is suspected
(41–45). As the flow cytometric approach involves the
study of individual cells, it is readily amenable to the
problem of identifying specific cell types against a back-
ground of other biological and nonbiological particulates.
We therefore present a study of a variety of data analysis
methods for the analysis of microbial cells, with emphasis
on selection of the most appropriate stain cocktail and
data analysis method for the detection and identification of
Bacillus globigii spores (as a nonpathogenic model for B.
anthracis) against a background of other microorganisms.

MATERIALS AND METHODS
Sample Preparation

Bacillus subtilis var niger (B. globigii) spores were
obtained from the Chemical and Biological Defence Estab-
lishment (CBDE), (Porton Down, Salisbury, UK) as a dry
preparation. Prior to analysis the spores were suspended
in sheath fluid (see below) to give a concentration of
approximately 1 3 106 spores.ml21.

Escherichia coli (Lab Strain C500) were grown on a
medium containing 1% tryptone, 1% yeast extract, and 70
mg.121 MgSO4. The medium was adjusted to pH 6.8 with
HCl or KOH prior to autoclaving at 121°C for 15 min. Cells
were grown in batch culture at a temperature of 37°C on a
shaker for 3 days.

Micrococcus luteus (NCIMB 13267) were grown on
E-Broth (Lab M) on a shaker at 30°C for 3 days.

A strain of Saccharomyces cerevisiae was isolated from
locally obtained baker’s yeast, and grown on yeast extract
peptone glucose (YPG) medium which contained 5%
glucose, 0.5% yeast extract, and 0.5% bacteriological
peptone. The medium was adjusted to pH 5 with phospho-
ric acid prior to autoclaving. Temperature was maintained
at 30°C, but the culture flask was not agitated during the
3-day incubation.

Fixed cells or spores were prepared by squirting a
suspension of spores or cells from a syringe into ethanol to
give a final ethanol concentration of 70%. Fixed samples
could be stored at 220°C for several months without
noticeable deterioration. All fixed samples were centri-
fuged and washed in the sheath fluid used for flow
cytometric analysis (see below) prior to resuspension in
sheath fluid. Fixed samples were analyzed within 2 h of
removal of the fixative.

Fluorescent Stains

Tinopal CBS-X (5,46) was obtained as a gift from Ciba
Dyes and Chemicals, Ltd. (Macclesfield, UK). Nile red,
propidium iodide, and fluorescein isothiocyanate (FITC)
were obtained from Sigma (Poole, Dorset, UK). DISC2(5),
Oxonol V, SYTO 17, and TO-PRO-3 were obtained from
Molecular Probes Europe BV, (Leiden, The Netherlands).
These stains were added to the fixed microbial samples in
the following order, combination, and concentrations:

1. Tinopal cocktail: Tinopal CBS-X at 40 µg.ml21, prop-
idium iodide at 50 µg.ml21, and FITC at 25 µg.ml21.
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2. Nile red cocktail: Nile red at 10 µg/ml21, propidium
iodide at 50 µg.ml21, and FITC at 25 µg.ml21.

3. DiSC2(5) cocktail: Tinopal CBS-X at 40 µg.ml21,
DISC2(5) at 1 µg.ml21, and FITC at 25 µg.ml21.

4. Oxonol cocktail: Tinopal CBS-X at 40 µg.ml21, Ox-
onol V at 1 µg.ml21, and FITC at 25 µg.ml21.

5. SYTO17 cocktail: Tinopal CBS-X at 40 µg.ml21, SYTO
17 at 1 µM (,0.65 µg.ml21), and FITC at 25 µg.ml21.

6. TO-PRO-3 cocktail: Tinopal CBS-X at 40 µg.ml21,
TO-PRO-3 at 1 µM (0.67 µg.ml21), and FITC at 25 µg.ml21.

Flow Cytometry

All flow cytometric analyses were performed using a
Coulter Epics Elite flow cytometer (Coulter Electronics,
Ltd., Luton, UK) equipped with the following three lasers
which were suitable for excitation of all of the stains used
in this study. The numbers in parentheses show the laser
wavelengths used and the emission wavelengths that were
collected for each stain:

Helium-cadmium laser (325 nm)
Tinopal CBS-X (,440 nm and 525 nm)

Argon ion laser (488 nm)
FITC (525 nm)
Nile red (575 nm)
Propidium iodide (.600 nm)

Helium-neon laser (633 nm)
DISC2(5) (675 nm)
Oxonol V (675 nm)
SYTO 17 (675 nm)
TO-PRO-3 (675 nm).

In addition, forward scatter, side scatter, and where
appropriate, autofluorescence (575 nm) signals were col-
lected from the argon ion laser. The flow cytometer was
set up as described in the manufacturer’s manual, and a
logarithmic gain was used in all cases. The sheath fluid was
prepared using Millipore Milli-Q water filtered to 0.2 µm
and contained 150 mM KCl and 10 mM HEPES. The sheath
fluid was adjusted to pH 6.8 with KOH and then filtered
using a 0.1-µm Whatman WCN filter. Prepared sheath fluid
was stored at 4°C but was allowed to reach room tempera-
ture before use. The lasers were aligned (using Coulter
Immunocheck beads) so that the sample intersected the
HeCd laser 40 µs after intersecting the argon ion and HeNe
lasers. The signals were then recombined using the gated
amp electronics.

Thus, cocktails were created that consisted of dyes with
separable fluorescence characteristics and different cellu-
lar targets. Nucleic acids were, in the various cocktails,
stained by either propidium iodide, SYTO-17, or TO-
PRO-3. FITC labels protein, and Nile red binds preferen-
tially to lipids. The exact targets of the other dyes used
were not completely clear in the case of vegetative or
sporulated bacteria (e.g., see Davey and Kell (46)), but for
the present work it is the multidimensional pattern of
staining rather than the physiological interpretation of the
staining that is important.

Data Analysis
Data sets containing representatives of each of the four

organisms studied were created by combining events from
separate list-mode files, as shown in Figure 1. Ideally, one
may wish to use samples that were mixed prior to flow

FIG. 1. Schematic representation of the data analysis protocol. For a
given stain cocktail, the list-mode files for each of the microorganisms
were converted to ASCII format, using the lldata utility (for more
information see the online catalogue of free flow cytometry software
http://www.bio.umass.edu/mcbfacs/flowcat.html). Subset.bas was writ-
ten in-house using Microsoftt Qbasic (and is available from http://
pcfcij.dbs.aber.ac.uk/software.htm) to select every nth, event from the
data file to give a user-defined number of events. Partial least squares
(PLSR), principal components regression (PCR), and artificial neural
networks (ANNs) were then performed from within the Microsoftt Excel
spreadsheet, using macros that interfaced to executable C code, both of
which were written in-house.
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cytometric analysis to create and test the models, but in
this case there would be no a priori knowledge of the
identity of the individual events in the list-mode file to test
the accuracy of the models. However, we studied the
dual-parameter histograms produced from preacquisition

mixtures and postacquisition mixtures and found no
differences that would indicate modulation of fluores-
cence intensity or interspecies clumping. Furthermore,
using a trained ANN to predict the identity of 5,000
unknown events from the analysis of a preacquisition

Table 1
Summary of Results of Multivariate Data Analysis of Flow Cytometric Data for Six Cocktails used to Identify Those Events that

Correspond to Bacillus globigii in the Data Set

Comment or
data analysis
method

Cocktail of fluorescent dyes

Nile Red
PI FITC

Tinopal
PI FITC

Tinopal
DiSC2(5)

FITC

Tinopal
Oxonol V

FITC

Tinopal
SYTO 17

FITC

Tinopal
TOPRO-3

FITC

Instrument com-
plexitya

1 laser 2 lasers 3 lasers 3 lasers 3 lasers 3 lasers

Data complexityb 5 variables 7 variables 7 variables 7 variables 7 variables 7 variables
Variable rankingc PI Autofluor. FITC FITC FITC TO-PRO-3

Nile Red PI FS Oxonol FS FITC
FS FS Tinopal 440 FS Tinopal 440 FS
FITC FITC Side scatter Tinopal 440 Side scatter Autofluor.
Side scatter Side scatter Autofluor. Autofluor. Autofluor. Tinopal 440

Tinopal 440 Tinopal 525 Side scatter SYTO 17 Side scatter
Tinopal 525 DiSC2(5) Tinopal 525 Tinopal 525 Tinopal 525

Raw plot of best
variablesd

PI/FS
%B 99
%notB 98.3

PI/FS
%B 98%
%notB 99.5

FITC/FS
%B 99.5
%notB 98.8

FITC/FS
%B 100
%notB 95.8

FITC/FS
%B 100
%notB 97.5

FITC/FS
%B 100
%notB 97.8

PCAd Factors 1 & 2 Factors 1 & 3 Factors 1 & 2 Factors 1 & 2 Factors 1 & 2 Factors 1 & 2
%B 100 %B 98.5 %B 99 %B 99.5 %B 98.5 %B 100
%notB 99 %notB 96.8 %notB 95.8 %notB 94.8 %notB 96.3 %notB 96.2

PLSRe Best was 5 vari-
ables

%B 100
%notB 98

Best were 5, 6,
or 7 variables

%B 100
%notB 99

Best was 7 vari-
ables

%B 98
%notB 100

Best was 7 vari-
ables

%B 100
%notB 96.7

Best was 7 vari-
ables

%B 100
%notB 95.7

Best was 7 vari-
ables

%B 100
%notB 97

PCRe Best was 5 vari-
ables

%B 100
%notB 98

Best were 5, 6,
or 7 variables

%B 100
%notB 99

Best were 6/7
variables

%B 99
%notB 99.3

Best was 7 vari-
ables

%B 100
%notB 96.7

Best was 7 vari-
ables

%B 100
%notB 95.7

Best was 3 vari-
ables

%B 99
%notB 96.3

ANNf 5-3-1 7-3-1 7-3-1 7-3-1 7-3-1 7-3-1
Epochsg 11,000 10,000 1,000,000 10,000 1,000,000 100,000
Thresholdh 0.5–0.62 0.37–0.57 0.49–0.5 0.56 0.76–0.77 0.54–0.59

%B 100 %B 100 %B 100 %B 99 %B 100 %B 100
%notB 99 %notB 99.3 %notB 100 %notB 97.7 %notB 99 others 99

Grey-shaded squares indicate that, by using a given cocktail/data analysis method combination, 99%1 of the events were correctly
identified. PI, propidium iodide; FS, forward scatter; FITC, fluorescein isothiocyanate; Autofluor., autofluorescence at 575 nm; %B,
percentage of Bacillus globigii spores correctly identified; %notB, percentage of non-Bacillus globigii events that were correctly
identified.

aThree dyes were used in each cocktail, but the complexity of the instrument required to analyze the samples varied. The Nile red/PI/FITC
combination is an example of a cocktail where all of the dyes can be excited by a single laser. In certain circumstances a single laser instrument may
be preferrable for reasons of expense and ease of operation.

bDifferent cocktails yielded different amounts of data about the cells being analyzed. The more variables collected, the easier it should be to
discriminate between various particle types present in the sample. However, a larger number of variables makes traditional data analysis methods
more difficult.

cThe Fisher method was used to rank the variables, and they are shown here with the most discriminatory variable at the top of the list.
dIn the case of the raw data and the PCA, the ‘‘best’’ graph was determined by eye from the combinations of the best three (Fisher-selected)

variables. Regions were drawn that best separated the Bacillus globigii events from the other organisms, i.e., gave the fewest false positives and false
negatives. The best raw graph is indicated here by the two variables chosen; the best PCA graph is indicated by the two factors that were chosen.

eThe PLSR and PCR analyses were carried out as described in the text. In most but not all cases, the analysis that used all of the variables gave the
best results, indicating that there was no redundancy in the data.

fA standard back-propagation neural network was used in all cases. The architecture of the network used was as shown here, e.g., 5-3-1 indicates
that there were 5 nodes in the input layer (corresponding to the 5 variables in the data set which were normalized between 0.2–0.8), 3 nodes in the
hidden layer, and 1 node in the output layer.

gThe number of epochs required to produce an optimally trained network (as judged by counting the number of errors in the test set) is indicated.
The larger the number of epochs, the longer it will take to produce the trained network. However, once the model is produced, the interrogation
time for all networks is the same, and is very fast (1–2 s using a Pentium 200 with the 400 element test sets used here).

hThe threshold for the neural network prediction is the ‘‘line’’ drawn between positive and negative events. The networks were trained to give a
1 for Bacillus globigii and a 0 for all other particle types. A broad threshold range (such as that obtained with the Tinopal cocktail) indicates that the
predictions are well-separated, and thus the model should be more robust.
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mixture resulted in a prediction of 19.8% B. globigii
compared to the 19% that would have been expected from
counting.

The data were analyzed with a variety of multivariate
methods according to the protocol shown in Figure 1. The
method of selecting the variables is called CalcW (32): this
calculates a value referred to as w, which represents how
good each variable is for classification. The lower the value
of w, the better the variable. Initially, a model is formed
using all the variables and then, using w as a guide, one
variable at a time is deleted and a new model formed. In
this way, the best number of variables can be found. For
sets of data with a large number of variables, this number is
invariably much lower than the total number of variables.
For sets of data of the size presented here, variable
selection is of lesser use, but nonetheless is worthwhile to
ensure that models use the optimum number of variables.
Where an accurate result can be obtained with a smaller
number of variables, this is to be preferred, as the resulting
model will be simpler and the sample preparation and data
collection system can also be simplified. It should be noted
that not all combinations of variables have been tried;
rather, judicious selection is used to attempt to find the
optimum variables. The reason for this is that with larger
numbers of variables, it is not practical to try all combina-
tions.

RESULTS AND DISCUSSION
The most common method of analysis for flow cytomet-

ric data is to study combinations of single- or dual-
parameter histograms for each of the samples analyzed. As
the number of measured parameters (n) increases, the
number of dual-parameter plots that need to be inspected
if one is to examine each possible dual-parameter plot
increases as n(n 2 1)/2. In the examples presented here, 5
or 7 parameters were collected, depending on the cocktail
used (see Table 1). Thus, a full exploration of the data
would involve the inspection of 10 or 21 plots, respec-
tively. Thus, we used a variable selection method based on
the Fisher ratio (32) (hence referred to as the Fisher
method), which is essentially the ratio of within-group
variance to between-group variance (30,32) to select the

most discriminatory variables from the 5 or 7 available, and
we plotted the best three in each two-dimensional (2D)
combination to determine what degree of separation can
be achieved (e.g., see Fig. 2). In the case of the SYTO 17
cocktail shown in Figure 2, a line can be drawn to define a
region on the 2D plot of the most discriminatory variables
that contains all of the Bacillus globigii events (200) that
were included in the data set. However, there are also
some E. coli and M. luteus within the region (false
positives). This process was repeated for each of the
cocktails, and the best results for each cocktail were
recorded in Table 1.

In the current work, variable selection was used as a
method of choosing the most discriminatory variables
(flow cytometric parameters) for producing a small num-
ber of dual-parameter plots from a multiparametric data
set. However, since the Fisher ratio ranks the variables
according to their ability to discriminate between the
particles of interest, the method could also be used for
optimizing combinations of dyes to produce the most
discriminatory cocktail.

The second method that was investigated was PCA.
Again, one is looking for clustering of the B. globigii
events at a discrete location from those of the other
organisms (e.g., see Fig. 3). PCA should allow for a better
separation of the clusters than simply plotting the raw
data, because the variance of the data set is preserved in a
smaller number of factors. However, with 5 out of the 6
cocktails in the present study, the opposite was found to
be true (see Table 1), with PCA giving worse predictions
than simply plotting the raw data, despite the fact that the
first component accounted for between 69.7–80.2% of the
variance (not shown). The reason for this is that PCA will
extract as its primary factors the dimensions of greatest
variance. It does not necessarily follow that the first few
components are characteristic of the substance under
analysis; they could well be due to some other factor. This
is one of the major pitfalls of using ‘‘unsupervised’’
methods such as PCA.

In comparison, the other methods used (PLSR, PCR, and
ANNs) are all ‘‘supervised’’ methods. With supervised
methods it is necessary to split the data set into a training

FIG. 2. FITC (protein) fluorescence and forward light scatter-
ing were the two most discriminatory variables obtained from
analysis of samples stained with the SYTO 17 cocktail. The data
(plotted as channel numbers) were collected using the Coulter
Epics Elite flow cytometer, as described in Materials and
Methods. Two hundred events for each organism were plotted.
The voltage for the forward scatter detector was set to 400, and a
voltage of 570 was used for the FITC signal. In both cases the
gain was logarithmic. A polygon was drawn around the Bacillus
globigii data (squares). There were no false negatives (squares
outside the polygon), but there were 15 (2.5%) false positives
(other symbols within the polygon). Triangles represent E. coli,
circles represent M. luteus, and diamonds represent yeast cells.
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set and at least one test set. The training set is then used to
form the model, and the test sets are used to assess how
well the model performs. PLSR and PCR were first per-
formed with all available variables. The least discrimina-
tory of these was then deleted from the data set, and a new
model was made. This was continued until only one
variable remained. Each of the models so formed was
assessed with the appropriate test set, and the accuracy of
the prediction with the optimal number of variables was
recorded in Table 1. In the case of ANNs, the creation of a
useful model (training process) was more time-consuming.
Consequently they were used only with the full data sets,
using a 5-3-1 (Fig. 4A) or 7-3-1 architecture depending on
the number of measured parameters. The training process
involved repeated presentations of the training set (mea-
sured inputs and expected output) to the network. Inter-
nal weights associated with the connections between the
layers (Fig. 4A) were adjusted to reduce the error between
the expected output and the predicted output. Each
complete presentation of the training set is referred to as
an epoch. The training process was stopped at various
points, and the nets were tested with the test set (Fig. 4B).
The optimally trained ANN was selected for each of the
cocktails, and the predictions were recorded in Table 1.

One of the problems associated with the flow cytomet-
ric analysis of microorganisms is that microbes tend to
form clumps. Flow cytometers make measurements on
individual particles, but because of the size variability of
microbial cells, it is often difficult or impossible to deter-
mine whether a given particle consists of a single cell or a
clump of two or more cells. However, provided that
enough examples of clumped cells are included in the
training set, supervised methods may be expected to
identify these particles correctly. Table 1 confirms that this
is the case, since good predictions (95.7%1) were ob-
tained with all cocktails and all supervised data analysis
methods. However, the best results were obtained with

FIG. 4. A: Example of a fully interconnected back-propagation neural
network with a 5-3-1 architecture. There are 5 nodes in the input layer,
each representing one of the measured parameters. The input nodes are
connected to the three nodes in the hidden layer, and the hidden layer is
connected to the output layer. During the training process, the ANN was
presented with a series of data patterns on the input layer, each pattern
representing one of the four organisms that were analyzed, together with
a corresponding output (all of these values were scaled between 0.2–0.8
before presentation to the network). The network was taught to predict a
value close to 1 if the pattern represented B. globiggi, and a value close to 0 if
any other organism was presented. B: Example of the predicton of a test set by
an optimally trained neural network. The grey-shaded area (threshold; see Table
1) separates the positive and negative predictions. Misidentifications were
noted, along with the results for the other cocktails, in Table 1.

FIG. 3. The two most discriminatory PCA fac-
tors from the analysis of the SYTO 17 cocktail
were plotted. Two hundred events for each
organism were plotted. A line was drawn to
separate the Bacillus globigii data (squares) from
the other data. There were 3 false negatives
(1.5%) and 22 false positives (3.7%). Symbols for
the other organisms are as shown in the legend to
Figure 2.
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the Tinopal cocktail, where all supervised methods gave
99%1 accuracy. The best overall data analysis method was
the artificial neural network approach where, with the
exception of the Oxonol cocktail, 99%1 accuracy was
achieved in all cases.

In conclusion, flow cytometry is a valuable technique
for the detection of spores against a background of other
microorganisms. By the careful selection of an appropriate
staining cocktail and a suitable data analysis method, very
accurate identifications can be made.
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