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"In contrast to standard microbiological, genetic or biochemical techniques, this method provides information on 
individual cells, and not just average values for the population. This ability to analyze individual cells is invaluable 
in studying the distribution of cell parameters in a polydisperse population, and gives access to information that 
cannot be obtained in any other way.' Boye & LCbner-Olesen 1990 

'Flow cytometry has revolutionized the study of the cell cycle of eukaryotes. It is also possible to apply the flow 
cytometry principles to bacteria . . . .  The importance of the flow cytometry results should not be underestimated. 
They provide a crucial link in the analysis of the division cycle . . . .  While other experiments have substantially 
supported the initial membrane-elution results, the flow cytometry results determine the pattern of DNA 
replication without any perturbations of the cell." Cooper 1991 
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Abstract 

Flow cytometry  is a technique which permits the characterisation of individual cells in populations,  in terms 
of distributions in their propert ies  such as D N A  content,  protein content,  viability, enzyme activities and so 
on. We review the technique, and some of its recent applications to microbiological problems.  It is concluded 

that cellular heterogeneity,  in both batch and continuous axenic cultures, is far greater  than is normally 
assumed. This has important  implications for the quantitative analysis of microbial processes. 

Introduction and scope 

Based on work by Maxwell and Boltzmann,  Gibbs 
developed the concept of an ensemble, as a collec- 
tion of particles possessed of the same energy 
(mean and t ime-averaged distribution).Since that 
time, the t rea tment  of macroscopic systems as en- 
sembles of microscopic particles that, averaged 
over  time, are identical has underpinned most of 
even modern  thermodynamics  (see e.g. Welch & 
Kell 1986; Westerhoff  & van D a m  1987). Implicit- 
ly, microbial physiologists have normally followed 
the same path: we describe our cultures as having a 
certain growth yield or respiratory rate or internal 

pH or rate of glucose catabolism or whatever ,  with 
the implicit supposition that this represents a full 
description of these variables. However ,  this would 
be true only if our cells were not only identical but 
at equilibrium, constituting what thermodynami-  
cists call an ergodic system. Since we know that 
growing cells are certainly non-equilibrium in char- 

acter, it is usual, even within the f ramework on 
non-equilibrium thermodynamics,  to ascribe a 'lo- 
cal' equilibrium to the macroscopic parameters  and 
variables (forces and fluxes) in which we are in- 
terested, thus permitting us to refer to them as 
possessing a ' sharp '  value. This approach is gener- 
ally thought acceptable (but cf. Welch & Kel11986; 
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Kamp et al. 1988) since the numbers of molecules 
participating in say glycolysis, or the ATP 'pool', 
even in a single cell, means that spontaneous ther- 
modynamic fluctuations in their 'instantaneous' 
value will normally be negligible in the steady state. 

The greater problem, which is the focus of the 
present article, is that the distribution of properties 
of cells in a culture is much more heterogeneous 
than we normally credit or assume. Whilst of 
course one appreciates that for reasons connected 
with the cell cycle alone (see e.g. Mitchison 1971; 
Donachie et al. 1973; Lloyd et al. 1982, Cooper 
1991) there will be a distribution of properties such 
as cell size and macromolecular content, our prob- 
lem is more acute than this: a culture with a respira- 
tory rate of 100 nmol.(min.mg dry weight)-lmight 
be made up of an ensemble of cells which all pos- 
sessed this property or of a mixture in which half of 
the cells respired at 200 nmol.(min.mg dry 
weight) -1 and half were metabolically inert (or of 
course a myriad of other possibilities encompassed 
by these extremes (Kell 1988)). Similar statements 
may be made for all possible parameters and varia- 
bles! Such differences, in cultures which appear 
macroscopically identical, probably underlie the 
so-called 'problem of scale-up' (Kell 1987). In gen- 
eral, then, a full(er) description of the quantitative 
behaviour of a microbial culture, the topic of this 
Special Issue, would require that we describe our 
cultures not only in terms of the mean or macro- 
scopic values of its parameters and (especially) var- 
iables but also in terms of their distribution between 
individual cells. Whilst it is not yet possible to do 
this for all parameters and variables of interest, it is 
now possible to begin this task. This is primarily 
due to technical advances, especially (but not ex- 
clusively) in the area of flow cytometry and its 
application to bacterial cultures. 

Thus the purpose of this article is to outline the 
principles of flow cytometry, to illustrate existing 
and potential applications in quantitative microbial 
physiology, and to point out some of the concep- 
tual and practical difficulties accompanying the 
analysis of heterogeneity. 

Principles of  f low cytometry 

In flow analysis generally, perhaps best known to 
microbiologists via its implementation in the Coul- 
ter counter (see Harris & Kell 1985), cells are con- 
strained (usually hydrodynamically) in a path or 
flowing stream and pass, one at a time to a sensor 
which analyses the property of interest at the sin- 
gle-cell level. The most straightforward output of 
the instrument is then a plot of the number of cells 
possessing a certain property at a certain magni- 
tude as a function of that magnitude. This certainly 
qualifies as quantitative microbiology. In the Coul- 
ter counter the property is the cell volume (or more 
strictly the volume surrounded by the cytoplasmic 
membrane), and this instrument is widely exploit- 
ed by those studying the cell cycle (see e.g. Lloyd 
et al. 1982). However, we would stress again that 
although the concept of heterogeneity underpins 
studies of the cell cycle there has been but little 
attempt to integrate such measurements with those 
more conventionally employed by microbial physi- 
ologists (but cf. Neidhardt et al. 1990; Cooper 
1991). 

Though an important (and not at all recent) de- 
velopment, the microbiological variables which 
may be measured by the Coulter counter are really 
limited to the cell volume, and it is with optically- 
based instruments that the power of flow analysis is 
revealed. To begin with, the extent of low-angle 
light scattering by a cell depends largely (though 
not always linearly; Salzman 1982, Davey et al. 
1990a) on the mass or volume of the cell. In a 
generalised flow cytometer (Fig. 1) (Melamed et al. 
1979; Shapiro 1988), individual particles pass 
through an illumination zone, typically at a rate of 
some 1000 cells.s -1, and appropriate detectors, 
gated electronically, measure the magnitude of a 
pulse representing the extent of light scattered. 
The magnitudes of these pulses are sorted electron- 
ically into 'bins' or 'channels', permitting the dis- 
play of histograms of number of cells vs channel 
number. The angular-dependence of scattered 
light provides further information on the nature of 
the scattering particles, and in favourable cases 
may be selective towards different organisms 
(Steen 1990). In addition, and more importantly, 
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of flow cytometry (Melamed et al. 1979, Muirhead 
et al. 1985; van Dilla et al. 1985; Shapiro 1988; 
Ormerod 1990; Darzynkiewicz & Crissman 1990; 
Melamed et al. 1990), and its application to micro- 
organisms (Olson et al. 1986; Scheper et al. 1987; 
Frelat et al. 1989; Robertson & Button 1989; Steen 
et al. 1989; Boye & LObner-Olesen 1990; Patchett 
et al. 1990; Pinder et al. 1990; Shapiro 1990; Steen 
1990), are also available. 

Is a culture ever in a steady state? 

Fig. 1. The principle of flow cytometry. A pump passes fluid 
through a narrow tube, into which a slower-moving sample is 
injected as appropriate�9 Hydrodynamic focussing causes the 
sample to be constrained to the middle of the sheath fluid. In the 
type of system illustrated, based on the design of Steen et al. 
(1989) and optimised for work with microorganisms, the sample 
impinges on a microscope slide, and illumination is provided by 
a mercury arc lamp. Forward and right-angle light-scattering 
events are detected using photomultipliers, as (via suitable fil- 
ters) is fluorescence, and are stored on a computer. In more 
traditional (and expensive) instruments, the source of illumi- 
nation is a laser, and there is no cover slip; the particles pass 
through the zone of illumination in a jet, and may subsequently 
be sorted electrostatically. In either case, the computer  may be 
used to gate measurements so that only particles scattering light 
or fluorescing above and/or below a critical amount are count- 
ed. 

appropriate fluorophores may be added to the cell 
suspension. These may be stains which bind to (or 
react with) particular molecules such as DNA, 
RNA or protein, fluorogenic substrates which re- 
veal distributions in enzymatic activity, indicators 
which change their property as a function of pH~n or 
which are taken up in response to membrane ener- 
gisation, or, increasingly, antibodies (or oligonu- 
cleotides) tagged with a fluorescent probe. Clearly 
the possibilities are limited only by the ingenuity of 
the experimenter, and to avoid simply cataloguing 
these in the body of the text, we tabulate some of 
the better-known ones in Table 1. Whilst details 
should be sought in the references cited, it is worth 
mentioning that some, but not all, of these reagents 
require that the cells be fixed or permeabilised with 
ethanol (70 %), formaldehyde or glutaraldehyde. 
Several very useful overviews of technical aspects 

From a thermodynamic point of view, it is usually 
desirable to study (biological) systems in the steady 
state (Caplan & Essig 1983; Westerhoff & van Dam 
1987). Under these conditions, all transients have 
died down, and all variables such as metabolite 
concentrations or the fluxes through pathways of 
interest are unchanging in time. These are the types 
of conditions normally treated by metabolic con- 
trol analysis (see Kell et al. 1989: Westerhoff et al. 
this issue), and those usually assumed to hold, for 
instance, in the mid-exponential phase of batch 
cultures and in any chemostat culture whose dilu- 
tion rate has not altered for some 5 or more volume 
changes. There is, of course, some arbitrariness 
about the definition of a steady state, since a true or 
global steady state implies that, after normalisa- 
tion, no variable is changing (by a measurable 
amount) in time, and it is evident that the more 
variables one measures on individual cells the less 
chance will there be of ever persuading a culture to 
come to an observable (let alone true) steady state. 

With a growing appreciation of the complexity of 
the dynamics of nonlinear systems (e.g. Glansdorff 
& Prigogine 1971; Gleick 1987; Moon 1987; Glass 
& Mackey 1988; Wolpert & Miall 1990) naturally 
comes the realization that quite small changes in a 
parameter that might normally be considered in- 
significant can have far-reaching consequences for 
the (time-)evolution of the system. In what follows, 
we wish to illustrate some of the unexpectedly com- 
plex dynamics of microbial cultures that have been 
observed, and to indicate the possibility, and means, 
of exploiting flow cytometry for their analysis. 
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Growth in batch cultures may be exponential 
but not balanced 

When a batch culture is inoculated with a small 
inoculum that has been grown on the same medi- 
um, it is generally observed that after a short lag 
period the culture enters an exponential phase of 
growth (at its t3.rnax for the medium and other par- 
ameters such as temperature) that will continue 
until medium constituents are exhausted or toxic 
end-products accumulate to inhibit cell growth and 
division. The usual criterion for assessing the expo- 
nentiality of growth is to take measurements of the 
optical density or of the cell numbers in the culture; 
if a straight line occurs when these are plotted 

semi-logarithmically against time the culture is 
deemed to be exponential, and the growth taken to 
be balanced (in that tXmax represents a boundary 
value, and it would be a remarkable coincidence if 
major changes in the metabolic make-up of the cell 
were unaccompanied by changes in IXmax). At least 
two recent studies show that this is a highly danger- 
ous practice. 

Skarstad et al. (1983) studied the growth of 
Escherichia coli in batch culture, and measured 
both light scattering and DNA content of individu- 
al cells (the latter using a combination of ethidium 
bromide and mithramycin) via flow cytometry. 
Even when the culture growth was strictly expo- 
nential as judged by cell numbers, however, the 

Table 1. Some determinands amenable to analysis by flow cytometry. 

Determinand Stain or reagent Selected reference(s) 

DNA Hoechst 33258, Hoechst 33342, Ethidium 
bromide, propidium iodide, DAPI, Acridine 
orange., Chromomycin A 3, Mithramycin, 
Olivomycin 

Ethidium Bromide, Propidium iodide, Acridine 
Orange, Pyronin Y, Thioflavin T. 

Fluorescein isothiocyanate, Rhodamine 101 
isothiocyanate (Texas Red) 

RNA 

Protein 

Chlorophyll 
Phycoerythrin 
Carotenoids 

Enzyme activities 

Antigens 

Nucleotide sequences 

Internal pH 

Membrane fluidity 

Inclusion bodies 
poly-~-hydroxy-butyrate 

Cellular 
Morphology 

pCa 

Membrane energisation 

Autofluorescent 

Substrates linked with: naphthoyl-, fluorescein-, 
umbelliferyl-, coumaryl- and rhodamine groups 
[3-galactosidase 

Fluorescently-labelled antibodies 

Fluorescently-labelled oligonucleotides 

Numerous 

Anthroyloxy-labelled fatty acids 

Changes in light-scattering behaviour 

Aequorin, Indo-1, Fluo-3 

Oxonols, cyanine, rhodamine 123 

Darzynkiewicz 1979; Steen et al. 1982; Muirhead 
et al. 1985; Seo et al. 1985; Seo & Bailey 1987; 
Frelat et al. 1989; Sanders et al. 1990; Steen et al. 
1990 

Darzynkiewicz 1979; Tanke 1990; Waggoner 1990 

Hutter & Eipel 1978; Steen et al. 1982; Miller & 
Quarles 1990 

Olson et al. 1986; Robertson & Button 1989; 
Cunnigham 1990 
An et al. 1991 

Dolbeare & Smith 1979; Kruth 1982 

Srienc et al. 1986; Wittrup & Bailey 1988 

Ingram et al. 1982; Steen et al. 1982; Frelat et al. 
1989; Srour et al. 1991 

Amman et al. 1990; Bertin et al. 1990 

Rabinovitch & June 1990b; Waggoner et al. 1990 

Collins & Grogan 1991 

Wittrup et al. 1988 
Srienc et al. 1984 

Betz et al. 1984; Allman et al. 1990 
Hunter & Asenjo 1990 

Rabinovitch & June 1990a 

Ronot et al. 1986; Rabinovitch & June 1990a,b; 
Shapiro 1990; Kaprelyants & Kell 1991 



distributions of both DNA and light scattering 
were highly inconstant. They concluded (correctly) 
that this was the likely cause of the variability in the 
reported cell cycle parameters of slowly-growing 
batch cultures of this organism (see also Jepras 
1991). Steen (1990) extended this study to include 
optical density measurements, and found that 
whilst both the OD and the cell number increased 
in a strictly exponential manner, they did so with 
different doubling times, that based on cell counts 
being the shorter (18 vs. 23 min). It is difficult to 
implicate changes in the nutritional status of the 
medium, since the highest optical density consid- 
ered was only 1 %  of that attained in stationary 
phase. The sins of the parents, one might say, 
extend even unto the third and fourth generations. 

This issue of heterogeneity within cultures of 
what is notionally a single clone comes on top of 
that which one might expect to find between differ- 
ent strains (and one might comment that flow cy- 
tometry could be of taxonomic utility). Even within 
a supposedly tightly defined taxon, however, All- 
man et al. (1991) found, using similar methodology 
to that described in the previous paragraph, that 
strains of Escherichia coil K-12 as a group are rath- 
er dissimilar to each other with respect to the pat- 
tern of their DNA replication, a finding consistent 
with the rapid changes in populations which are 
evidenced by the polymorphisms observable in this 
organism (Krawiec & Riley 1990). 

Due in particular to their possession of a number 
of cofactors, cells are autofluorescent when excited 
with light of appropriate wavelengths. Fig. 2 shows 
the distribution in both light-scattering and auto- 
fluorescence of cells of Micrococcus luteus grown in 
batch culture. At the exciting and emission wave- 
lengths used, the autofluorescence is ascribable 
predominantly to reduced flavin and pyridine nu- 
cleotides. Whilst one might have expected that 
larger cells would have a greater autofluorescence, 
the data observed (Fig. 2) show that there are 
functionally two populations of cells, with 'low' 
and 'high' autofluorescences that are not correlat- 
ed with cell size, in what is by normal microbiolog- 
ical criteria an axenic culture multiplying exponen- 
tially under conditions of balanced growth. The 
protocol of the experiment (Fig. 2) suggests that 
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the heterogeneity observed is not due to genotypic 
differences between the cells, whilst the fact that 
the accumulation of the flow cytometric data takes 
time does not permit one to exclude the existence 
of oscillations in the pyridine nucleotide concentra- 
tions in individual cells. 

The steady state in chemostat cultures 

Based on the kinetics of exponential washout, it is 
usually assumed that after a change in dilution rate, 
a culture attains the steady state characteristic of 
the new dilution rate after some 5 volume changes. 
Certainly this is a longer period than that consid- 
ered in the usual batch culture, but one may doubt 
that even this is sufficient if distributions of proper- 
ties are considered. To date, we are not aware of 
any studies that have looked carefully at this ques- 
tion, and flow cytometry obviously opens up many 
possibilities in this area. A strong pointer is given 
by the work of Rutgers et al. (1987), who found 
that the steady-state glucose concentration in glu- 
cose-limited chemostat cultures continued to de- 
crease for as much as 50 generations after a change 
in dilution rate, long after the steady-state biomass 
level (and hence Yglu) had been reached. Cells tak- 
en from the culture during this period showed a 
continuous increase in p~ .... and cell size (measured 
with a Coulter counter), and a decrease in K~. 
Based on the relevant kinetics, it was argued that 
the changes were likely to be genotypic in nature, 
and one may certainly state that cells which have 
high rates of 'spontaneous' mutation will eventu- 
ally outcompete those which do not, since the for- 
mer will eventually acquire beneficial mutations 
(Chao & McBroom 1985). Broadly similar data 
were obtained by H6fle (1983). 

The above analysis is but one example of the 
long-term dynamics of continuous cultures; those 
in which the growing organism harbours a plasmid 
are of course notoriously complex (e.g. Caulcott et 
al. 1987; Weber & San 1990), and the selection 
pressures easy to construe (Westerhoff et al. 1983). 
However, conventional selection pressures can 
hardly explain the oscillatory behaviour of contin- 
uous cultures (Heinzle et al. 1982; Koizumi & Aiba 
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Fig. 2. Flow cytometric behaviour of the light-scattering (A) and autofluorescence (B) of a batch culture of Micrococcus luteus, and of 
their 2-dimensional distribution (C). A single colony was selected following repeated streaking onto agar and growth in broth. Cells 
were grown in batch culture on 1.3 % Nutrient E broth, to stationary phase, and inoculated to give an optical density (680 nm) of 0.11. 
The data illustrated are from a sample taken when the OD6s0 of the culture was 1.93 (i.e. after more than 4 doublings had taken place). 
Flow cytometry was performed as described (Davey et al. 1990a,b, Kaprelyants & Kell 1991, Markx et al. 1991a,b), save that 
fluorescence was measured using a filter block with the following characteristics: excitation 395-440 nm, bandstop 460 nm, emission 470 
nm and above. In (A) and (B) data were passed through a 3-point smoothing filter prior to plotting (Davey et al. 1990a). The 
photomultipler voltages for the light-scattering and fluorescence channels were respectively 450V and 950V, and the scales are 
logarithmic. Very similar flow cytometric data were obtained in samples taken at all stages of the growth of the culture. In addition, 
samples were taken periodically throughout the culture and streaked out to ensure that the culture remained axenic. 

1989), and it is evident that we have a long way to 
go before we can claim a good understanding of 
these highly nonlinear processes. Experimentally 
tiny fluctuations in what are ostensibly parameters, 
such as oxygen tension and the concentrations of 
inhibitory molecules, may effect substantial chang- 

es in steady-state variables such as dry weights, and 
whilst the importance of 'perfect' mixing has been 
known for many years (e.g. Sinclair & Brown 
1970), recent studies show that the relevant micros- 
cale (50-300 mm) below which turbulence is not 
manifest, even in highly-agitated fermentors, is far 



greater than that of the dimensions of typical mi- 
croorgansims (Fowler & Dunlop 1989; Dunlop & 
Ye 1990), providing a substantial contribution to 
heterogeneity in CSTRs. Indeed, although the 
mathematical analysis of bacterial size distribu- 
tions is rather highly developed (e.g. Harvey 1983), 
the size of a microorganism is actually something 
that is only rarely considered a contributor to fit- 
ness or selection. Indeed, the analysis of selection 
in chemostats (see Kubitschek 1974; Dykhuizen & 
Hart11983), and in more complex ecosystems (e.g. 
Robertson & Button 1989), constitutes a funda- 
mental topic, which is undoubtedly of biotechn- 
ological importance and which is conveniently car- 
ried out using flow cytometric procedures. 

Life, death and other states 

It may be taken that the most fundamental ques- 
tion which a microbial physiologist might ask about 
a cell is whether it is alive or not. This turns out to 
be far from simple to answer. It is well known, 
especially in Nature, that the number of cells ob- 
servable by direct counts greatly exceeds the num- 
ber capable of forming colonies (and thereby con- 
sidered 'viable') (see Postgate 1976; Poindexter 
1981; Morita 1982; Mason et al. 1986; Kjellberg et 
al. 1987; Roszak & Colwell 1987; Morita 1988; 
Matin et al. 1989; Gottschal 1990). However, not 
all the non-'viable' cells are 'dead', since many of 
these 'non-culturable' cells may be resuscitated by 
preincubation in a suitable nutrient broth prior to 
plating out. We may refer to such cells as 'vital'. 
The question then arises, for instance in slowly- 
growing cultures, as to what causes a cell to pass 
from the status of viable through vital to dead, and 
whether cells of each type in such cultures, though 
nominally homogeneous, coexist. 

Several workers have studied the decline in ATP, 
adenylate energy charge, and/or the ability to accu- 
mulate lipophilic cations in starving cells or in cells 
grown at low dilution rates (Horan et al. 1981; 
Jones & Rhodes-Roberts 1981; Zychlinski & Matin 
1983; Otto et al. 1985; Poolman et al. 1987), gener- 
ally finding that none of these bioenergetic param- 
eters could be correlated with the loss of viability 
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(as judged by plate counts). However, these types 
of experiments possess the following, insurmount- 
able problem: they represent bulk or ensemble 
measurements and it is therefore not possible (giv- 
en our ignorance about the 'critical' values of these, 
if any, for the individual cell) to distinguish wheth- 
er a decrease in ATP levels or in the uptake of the 
tetraphenylphosphonium cation, say, is due to the 
irreversible death of a proportion of the cells or an 
identical decrease of these parameters, unaccom- 
panied by death, in all cells (or of course any com- 
bination of these extreme possibilities (Kel11988)). 
In recent work, we have shown by flow cytometry 
(Kaprelyants & Kell 1991) that Micrococcus luteus 
cells grown in a chemostat at a low dilution rate 
(and even those grown in batch culture at #tm,x (Fig. 
3)) are extremely heterogeneous with respect to 
their ability to accumulate the lipophilic cationic 
dye Rhodamine 123. In particular, and in contrast 
to earlier suggestions based on bulk measure- 
ments, we found (Kaprelyants & Kell 1991) that 
cell viability, and resuscitation, could be quite well 
correlated with the ability of individual cells to 
accumulate the dye. Indeed, it was possible in part 
to relate the degree to which individual cells accu- 
mulated rhodamine 123 and the distinguishable 
physiological states ('viable', 'non-viable' and 
'non-viable but resuscitable') exhibited by cells in 
the culture. Thus flow cytometry of cells stained 
with Rh 123 (or other appropriate dyes) allows one 
rapidly to distinguish not only 'viable' and 'non- 
viable' cells but the degree of viability of individual 
cells reflecting the heterogeneity of a culture ob- 
servable following sub-lethal starvation, stress or 
injury. 

Implications of heterogeneity for the analysis 
of microbial behaviour 

From the experiments just described, it is obvious 
that the flow cytometric approach gave an answer 
that was exactly opposite to that which had previ- 
ously been opined by others on the basis of cognate 
macroscopic experiments on cultures. Since these 
other workers had expected a correlation to exist 
between (say) adenylate energy charge or the up- 
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Fig. 3. Flow cytometric behaviour of the light-scattering and fluorescence of a batch culture of Micrococcus luteus stained with 
rhodamine 123. Cells were grown in batch culture on lactate minimal medium as described (Kaprelyants & Kell 1991), to an optical 
density (680 nm) of 1.8. Cells were stained with rhodamine 123 (final concentration 0.26 tzM), incubated at room temperature 10 min, 
and flow cytometry was performed as described (Kaprelyants & Kell 1991). The optical characteristic of the relevant filter are: 
Excitation 470-495 nm, band-stop 510 nm, emission 520-550 nm. The photomultipler voltages for the light-scattering and fluorescence 
channels were respectively 500V and 650V, and the scales are logarithmic. 

take of the te t raphenylphosphonium cation and 
viability on plates, it is important  to understand the 

relevant points. 
An example  may serve to illustrate this. Suppose 

one wishes to understand how a physiological flux 
or process in a microbe depends on the intracellular 
concentrat ion of its substrate. We assume that 
there is a single reaction determining the rate of the 
process (i.e. a reaction with a control coefficient of 
1 on the overall process),  that this reaction is in- 
sensitive to the concentration of its product,  and 

that it follows simple Michaelis-Menten kinetics. In 
order to examine whether  regulation of the process 
occurs only through the concentration of the sub- 
strate of the reaction, or if there is additional allos- 
teric regulation, the relationship between the in- 
tracellular substrate concentrat ion and the process 
rate is determined experimental ly in a population 
of cells for two series of physiological transitions in 
which the concentrat ion of S is modulated by two 
separate  means,  and data concerning the flux and 

the (average) substrate concentration obtained. 

The idea is that, if the relationship between the rate 
of the process rate and concentration is not the 
same for the two series of experiments,  the hy- 
pothesis that regulation is only through the sub- 

strate is falsified. We shall now show why, if the 
culture is heterogeneous,  one would in fact obtain 

an artefactual falsification of the hypothesis. 
Let us compare  (i) a homogeneous  population of 

cells in which the substrate concentration happens 
to be equal to the Km of the flux-controlling enzyme 

(and the rate of the process therefore at Vmax/2) to 
(ii) a heterogeneous population with the same av- 
erage substrate concentration. An extreme case of 
heterogeneity would be constituted by a popula- 
tion in which half the cells contain the substrate at 
zero concentration, whereas the other half contain 
it at a concentration equal to twice the Km. This 
gives rise to an average rate of the process for the 
heterogeneous population of (0 + 2/(2+1))/2 
times Vmax = VmJ3.  Now, if in one of the series of 



experiments, only 50% of the cells are affected by 
the physiological transition chosen, whereas in the 
other physiological transition, all cells are equally 
affected, but to the same average substrate concen- 
tration, the two sets of transitions will reveal differ- 
ent overall fluxes at the same average substrate 
concentration. If the possibility of heterogeneity 
were not considered, this could easily lead to the 
conclusion, that there is (normally) additional reg- 
ulation, which differs between the two physiolog- 
ical transitions. Clearly, quantitative approaches 
(such as flow cytometry), which analyse the distri- 
bution of cell properties between members of a 
population, are essential for the analysis of micro- 
bial physiology whenever the possibility of sigif- 
icant heterogeneity exists. 

The essence of the problem is that one is trying, 
typically, to correlate a rate of change (v) of a 
certain variable with respect to the value of a cer- 
tain property (p), and that a correlation may be 
expected between the mean values v and p only if v 
is kinetically of first order with respect to p. Whilst 
the previous example used the relationship be- 
tween an internal substrate concentration (a varia- 
ble) and a certain flux, the problem also exists 
when p is a parameter. Indeed, when one studies 
the extent to which the activity of an enzyme deter- 
mines growth rate of a cell, for instance, one has to 
consider the possibility that the activity of that 
enzyme may be distributed heterogeneously be- 
tween individual cells. Similarly, the heterogeneity 
(in viability) of chemostat populations at low dilu- 
tion rates can lead to substantial errors in the esti- 
mation of Monod coefficients (Sinclair & Topiwala 
1970). 

Other cases in which unsuspected heterogeneity 
may be expected to have signifcant effects upon the 
kinetic analyses of microbial processes include fluc- 
tuating systems (Westerhoff et al. 1986), mem- 
brane bioenergetics (see the experiments with rho- 
damine 123, above) and stochastic systems in which 
small numbers of repressor molecules (say) may 
control gene expression. 

Given the general nonlinearity of biochemical 
reactions, and the existence of thresholds, one may 
anticipate that the discovery of important hetero- 
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geneities will be the rule, and not the exception, 
when cultures are investigated by flow analysis. 

Future prospects: cataloguing complexity 

In the above, we have concentrated mainly on il- 
lustrating heterogeneities in the distributions of but 
a few parameters in cultures, not least because they 
are easy to display graphically in a 2-D plot. How- 
ever, the ability to discriminate (sub)populations 
of cells will increase as the number of the measured 
parameters increases. Even a modest extension of 
this philosophy (of looking at many independent 
parameters on each cell) is likely to end by showing 
us that our cultures consist, when viewed in multi- 
dimensional space, of many more populations than 
we normally consider, a fact which follows simply 
from the properties of normal distributions (Williams 
1956)). This does not of itself seem to be an in- 
tellectually useful goal, and it is not possible, in a 
simple way, to visualise the distribution of pop- 
ulations in multi-dimensional space. We therefore 
wish to end by discussing qualitatively the types of 
analytical advance that could benefit the practising 
microbial physiologist. 

Technically, it is now fairly straightforward to 
acquire several measurements on an individual cell 
during its passage through a flow cytometer, and 
Kachel et al. (1990), for instance, describe an 8- 
parameter system based on a simple personal com- 
puter. Robinson et al. (1991) go even further, and 
acquire a set of muiticolour immunofluorescence 
data from a given sample incubated with 11 tubes 
containing multiple phenotypic markers. One may 
imagine that the exploitation of diode array detec- 
tors in flow cytometry will produce even more data 
which one might wish to exploit for the analysis of 
heterogeneity! Since preparing a table listing the 
magnitude of each of the many determinands for 
each of the cells studied does not convey the obser- 
vations in a digestible form, how are we to extract 
the salient features of an n-parameter data set, 
manipulate them mathematically, and encapsulate 
them in 2 (or at most 3) dimensions? Clearly the 
major problem is that of reducing the dimensional- 
ity of the representation of the data (Sychra et al. 
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1978), a problem similar in essence to some of those 
that are being faced and solved by bacterial taxono- 
mists (Goodfellow et al. 1985; Austin & Priest 
1986) and analytical chemists (Massart et al. 1988; 
Levy et al. 1991). 

Conventional approaches to reducing the dimen- 
sionality of multivariate data, such as principal 
components analysis (PCA) (see Chatfield & Col- 
lins 1980; Causton 1987; Flury & Riedwy11988) and 
the related canonical variate analysis, work by 
transforming correlated variables exhibited by the 
cell, organism or molecule of interest into uncorre- 
lated ones, and projecting these transformed varia- 
bles onto a two-dimensional plane. Different pop- 
ulations are thus separated to a greater or lesser 
extent, depending on the method used and the 
structure of the data. In PCA, the two largest prin- 
cipal components are usually plotted against each 
other, and can show the clustering or otherwise of 
individual cells in the population according to these 
principal components. Statistical analysis permits 
statements to be made concerning the extent (%) 
to which (say) the first two principal components 
account for the variance in the sample. 

In PCA, which is in fact but a subset of the 
Universe of possible pattern recognition algo- 
rithms, we are trying to construct a relation be- 
tween several 'input' properties (the measured de- 
terminands on each cell) and some output property 
(for instance the cell's taxonomic status, or even if  
it is a cell and not a piece of debris). The conceptual 
disadvantages with the above PCA approach, how- 
ever, are that (i) it assumes that all variables of 
interest (inputs) are linearly related to each other, 
which is a priori unlikely, and (ii) as a linear map- 
ping it is inevitably associated with a loss of in- 
formation. Thus, nonlinear mappings may in gen- 
eral be expected, and are found (Aoyama & 
Ichikawa 1991; Rose et al. 1991), to give much 
better discrimination or classification. 

Neural networks (in this context, more strictly, 
artificial neural networks) are collections of very 
simple 'computational units' which can take a nu- 
merical input and transform it into an output (see 
McClelland & Rumelhart 1988; Kohonen 1989; 
Pao 1989; Simpson, 1990). The inputs and outputs 
may be to and from the 'external world' or to other 

units within the network. The way in which each 
unit transforms its input depends on the so-called 
'connection weight' (or 'connection strength') and 
'bias' of the unit, which are modifiable. The output 
of each unit to another unit or to the external world 
then depends on both its strength and bias and on 
the weighted sum of all its inputs, which are trans- 
formed by a (normally) nonlinear weighting func- 
tion referred to as its activation function. The great 
power of neural networks stems from the fact that it 
is possible to present ('train') them with known 
inputs (and outputs) and to provide them with 
some form of learning rule which may be used, 
iteratively, to modify the strengths and biases until 
the outputs of the network as a function of the 
inputs correspond to the desired ('known' or 'true') 
outputs. The trained network may then be exposed 
to 'unknown' inputs which it will then be able to 
relate to the appropriate outputs. 

A neural network therefore consists of at least 3 
layers, representing the inputs and outputs and one 
or more so-called 'hidden' layers. It is, in partic- 
ular, the totality of weights and biases of the inter- 
actions between inputs and outputs and the hidden 
layer(s) which reflect the underlying structures of 
the system of interest, even if its actual (physical) 
structure is not known. By training up a neural 
network with known data, then, it is possible to 
obtain outputs that can accurately predict the beha- 
viour of systems, such as the (continuing) evolution 
of a time series, even if it is (deterministically) 
chaotic (Wolpert & Miall 1990). Although the 
training may be lengthy, the great advantage is 
that, once trained, interrogating the network is 
practically instantaneous and no lengthy, iterative 
processes are required. 

In the present context, it is clear that trained 
neural networks have the potential to reduce the 
dimensionality of a graphical display by arbitrary 
amounts, since one may have all the parameters 
that one measures on a cell as the input nodes to the 
network and two output nodes representing the X- 
and Y-coordinates of a 2D-plot. The only question 
then is how one trains the network. In fact, for this, 
one simply needs 'standards' which one may assign, 
arbitrarily, to specific classes (well-separated and 
appropriately-chosen (x,y) coordinates in one's re- 



duced display), which one can then use to train the 
network using the dataset of inputs and arbitrarily- 
assigned outputs. (Alternatively, simply to dis- 
criminate n types of cells or subpopulations one 
would provide n outputs, which take the value of 1 
if the cell is of the stated type, otherwise zero.) 
After the network has been trained, which may be 
a lengthy process, one may test it on samples used it 
in the training set (to check its performance against 
what was a known input) and then, of course, on 
unknown populations of interest. Thus, by combin- 
ing flow cytometry with the abilities of trained neu- 
ral networks, one may expect to be able to provide 
accurate classifications of cell populations that are 
easy both to visualise and to comprehend. 

Concluding remarks 

We have seen that the technique of flow cytometry, 
though a relatively recent development in micro- 
biology, has allowed penetrating insights into hith- 
erto unrecognised aspects of the physiology of mi- 
croorganisms. The observations have shown that 
not all problems of microbial physiology are ame- 
nable to correct analysis by performing conven- 
tional macroscopic measurements on representa- 
tive samples of whole cultures. Indeed, one might 
hazard that a reevaluation of some fundamental 
tenets may be forthcoming when cellular hetero- 
geneity is taken properly into account. The quanti- 
fication of heterogeneity therefore constitutes a 
crucial component of the quantitative analysis of 
microbial metabolism. 
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