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We describe a continuous culture syste,m related to the turbidostat, but using a feedback system based on biomass 
estimation from the dielectric permittivity of the cell suspension rather than its optical density. It is shown that this 
system provides an excellent method of maintaining a constant biomass level within a fermentor. The computer- 
controlled system was able to effect the essentially continuous registration of growth rate by monitoring the rate of 
medium addition via the time-dependent activity of the pump. At some biomass setpoints for aerobically grown cul- 
tures of baker’s yeast substantial time-dependent fluctuations in the growth rate of the culture were thereby observed. 
At some biomass setpoints, however, or under anaerobic conditions, or when using a nonCrabtree yeast, the growth 
rate was constant, indicating that the fluctuations were inherent to the biological system and not simply a property 
of the fermentor and control system. A variety of time series analyses (Fourier transformations, Hurst and Lyapunov 
exponents, the determination of embedding dimension, and non-linear time series predictions based on the 
methodology of Sugihara and May) were used to demonstrate, for the first time, that as well as stochastic and periodic 
components these fluctuations exhibited deterministic chaos. ‘Trivial predictors’ were unable to give accurate predic- 
tions of the growth rate in these cultures. The growth rate fluctuations were studied further by means of offline 
measummenta of changes in percentage viability, bud count, and in the external ethanol and glucose concentrations; 
these data and other evidence suggested that the growth rate fluctuations were closely linked to the primary respiro- 
fermentative metabolism of this organism. The identification of chaotic growth rates in cell cultures suggests that there 
may be novel methods for controlling the growth of such cultures. 
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1. Introduction 

In general, one may distinguish two types of 
continuous cell culture, the chemostat and the tur- 
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bidostat (Anderson, 1956; Tempest, 1970). In the 
chemostat, the dilution rate is fixed by the ex- 
perimenter (and equal to the growth rate), and the 
medium is designed such that growth is nuttient- 
limited (Monod, 1950; Novick and Szilard, 1950; 
Herbert, 1958; Novick, 1958). By contrast, in the 
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turbidostat the medium is designed to be rich in all 
nutrients (sensu Z&o), growth is not nutrient- 
limited, and the growth rate is the maximum 
growth rate of which the organism is capable 
under the prevailing conditions; to effect this, the 
biomass level is constantly monitored, and only 
when it exceeds the setpoint is fresh growth medi- 
um pumped in, i.e. there is a feed-back loop (Mun- 
son, 1970). 

The turbidostatic growth regime has the advan- 
tage that the volumetric productivity in biomass 
terms is higher than for any other culture regime, 
the culture is stable at dilution rates approaching 
cc,, (Watson, 1972), and, of particular impor- 
tance for the production of improved strains, the 
selection pressures in the turbidostat are very high 
(Bryson and Szybalski, 1952; Fraleigh et al., 1989). 
Usually, selection will be for the organism that will 
grow at the fastest rate in the conditions provided 
(as the cells with slower growth rates will tend to 
be washed out of the fermentor before they 
divide), but conditions can be envisaged whereby 
other selection pressures could be imposed. Since 
the turbidostat is by its very nature a self-stabilis- 
ing system, it is possible to use it to select for 
organisms capable of improved growth rate in the 
presence of a toxic substance (Brown and Oliver, 
1982; Aarnio et al., 1991; Kell and Salter, 1995). 

Despite the advantages offered by a turbido- 
statically controlled fermentation, the method re- 
mains under-exploited in microbial physiology, 
with the less-stable chemostat being the more 
widely used option. There are several problems 
associated with turbidostatic control that may in 
part account for this (Martin and Hempfling, 
1976). In conventional turbidostats, as the name 
suggests, the biomass estimation for feed-back 
control is determined by turbidity (optical density) 
measurements (Myers and Clark, 1944). There are 
several disadvantages associated with optical 
biomass measurement (see e.g. Harris and Kell, 
1985; Kell et al., 1990; Sonnleitner et al., 1992, 
Junker et al. 1994), the most important of which 
are that optical density is linear with biomass only 
over a very narrow range of low biomass concen- 
trations, such that for most organisms the O.D. 
fails to be linear at concentrations well below 
those at which they would be of industrial interest. 

In addition, such measurements are prone to sen- 
sor fouling by the microorganisms that they at- 
tempt to measure, due to biofilm formation on the 
relevant optical surfaces (Anderson, 1953; Nor- 
throp, 1954; Watson, 1969). A third problem with 
turbidity measurements is that it is not only 
biomass that is measured, since necromass, par- 
ticulate solids, and gas bubbles will all contribute 
to the optical density to some extent. For these 
reasons, novel methods for the on-line and real- 
time measurement of the biomass content of indus- 
trial fermentations have long been an area of in- 
terest (Harris and Kell, 1985; Clarke et al., 1986; 
Kell et al., 1990; Sonnleitner et al., 1992). 

An instrument that monitors biomass via the 
radio-frequency electrical capacitance of the cell 
suspension has been developed (and commercialis- 
ed by Aber Instruments Ltd., Science Park, Cefn 
Llan, Aberystwyth, SY23 3AH, UK as the 
Biomass Monitor; (see e.g. Harris et al., 1987; Kell 
et al., 1987, 1990; Davey, 1993a,b)). Continuous 
cultures in which the biomass is set by the Biomass 
Monitor have been called ‘permittistats’ because 
the biomass is kept at a constant level by a feed- 
back mechanism based on the dielectric permittivi- 
ty of the suspension, and this approach has 
previously been used with great success for con- 
trolling anaerobic yeast cultures (Markx et al., 
1991a). 

Continuous culture methods are frequently used 
for studying ‘steady-state’ microbial growth, al- 
though fluctuations in NADH levels and the respi- 
ration rate of bacteria (Degn and Harrison, 1969; 
Harrison, 1970), and of various metabolic interme- 
diates and fermentation parameters in cultures of 
yeast (Satroutdinov et al., 1992; 612 et al., 1993) 
have been reported in these systems, and 
numerous studies have shown that the restricted 
(Rieger et al., 1983; Sonnleitner and Kappeli, 
1986) respiro-fermentative metabolism of baker’s 
yeast is capable of oscillations (Porro et al., 1988; 
Richard et al., 1994) and indeed chaos (Markus et 
al., 1985). Oscillations in the biomass content of 
yeast in a chemostat have been reported (Striissle 
et al., 1988, 1989; Chen et al., 199Oa,b; Munch et 
al., 1992; Auberson et al., 1993), although of 
course the overall growth rate of such cultures re- 
mains constant, whilst (possibly entrained) growth 
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rate oscillations were also recently observed in fed- 
batch cultures of a recombinant strain of Escheri- 
chiu co/i (Ye et al., 1994). In contrast to the 
chemostat, however, the turbidostat-type con- 
tinuous culture described herein permits the direct 
observation of fluctuations in the growth rate of 
the culture. It was therefore of interest to deter- 
mine whether oscillatory bchaviour could bc 
observed in the growth rate of a continuous cul- 
ture and whether the control strategy offered by 
the Biomass Monitor would provide a suitable 
means for its study. During the permittistatically 
controlled fermentations described herein, we in- 
deed observed substantial oscillations in the 
growth rate of the yeast cultures and showed that 
at certain biomass set-points these fluctuations 
contained periodic, stochastic and deterministical- 
ly chaotic components. Whilst the detailed origin 
of the observed oscillations could not be ac- 
counted for in full, they do appear to be linked to 
the central metabolic pathways of the cell. 

2. Theoretical ha& of the dielectric estimation of 

When an electric field is applied to an ionic solu- 
tion the ions in that solution are forced to move. 
The positively charged ions are pushed in the 
direction of the field while the negatively charged 
ions are pushed in the opposite direction. How- 
ever, if cells are present in the ionic solution then 
many of the ions both inside and outside of the 
cells can move only so far before they meet the 
cell’s plasma membranes and are prevented from 
moving any further. The result of this is that there 
develops a charge separation or polarisation at the 
poles of the cells. The extent of the field-induced 
charge separations is measured by the capacitance 
(in Farads, F) of the suspension. As the volume 
fraction of cells increases, the amount of mem- 
branes polarised increases and so the capacitance 
of the suspension increases. Thus by the measure- 
ment of the capacitance of the suspension, one can 
monitor its biomass content (Harris et al., 1987; 
Kell et al., 1990, Davey, 1993a,b). 

By reversing the field direction, the polarity of 
the charge separations is reversed, but the magni- 
tude (and hence the capacitance of the suspension) 

remains unchanged. One can, of course, also 
change the rate at which the field changes direc- 
tion, i.e. its frequency (in Hz). Frequency has a 
marked effect on the capacitance of a cell suspen- 
sion, because a finite time is required for the 
charge separations to be induced (Pethig, 1979; 
Foster and Schwan, 1986; Pethig and Kell, 1987). 
Fig. 1 shows diagramatically how the capacitance 
of a typical cell suspension changes with frequen- 
cy. At low frequencies (A) many ions have time to 
reach the plasma membranes and polarise them 
before the field changes direction and moves the 
ions the opposite way. Thus, the capacitance of the 
cell suspension is high. At higher frequencies (B) 
fewer ions have time to reach the membranes and 
so the extent of the induced transmembrane polar- 
isation is less and the capacitance of the suspen- 
sion is also lower. At very high frequencies (C), 

A 

l.eeE+B5 1.88Et06 m&e7 

FEEQUENCY (Hz) 

Fig. 1. Diagramatic representation of the &dispersion of cell 
suspensions. Polarisation of the all membranes involves move 
ment of ions and so it takes a finite time for charge separations 
to be induced. At low frequencies (A) the cells are maximally 
polarised, at medium frequencies (B) there are fewer charge 
separations, and at high frequencies (C) the cells are not 
polarised at all. The curve that describes this relationship is 
known as the &dispersion (D). For clarity in A-C, the charges 
are. shown for just one field direction. The annotations are ex- 
plained in the text. 
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very few ions have time to move to and polar& 
the membranes before the field changes direction, 
and so the induced membrane polarisation is very 
small. At these frequencies, the cell’s contribution 
to the capacitance of the suspension is very small 
and one just measures the background capacitance 
of the medium (which is mainly due to water 
dipoles). Thus, the capacitance of the suspension 
(D) goes from a high-capacitance plateau at low 
frequencies (maximal cell polarisation) to a low- 
capacitance plateau at high frequencies (minimal 
cell polarisation). This fall in capacitance of a sus- 
pension due to the loss of induced membrane 
polarisation with increasing frequency is called the 
&dispersion (Pethig, 1979; Foster and Schwan, 
1986; Pethig and Kell, 1987; Davey and Kell, 
1994). The residual high frequency capacitance 
due to the medium is called C, and the height of 
the low-frequency plateau above this is the AC 
(capacitance increment) of the &dispersion. The 
frequency at which the fall in capacitance is half 
completed (i.e. the frequency when capacitance 
equals C, + (AC/2)) is called the critical frequen- 
cY (&). The Cole-Cole (Y is related to the steepness 
of the fall in capacitance with increasing frequency 
(see later), whilst the capacitance C and permittivi- 
ty e at any given frequency are related by the for- 
mula CK = ee,, where e, is the permittivity of free 
space (= 8.854.10-l2 F.m-‘) and K is a so-called 
cell constant with the dimensions length-’ (see 
e.g. Kell, 1987). 

As one is aiming to measure the biomass content 
of a cell suspension, one needs to see what effect 
this has on the &dispersion curve shown in Fig. 1. 
Fig. 2 shows the &dispersion of hypothetical cell 
suspensions with different biomass contents. The 
figure shows that the f, is not changed by the 
biomass content, nor is C,,,. What does change as 
a function of biomass content is the magnitude of 
AC, which increases with the biomass. Thus, the 
problem of measuring the biomass content of a cell 
suspension reduces to one of measuring the 
magnitude of the AC of the &dispersion. 

As mentioned above, one of the problems 
associated with using optical density for the con- 
trol of continuous cultures is that dead cells, gas 
bubbles and non-biomass solids all interfere with 
the measurements, so their effects on the dielectric 

l.OOE+OS l.OOE+O6 l.OOE+07 

FREQUENCY (Hz) 

Fig. 2. The effect of increasing biomass concentrations (in mg 
wet weight-ml-‘) on the fidispersion of a series of hypothe- 
tkal cell suspensions of different biomass content (and in which 
their radius and the conductivities of the medium and cyto- 
plasm are held constant). 

method of biomass estimation must be considered. 
If the cells in a suspension have badly ruptured 
plasma membranes then the ions in the solution 
just move through the holes in the membranes and 
fail to cause polarisation of the membranes even at 
low frequencies. Thus, dead cells do not normally 
have a significant &dispersion. If one uses the AC 
of the ,6dispersion rather than the more conven- 
tional turbidity measurements to measure the 
biomass content of a fermentor, one can expect to 
measure only cells with intact plasma membranes 
(i.e. living cells) as opposed to ruptured (dead) 
cells (Stoicheva et al., 1989; Salter and Kell, 1992; 
Davey et al., 1993). 

If non-biomass solids, oil droplets or gas bub- 
bles are present in the medium, then their effect on 
the AC of the @dispersion must be considered. 
The ions in a growth medium either travel straight 
through the non-biomass material if it is perme- 
able to ions or just move round it if it is not. In 
neither case are significant charge polarisations in- 
duced (since there are no plasma membranes) and 
so these materials will not tend to produce a signif- 
icant AC term. Thus, non-biomass materials are 
not expected to contribute significantly to the AC 
of the fidispersion in a real fermentation medium, 
nor to the feedback signal used to maintain cons- 
tant biomass. 
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Turbidity measurements often fail as a result of 
sensor fouling; with the Biomass Monitor this 
problem can be solved by use of electrolytic clean- 
ing pulses which may be applied to the electrodes 
in situ. It should also be noted that under certain 
circumstances the electrodes themselves can 
display a substantial, and frequency-dependent 
capacitance; artefacts of this type are minimised by 
using a four-terminal electrode system (Kell, 
1987). 

It was stated earlier that the biomass measure- 
ment problem reduces to one of the estimation of 
the AC of the 8dispersion. Thus, one needs a con- 
venient means of measuring AC during a fermenta- 
tion. There are two ways of achieving this. Fig. 1 
showed a &dispersion and marked on it were two 
spot frequencies labelled f-low and f-high. The 
capacitance at f-high is approximately equal to 
C, whilst that at f-low approximately equals 
(C,,, + AC). Thus, one can see that if one mea- 
sures the capacitance at f-high and f-low 
‘simultaneously’ (or more practically in rapid suc- 
cession), and then subtracts the capacitance at f- 
high (C,) from that at f-low (AC + C,) one gets 
AC, and thus a measure of biomass concentration. 
This is the principle of dual-frequency biomass 
measurements. The second method of estimating 
AC, and hence biomass concentration, uses the 
capacitance at f-low alone. At zero biomass con- 
centration, the capacitance at f-low equals C, (see 
Fig. 2); thus, one can measure the capacitance of 
the medium at f-low prior to inoculation and then 
back off this capacitance to zero (i.e. set C,,, to 
zero). This means that any change in capacitance 
at f-low during a fermentation must reflect 
changes in AC and hence biomass concentration. 
For the present work, dual-frequency measure- 
ments were used throughout as these may be ex- 
pected to be more stable to long-term instrumental 
drift (Davey, 1993a) which may occur within the 
time scale (typically 2 months) of the continuous 
culture fermentations that were carried out (since 
any changes that may occur will tend to affect 
measurements at both frequencies to a similar 
degree). 

variety of systems (Kell et al., 1987). These include 
bacterial and yeast cultures (e.g. Harris et al., 
1987; Boulton et al., 1989; Ferris et al., 1990, 
Austin et al., 1994), bacterial biofilms (Ma&x and 
Kell, 1990), cultured cells (Markx et al., 1991c,d, 
Cerckel et al., 1993, Degouys et al., 1993), human 
blood (Beving et al., 1994), immobilised cells 
(Salter et al., 1990) and Blamentous cells in liquid 
and solid substrate fermentations (Davey et al., 
1991; Penaloza et al., 1991, 1992; Fehrenbach et 
al., 1992). Using a different instrument, Mishima 
and colleagues (Mishima et al., 1991a,b) have 
made two-terminal capacitance measurements as 
an attempted method for biomass estimation. 

3.Materlah9andmethods 

A yeast clone was isolated from dried bakers 
yeast by repeated streaking onto agar, followed by 
growth in broth. The medium used was YPG 
which contained (all w/v): glucose (BDH) 5%, 
yeast extract (Oxoid) 0.5% and bacteriological 
peptone (Oxoid) 0.5%. The pH was set at 4.5 prior 
to autoclaving for 15 min at 121°C. Solid plates 
were prepared by adding 1.5% Lab M agar to the 
same medium save that the pH was set to 5.0. 
Plates and broth cultures were incubated at 30°C. 

For permittistatic culture the yeast were grown 
in a l-l fermentor (LH Engineering) with a work- 
ing volume of 750 ml. The top of the fermentor 
was adapted to allow the insertion of the Biomass 
Monitor’s probe (standard 25 mm probe, cell con- 
stant 1.18 cm-‘). The temperature was controlled 
at 30°C with a LH-503 temperature controller and 
the pH was controlled at 4.5 with a LH-505 pH 
controller using 2 M KOH and 2 M HCl. The cul- 
ture was run under ambient lighting conditions. 
Filtered and wetted air was pumped through the 
fermentor at a rate of approximately 1.5 vol./mm, 
and the contents of the fermentor were stirred at 
450 rev./mm. The Biomass Monitor was interfac- 
ed, via a set of amplifiers, to a 386SX IBM- 
compatible computer containing a DT28 11 -PGH 
12-bit analog/digital I/O board (Data Translation 
Ltd. Wokingham, Berkshire, UK). 

Dual- and single-frequency measurements using A program (PERMSTAT.EXE) was designed 
a Biomass Monitor (BM) have been successfully and written in-house in Microsoft QuickBASIC 
used to monitor the biomass concentrations in a ~4.5 for monitoring and control of the biomass 
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content of the fermentor. In brief, the program set 
the measuring frequencies (0.4 MHz and 9.5 MHz) 
on the Biomass Monitor, read back the resulting 
capacitances, calculated the difference between the 
capacitances (AC), and switched the medium 
pump on and off appropriately to control the 
biomass level. At user-defined intervals, the 
capacitance and conductance of the suspension at 
each frequency were recorded to a file. The volume 
of medium required to control the biomass was 
also recorded on an hourly basis. Since the dilu- 
tion rate is equal to the specific growth rate, and 
the dilution rate (in h-l) is equal to the volume of 
medium pumped per hour divided by the working 
volume, and the biomass is controlled at a cons- 
tant level, the volume of medium pumped per hour 
gives a straightforward measure of both the 
growth rate and the specific growth rate. Finally, 
since the mixing time for a fermentor of this type 
(with an impellor turning at 450 rev./mm) and 
scale (< 11) is a second or two (much quicker than 
typical probes respond, but comparable with the 
time constant of the dielectric biomass probe), we 
did not resort to more complex control regimes 
such as PID (see also, Markx and Kell, 1995). 

Samples were removed from the permittistat 
periodically for the determination of wet weight, 
dry weight, viability, budding index and ethanol 
and glucose concentrations as described below. 
Off-line dielectric scans were also carried out as 
described below. 

3.1. Wet and dry weight measurements 

A pre-weighed 25 mm diameter, 0.2 pm pore 
size, Whatman filter (WCN type, cellulose nitrate, 
plain white) was wetted with distilled water and 
placed under gentle vacuum. A sample (typically 5 
ml) of the diluted cell suspension was then pipetted 
onto the filter and sucked ‘dry’. The cell pellet was 
then washed with 1 ml of distilled water and again 
sucked ‘dry’. The filter was then reweighed to give 
the wet weight of cells per ml. The filters and yeast 
were then dried using a Sartorius drying machine 
set at 80°C using the auto-shutoff feature which 
dries the sample until no further weight change is 
detected. Drying the yeast samples in this way 
took about 10 min. 

3.2. Microscopy 

Viability was estimated by staining the (dead) 
cells with methylene blue. The methylene blue 
stain was prepared as described previously 
(Stoicheva et al., 1989). To ascertain the viability 
of the sample, the yeast suspension, methylene 
blue and fresh growth medium were combined in 
the ratio 1440. The prepared samples were then 
examined immediately by light microscopy at a 
magnification of x 400. Cells appearing deep blue 
were scored as dead while unstained cells and 
slightly coloured (grey) cells were scored as alive 
(Davey et al., 1993). At least 100 cells were scored 
for each sample and the percentage of viable cells 
was calculated. The percentage of cells with buds 
was determined by light microscopy by scoring at 
least 100 cells. The cells examined were either uns- 
tained or were the sample stained with methylene 
blue. 

3.3. Determination of ethanol and glucose concen- 
trations 

Samples for determination of ethanol concen- 
tration were placed into Eppendorf tubes and cen- 
trifuged at 13 000 rev./mm for 5 min in an 
Eppendorf-type centrifuge. The supematants were 
removed and frozen until the day of assay. Ethanol 
concentrations were then determined using Sigma 
Procedure 332-W. This assay involves alcohol 
dehydrogenase (ADH) which catalyses the oxida- 
tion of alcohol to acetaldehyde with the simulta- 
neous reduction of NAD to NADH, giving an 
increase in absorbance at 340 nm that is directly 
proportional to the concentration of alcohol in the 
sample. The thawed supematants (diluted where 
appropriate) were added to the NAD-ADH single 
assay vials together with glycine buffer @H 9) and 
incubated at room temperature for 10 min. The 
samples were then transferred to plastic cuvettes 
and their absorbance at 340 nm was measured ver- 
sus a blank which contained distilled water in 
place of the supematant. Samples of known 
ethanol concentration were measured in the same 
manner and the concentration of ethanol in the su- 
pematants was determined. 

Samples for determination of glucose concentra- 
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tion were centrifuged and stored as described for 
the ethanol determination above. Glucose concen- 
tration was then determined using Sigma Proce- 
dure nwnber 510. This assay is based on the 
conversion of glucose to gluconic acid by glucose 
oxidase, a reaction that also produces hydrogen 
peroxide. The hydrogen peroxide then oxidises 
colourless o-dianisidine to the brown oxidised 
form. The intensity of the brown coloration after 
45 min incubation at room temperature (which is 
proportional to the glucose concentration in the 
original sample) is then measured versus a blank at 
450 nm. Samples of known glucose concentration 
were measured in the same manner and the con- 
centration of glucose in the supematants thereby 
determined. 

3.4. Off-line dielectric measurements 

Cell samples removed from the fermentor were 
placed into a ‘Mexican Hat’ (Woodward and Kell, 
1990) electrode attached to a Biomass Monitor. 
This type of electrode has been especially con- 
structed to hold a volume of exactly 1 ml. The 
capacitance of the suspension was measured at 12 
frequencies between 0.2 and 9.5 MI-Ix evenly distri- 
buted on a logarithmic scale. For each cell suspen- 
sion scanned, a polarisation control was carried 
out by adjusting its supematant to the same con- 
ductance at 0.2 MHz as that of the cell suspension 
by the addition of KC1 or distilled water (Davey et 
al., 1990, 1992). 

4. Results 

Fig. 3 shows the AC of a culture of baker’s yeast 
during aerobic growth in permittistatic culture. 
The cells were initially grown as a batch culture 
(i.e. no medium inflow), and then at the point in- 
dicated by the arrow, permittistatic control of the 
biomass level was initiated. It can be Seen that the 
Biomass Monitor provided generally excellent 
control of the biomass level in the fermentor, in 
this case, for a period in excess of 2 months. In 
other fermentor runs, the setpoint was changed 
periodically across a range of capacitance values, 
and with the exception of a few cases where too 
high a setpoint was chosen, the new capacitance 

0 250 500 750 1000125015001750 

Time /h 

Fig. 3. The delta capacitance of a yeast culture during growth 
in a permittistat. Initially, yeast were grown in batch and then 
permittistatic control of the biomass concentration was in- 
itiated at the time indicated by the arrow. The AC was 
estimated from dual-frequency measurements as described in 
the ‘Materials and methods’ and when it exceeded the setpoint 
(5 pF) medium was pumped in to dilute the yeast to the correct 
biomass. The steady-state biomass level was approximately 8 
mg-ml-‘. 

setpoint was achieved and well maintained (data 
not shown). 

Permittistatic cultures of this type allow one to 
log the rate of medium inflow on a continuous 
basis and given the excellent control of the 
biomass concentration offered one might expect 
the volume of medium pumped into the fermentor 
per unit time either to be constant during permit- 
tistatic culture, or, possibly, to increase mono- 
tonically as faster-growing strains (or mutants) 
take over (Bungay et al., 1981; Fraleigh et al., 
1989, 1990). However, as can be seen in Fig. 4, 
which shows the pump activity during the permit- 
tistat run represented in Fig. 3, this is not the case 
at all, since the pump rate (and hence the growth 
rate) exhibited dramatic time-dependent changes. 
Because the overall pattern could be seen by eye to 
vary rather significantly over the run, we analysed 
hours 200-600, 600-1000 and 1000-1400 separ- 
ately. To establish the extent to which the 
oscillatory behaviour of the growth rate of this 
culture was in fact periodic the data were Fourier- 
analysed; the resulting power spectrum of the data 
for 1000-1400 h from Fig. 4C is shown in Fig. 5. 
The power spectrum shows that whilst period- 
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Fig. 5. Power spectrum of the medium-inflow data shown in 
Fig. 4C. To minimise aliasing effects, the raw data were mean 
filtered using a five-point moving average and power spectra 
were obtained via the fast Fourier transform using a minimum 
3-term Blackman-Harris window (see Kell, 1987; Woodward 
and Kell, 1990). 

icities are present, they occur at many frequencies, 
though the data from 1000 to 1400 h contain two 
major peaks (at frequencies of 0.0092 and 0.071 
h-‘) representing underlying cycles of 108.7 and 
14 h duration. A minor diurnal peak (at 0.041 
h-l), and another minor peak at 0.023 h-’ or 42.3 
h may also be observed. All told, however, it is evi- 
dent that the data are neither purely periodic nor 
purely stochastic (white noise), and might be con- 
sidered to be deterministically chaotic. Indeed, all 
of the peaks in Fig. 5 except the (narrow) 108 h 
one are broad, suggesting pseudoperiodicity rather 
than pure periodicity, as might be expected 
towards the onset of chaos. 

Fig. 6 shows the pump rate for a different per- 
mittistat run in which the setpoint was 4 pF. In this 
case, no oscillations in the growth rate were 
observed. This important control shows that the 
growth rate fluctuations are of biological origin, 

Fig. 4. Time-dependent growth rate changes in a permittistat 
culture. Measurements were made as described in ‘Materials 
and methods’. Each time the pump was switched on to control 
the biomass, the length of time the pump was on was recorded 
to a file. The volume of medium pumped per hour was then 
calculated and these data points are displayed at hourly inter- 
vals. Three 400-h blocks of data are shown: A 200-600 h, B 
600-1000h,C1000-1400h.Thcdatapresentedarefortheper- 
mittistat run shown in Fig. 3. 



H.hL Davey et al. / BioSystems 39 (19%) 43-61 51 

800 I-I 
* 

It 600 
E 
g 400 
% 

200 

0 
50 100 150 200 250 

Time /h 

Fig. 6. A pennittistat culture exhibiting an essentially uniform 
pump rate throughout an extended period. Following the initial 
high pump rate when permittistatic control was initiated the 
amount of medium inflow required to maintain the setpoint 
was approximately constant. Measurements were made exactly 
as described for Fig. 4, save that the setpoint was 4 pF. 

and not simply a consequence of instability in the 
control system used (see also Lecher et al., 1993b). 
The fact that prominent oscillations were observed 
at some setpoints but not at others, together with 
the changing growth rate seen in Fig. 4, suggested 
the possibility that in some circumstances the 
pump rate (and thus culture growth rate) was in- 
deed deterministically chaotic. The changing pat- 
tern of fluctuations within one fermentation and at 
one setpoint (Figs. 4A-C) also suggest a high- 
degree of sensitivity to initial conditions, another 
known characteristic of chaotic processes. Whilst 
the time series presented in Fig. 4 undoubtedly 
contains both periodic and stochastic elements it 
was of great interest to establish whether the time- 
dependent growth rate changes were also of a 
deterministically chaotic character, since chaotic 
growth rates have not previously been observed in 
any axenic microbial culture. Although at the 
margin the distinction is perhaps a little arbitrary, 
many methods have been suggested for distin- 
guishing chaotic data sets from (coloured) noise 
(e.g. Grassberger and Procaccia, 1983; Farmer and 
Sidorowich, 1987; Lapedes and Farber, 1987; 
Casdagli 1989; Sugihara et al., 1990, Sugihara and 
May, 1990, Kennel and isabelle, 1992; Provenzale 
et al., 1992; Stone, 1992; Theiler et al., 1992; 
Tsonis and Elsner, 1992; Abarbanel et al., 1993; 

Holton and May 1993; Rapp, 1993; Lloyd and 
Gravenor, 1994; Skinner, 1994; see also a useful 
collection of reprints in Ott et al., 1994). However, 
there is little consensus as to which approaches are 
the most suitable, particularly when chaotic fluctu- 
ations may be present together with an unknown 
amount of genuine, stochastic behaviour (noise) 
within a single time series. For this reason, further 
attempts to analyse the pump data for the whole 
permittistat run represented in Figs. 3 and 4 were 
made using a battery of approaches, including cal- 
culation of the Hurst (1951; Peters 1991) and 
Lyapunov exponents (Wolf et al., 1985) and of the 
embedding dimension (Petigen et al., 1992; Kennel 
et al., 1992), as well as by using the Sugihara-May 
(1990) non-linear prediction method. An overview 
of these findings is provided in Table 1. 

Positive first Lyapunov exponents of a non- 
linear time series, which estimate the mean ex- 
ponential divergence or convergence of nearby tra- 
jectories in phase space, are widely regarded as 
indicative of the presence of real dynamical chaos 
(Eckmann and Ruelle, 1985; Brown et al., 1991; 
Wilson and Rand, 1993). Table 1 shows that as 
judged by this criterion, with the first Lyapunov 
exponent determined using the numerical method 
of Wolf et al. (1985), each of our time series would 
indeed be construed to be deterministically 
chaotic. The Hurst exponent (see Hurst, 1951; 
Peters, 1991) is another measure of the degree of 
randomness of a discrete time series, purely 
stochastic processes having a Hurst exponent of 
0.5 whilst fully deterministic time series have a 
Hurst exponent of 1. It may again be observed 
(Table 1) that our data are character&d by Hurst 
exponents which are consistent with the view that 
they are in large measure deterministic. 

Another persuasive set of approaches to decid- 
ing whether a given data series is deterministic or 
chaotic (rather than stochastic) are based on the 
idea that one should be better able to predict 
deterministically chaotic than stochastic time 
series. ‘Embedded’ time series are frequently used 
with neural networks or other supervised learning 
algorithms to generate predictions (Weigend and 
Gershenfeld, 1994). The process of ‘embedding’ as 
a means of illuminating the inner dynamics of 
chaotic time series was devised by Ruelle (1980), 
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Table 1 
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Non-linear time series analyses of growth rate dam of yeast in a permittistaticahy controlled continuous culture 

Tii series data (h) 200-1400 200-600 600-1000 1000-1400 

Lyapunov exponent 
Calculated minimum embedding 

dimension 
Calculated minimum embedding 

separation 
Hurst exponent 
Correlatioo coefficient predicted vs. 

actual from Sugihara-May method 
Correlation coefficient predicted vs. 

actual from l&order trivial predictor 
Correlation coefficient predicted vs. 

actual from Zod-order trivial predictor 
Correlation coefficient predicted vs. 

actual from 6th-order autoregressive 
model 

RMS error of predictions vs. actual 
from Sugihara-May method 

RIMS error of predictions vs. actual 
from lst- and 2nd-order trivial 
predictors 

RMS error of predictions vs. actual 
from 6th-order autoregressive model 

Average number of ml added during the 
prediction period 

0.510 
5 

2 

0.755 
0.974 

0.436 

0.865 

0.219 

0.316 0.147 0.510 
10 8 5 

2 1 2 

0.680 0.747 0.773 
0.959 0.827 0.679 

0.800 -0.050 0.214 

0.894 0.901 0.872 

- 

6.749 8.38 17.65 13.44 

26.11 17.63 45.67 22.74 

26.53 

109.46 21.43 47.77 24.22 

Measurements were performed as described in the legend to Fig. 4. Lyapunov exponents were obtained numerically using the meth- 
od described by Wolf et al. (1985). Hurst exponents were determined as explained in Hurst (1951). The embedding dimension (and 
separation values) were determined according to the average auto-mutual information method described by Kennel et al. (I 992) (see 
also Kennel 1992; Abarbanel et al., 1992, 1993). The tit to the non-linear predictor was obtained as follows, using a methodology 
derived from the work of Sughara and May (1990). The embedding dimension and separation values previously obtained were used 
to generate embedded veotors from the first 80% and last 10% of the relevant time series. A database of these vectors was formed 
and the exponential interpolation regime described by Sughara and May was used to generate one-stepahead predictions for the data 
points in the test set (the points between 80 and 90%) using nearest neighbours determined by Euclidean distance. The Ist-order trivial 
predictor is that in which the prediction for a given data point is the actual value of the previous data point whilst the Znd-order 
trivial predictor is that in which the value of data point n + 2 is that for point n plus twice the signed difference between points n + 1 
and n. Autoregressive models were performed using the TSP software (Quantitative Micro Software, Irvine, CA); that of order six 
was found to give the best predictions. In the Sugihara-May and trivial predictor methods, the inputs were the differences from the 
previous time series data points, but the RMS errors relate to the absolute values. 

whilst Takens (1981) showed that, given a proper datapoint, xnd+ I + r, the output. The question 
embedding, future values of a time series could be then is to calculate the optimum embedding di- 
predicted to an arbitrary accuracy with an mension. We used the approach described by Ken- 
unstated smooth function. The process of embed- nel et al. (1992) (and see Abarbanel et al., 1993) in 
ding a single time series is as follows: the scalar which, broadly, the separation is found using the 
series is converted to a vector X, = xh xd+ ,, so-called auto-mutual information technique, in 
x2d+t, xY+I....x(n- I)d+rS where d is the separation which two copies of the time series of interest have 
and n the embedding dimension. A supervised their mutual information calculated and the separ- 
learning algorithm is then trained with pairs of ation between the time series is increased by a sin- 
data in which the vector is the input and the next gle step at a time. The optimal separation is 
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identified as the first minimum on a plot of auto- 
mutual information vs. offset. The optimal embed- 
ding separations and dimensions are given in 
Table 1. For each block of data (200400, 
600-1000, 1000-1400 and 200-1400 h), the 
Sugihara-May (1990) algorithm was then used to 
generate one-stepahead predictions with a train- 
ing set of the first 80% and last 10% of each data 
block, the model so formed being tested on the 
datapoints between 80 and 90% of the way 
through the time series (in each case, the updated 
prediction was based on the previous true data 
points in the test data series). Fig. 7(A,B) shows 
the actual and predicted data for the 80-9O?h seg- 
ment of the entire dataset, and it may be observed 

1160 1200 1240 1280 0 20 40 60 80 100 

Time ih Actual growth rate as ml added h-’ 

2 4 6 8 10 

Number of steps ahead predicted 

Fig. 7. Non-linear time series analyses of growth rate data of 
yeast in a petmittistatically controlled continuous culture. 
Growth rate measurements were performed as described in the 
legend to Fig. 4. Non-linear predictions were carried out as 
described in the legend to Table 1. (A) Estimated volume (one- 
step-ahead predictions) of culture broth added per hour and ac- 
tual volumes added vs. time for the non-linear predictor. (B) 
Estimated volume of culture broth added per hour vs. actual 
volumes added for the non-linear predictor. The line shown is 

both in Fig. 7 and in Table 1 that the fits are 
remarkably good, fully consistent with the view 
that despite their rather stochastic appearance the 
data are in fact representative of a deterministical- 
ly chaotic time series. 

It is worth mentioning that given a perfecr mea- 
sure of embedding, one would expect the dimen- 
sion of the whole series to be the maximum one of 
that seen in the subsections (in contrast to what is 
shown in Table 1). The technique of false nearest 
neighbours works by finding points in the embedd- 
ed series that appear to be close in n dimensions 
but are not close when a further dimension is 
added. An approximate measure of the radius of 
the attractor is formed and the definition of ‘close’ 

B 

0 20 40 60 80 100 

Actual growth rate as ml added he’ 

the best linear tit and has a slope of 0.84 and an intercept of 
2.84. (C) Estimated volume of culture broth added per hour vs. 
actual volumes added for the first-order trivial predictor. The 
line shown is the best linear tit and has a slope of 0.45 and an 
intercept of 19.3. (D) The effect of n on the correlation coeffk- 
ient between estimated and actual data for n-step-ahead predic- 
tions of the same data, according to the .%&ham-May 
non-linear prediction method. 
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is scaled accordingly. We then decide that we have 
sufficiently embedded the series when the percen- 
tage of false neighbours falls below a certain value. 
If the sections of series with higher dimension had 
some particularly ‘knotty’ portions, the algorithm 
will increase the dimension until they are resolved; 
if the attractor is more dense in those sections the 
definition of ‘close’ would be more stringent and. 
more false neighbours would be generated. When 
the whole series is considered, however, these 
knotty sections will be swamped, and a lower di- 
mension estimate results. 

Since it might be argued that a ‘trivial predictor’ 
(in which the one-step-ahead prediction for time 
t + 1 is simply the value at time t) would also give 
good predictions, Table 1 therefore additionally 
shows the correlation coefficients and RMS errors 
determined for both the lst- and 2nd-order trivial 
predictor, where the lst-order trivial predictor is 
that in which the prediction for a given data point 
is the actual value of the previous data point, 
whilst the 2nd-order trivial predictor is that in 
which the value of data point n + 2 is taken as that 
for point n plus twice the signed difference be- 
tween points n + 1 and n. Fig. 7C shows the lst- 
order trivial predictor for the same data as in Fig. 
7B. It may be observed from this and from Table 
1 that the Sugihara-May predictions, and especial- 
ly the RMS errors in all cases, are substantially 
better than those generated by any of the trivial 
predictors. 

Further, to check that our data were indeed 
chaotic, we also studied pure autoregressive 
models as a means of fitting our time series. That 
of order six gave the best predictions, but the cor- 
relation coefficient was very poor and the RMS 
error of predictions no better than that of the 
trivial predictors. Application of the Box-Pierce 
statistic (Box and Pierce, 1970) showed that there 
were no significant autocorrelations in the 
residuals from the AR [6] model (data not shown), 
indicating that a linear model was incapable of giv- 
ing adequate predictions for this time series. 

Finally, further to bolster the view that we are 
indeed studying a deterministically chaotic pro- 
cess, we used the argument of Sugihara and May 
(1990) that the n-step-ahead prediction in a deter- 
ministically chaotic system is likely to get worse as 

n increases, but that for a purely stochastic system 
(white noise) it is likely to be essentially indepen- 
dent of n. Fig. 7D shows that the correlation coef- 
ficient drops dramatically as n increases above a 
value of 5. (Although the exact structure of the 
chaos obviously differed from run to run, it is 
worth mentioning that visually observable chaos 
was seen in seven independent start-ups of a 
culture.) 

Given what is known about the oscillatory be- 
haviour of metabolic fluxes in yeast growing 
respiro-fermentatively (see above), it was assumed 
that our fluctuations were also related to the major 
respiro-fermentative pathways of metabolism. A 
plausible scenario suggests that glycolytic ethano- 
logenesis leads to a build-up of toxic ethanol 
and/or acetaldehyde, due to the limited respiratory 
capacity of S. cerevisiae (Rieger et al., 1983; Ki+- 
peli, 1986; Sonneitner and Kiippeli, 1986; Alex- 
ander and Jeffries, 1990; Locher et al., 1993a), 
which then inhibit glycolysis and growth (Ingram 
and Buttke, 1985; Jones and Greenfield, 1986; van 
Uden, 1989; Jones, 1990, Wills, 1990; Markx et al., 
1991b; Bruce et al., 1991; Alexandre et al., 1993). 

After a certain period, a combination of respira- 
tion, yeast acclimation, dilution (when medium 
begins to be added) and (possibly) evaporation 
removes the toxicity, and glycolysis and growth 
can then resume, producing more ethanol/acetal- 
dehyde, and so on. Each of these metabolic pro- 
cesses is of course known to be non-linear. 
Consistent with this overall picture are the obser- 
vations that neither S. cerevisiae growing 
anaerobically (Markx et al., 1991a), nor the 
Crabtree-negative yeast Kluyveromyces marxianus 
growing aerobically (unpublished observations; 
data not shown), could be induced to produce any 
marked oscillations in growth rate. In an attempt 
to gain an understanding of the processes underly- 
ing the shorter of the two oscillations seen in Fig. 
4C, samples were removed from the permittistat 
approximately every 2 h for a 15-h time period. 
The pump activity during that 15-h period of the 
study is shown in Fig. 8A, and may be summarised 
as a 10-h period of medium input followed by a 5-h 
period during which no input of medium occurred. 

Fig. 8B shows the percentage of budding cells 
present in the permittistat during this time. It can 
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be seen that the percentage of cells with buds in- 
creases during the part of the oscillation in which 
medium input is occurring and decreases towards 
the initial level when medium input ceases. Also 
shown in Fig. 8B are the data for the Cole-Cole o. 
The Cole-Cole 01 was calculated from the off-line 
dielectric scans of the yeast suspension (see Markx 
et al., 1991b) by fitting the data to the Cole-Cole 
equation (Cole and Cole, 1941): 

I-o 
sin(0.5crr) j - 1 e,- 

f 
sin(0.5ar) + - 

G> 

2 - 2a 
+ c;.(l) 

c 

where e’+ is the permittivity of the suspension at 
a given frequency, E ‘_ is the permittivity at a high 
frequency with respect to the Bdispersion, AC ’ is 
the dielectric increment of the @dispersion,fis the 
frequency in Hertz, f, is the critical frequency of 
the IS-dispersion (see Fig. l), and (Y is the Cole- 
Cole cz. GraFit v 2.0 (Erithacus Software Ltd., PO. 
Box 35, Staines UK) was used to tit the equation 
to each data set following the subtraction of its 

Fig. 8. Short term changes in a permittistatic culture. (A) The 
flow rate required to maintain the biomass at the setpoint was 
measured as described in the legend to Fig. 4. For a 10-h 
period, a variable amount of medium input was required to 
maintain the setpoint, but over the next 5 h the biomass in the 
permittistat never exceeded the setpoint and so no medium 
input occurred. (B) Changes in the percentage of budding cells 
during the oscillation were reflected in the Cole-Cole (I of the 
yeast suspension. Off-line scans and curve fitting for calcula- 
tion of the Cole-Cole o were carried out as described in the text. 
An increase in both the budding index and the Cole-Cole (I was 
seen during the phase of the oscillation where medium input 
was occurring and when medium input ceased the magnitude of 
both decreased. (C) Changes in glucose concentration during 
the oscillation. Glucose concentration was measured as de- 
scribed in the Methods. During the period where medium in- 
flow is occurring the glucose concentration steadily increases, 
before beginning to fall again when medium input ceases. (D) 
Changes in ethanol concentration during the oscillation. 
Ethanol concentration was measured as described in the 
Methods section. During the period of medium inflow the 
ethanol concentration remained quite stable; however, when 
medium input ceased, a transient increase in ethanol concentra- 
tion was seen. 
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polarisation control (Davey et al., 1992; Kell and 
Davey, 1992). Fig. 8B shows that changes in the 
percentage of budding cells appears to be reflected 
in the curve for the Cole-Cole cr; although the 
mechanisms underlying the large Cole-Cole (Y 
values of biological systems are not well under- 
stood (Markx et al., 1991b; Davey and Kell, 1994), 
they may indeed in part reflect morphological 
polydispersity. 

Fig. 8C shows the changes in glucose concentra- 
tion occurring in the permittistat during the fluc- 
tuation. By comparison of this figure with Fig. 8A 
it can be clearly seen that during the phase of the 
oscillation where medium is being pumped in to 
the fermentor the glucose concentration increases, 
before falling back towards the base level in the 
period when there is no pump activity. Fig. 8D 
shows the changes in ethanol concentration over 
the same time period. In contrast to the glucose 
concentration, the ethanol concentration falls 
slightly as medium is pumped into the fermentor, 
and rises when medium input ceases. However 
before medium input restarts the ethanol concen- 
tration falls back to the initial level. Given the 
relatively low budding index, which shows that the 
population was highly polydisperse with respect to 
its growth (Kell et al., 1991), it is likely that only 
a fraction of the population switches to growth on 
(or metabolism of) ethanol as the carbon source 
when the glucose concentration falls. 

5. Discussion 

The measurement of biomass on-line and in 
real-time in fermentors is a necessity if turbido- 
statically controlled continuous cultures are to be 
used, and the development of sensing devices 
capable of this task has long been an area of in- 
terest (Harris and Kell, 1985; Clarke et al., 1986; 
Kell et al., 1990, Sonnleitner et al., 1992). An ideal 
sensing device for measuring the biomass in a 
fermentor should be sensitive to changes in 
biomass, but be insensitive to both non-biomass 
solids and necromass. In addition the signal should 
be linear with biomass to high volume fractions. 
The dielectric system that we have described fultils 
these criteria. 

Much of microbial physiology is based on 
measurements made at ‘steady state’ in continuous 
cultures, yet the oscillatory behaviour of microbes 
has been reported in continuous cultures by 
several groups (see, e.g. Degn and Harrison, 1969; 
Harrison, 1970; Cunningham and Nisbet, 1983; 
Satroutdinov et al., 1992; &z et al., 1993). Steady 
state conditions are normally assumed to have 
been reached once a rather arbitrary five volume 
changes have elapsed following a change in dilu- 
tion rate (but cf. Rutgers et al., 1987). In the per- 
mittistat cultures described, however, substantial 
fluctuations in growth rate may be apparent even 
after 50 volume changes have elapsed, though one 
may state that the Biomass Monitor has proved to 
be an effective tool not only for controlling the 
biomass level in continuous cultures but also for 
the induction of fluctuations in growth rate under 
these conditions. It is therefore desirable that one 
should be able properly to identify and character- 
ise oscillatory and chaotic behaviour in con- 
tinuous culture systems. 

Whilst accepting that the presence of noise will 
tend to distort or obscure the characteristic pat- 
terns which are used in the identification of 
periodic and chaotic data sets, we applied a bat- 
tery of analyses to the growth rate data observed. 
These included calculation of the Hurst and 
Lyapunov exponents, and of the embedding di- 
mension, as well as by using the Sugihara-May 
(1990) non-linear prediction method. In each case, 
it was demonstrated that the time series contained 
periodic, deterministically chaotic and stochastic 
elements. Although with the hourly measurements 
of growth rate described herein, several months of 
experimentation yield a few thousand data points, 
we recognise that although this number is much 
greater than those usually available in ecological 
time series, this is considered by some to be a 
rather small number for the reliable identification 
of chaotic behaviour (Ruelle, 1990). One possible 
approach to this problem is modelling of an ap- 
propriately parameterised and simplified version 
of the system in order to obtain virtually unlimited 
noise-free time series; while this has been done for 
cell-free extracts of yeast (Markus et al., 1985) in 
the present case we cannot yet define a subsystem 
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of appropriate simplicity and accuracy. However, 
the low dimensionality of the phase space embed- 
ding that we have used to generate successful 
predictions (Table 1) suggests that the dimen- 
sionality of the biochemical processes generating 
the chaotic behaviour is also very low. 

The fact that the origins of the chaotic fluctua- 
tions lie in the biology and not in the dynamics of 
the pump system, etc., comes from three main lines 
of argument: (a) with the same organism and set- 
point but under anaerobic conditions there is no 
chaos (Markx and Kell 1991); (b) with the same 
organism under aerobic conditions but at a slightly 
different set-point there is no chaos; and (c) with 
a nonCrabtree yeast, Kluyveromyces marxianus, 
there is no chaos observed aerobically at any set- 
point tested. In each of these cases, the pump sys- 
tem, etc. was the same as in the case where chaos 
was observed. These controls, which were explicit- 
ly designed exactly to ensure that we were indeed 
observing chaos of biological origin, would seem 
to make it hard to argue that the chaos has an 
abiological origin under these circumstances. 

Offline measurements of the macroscopic be- 
haviour of the yeast culture have suggested a meta- 
bolic origin for the oscillations with a switch by 
some fraction of the population from growth on 
glucose to growth on ethanol (or indeed to mix- 
otrophy). Oscillations in the concentration of 
NAD(P)H have been reported to be much more 
prolonged in yeast cells harvested from batch cul- 
tures at the point of switching from growth on glu- 
cose to growth on ethanol when compared to cells 
growing on either carbon source alone (Richard et 
al., 1993). 

While macroscopic measurements provide us 
with some insight to the observed oscillatory be- 
haviour of the yeast cells, it is likely that the be- 
haviour is in part linked to the heterogeneity of the 
population. Measurement of the properties of in- 
dividual cells using techniques such as flow cyto- 
metry (see Kell et al., 1991; Lloyd, 1993; Shapiro, 
1994) can identify and quantify the heterogeneity 
present within nominally steady state cultures. 
One of the advantages offered by flow cytometry 
is that measurements can be made simultaneously 
on several different parameters of the cell. Recent- 

ly, flow cytometry has been used to determine the 
size, DNA content and the number of bud scars of 
individual cells in batch and continuous cultures 
of yeast (Munch et al., 1992a,b), and such techni- 
ques will be of importance in determining to what 
extent differences between cells can be accounted 
for by their position within the cell cycle. 

In conclusion, however, the ability to effect the 
permittistatic control of yeast cell cultures has 
allowed us for the first time both to induce and to 
demonstrate the periodic, stochastic and, most in- 
terestingly, the deterministically chaotic behaviour 
of the macroscopic growth rate of microbial cell 
cultures. Although chaotic behaviour has been 
widely reported at the metabolic, physiological 
and ecological levels in biological systems, we 
believe this to be the first demonstration of deter- 
ministically chaotic growth rates in an axenic bio- 
logical system. Finally, a corollary of the identifl- 
cation of deterministically chaotic behaviour in the 
growth rate of biological cells is that novel 
methods for improving the control of such growth 
rates may become available, both for raising and 
lowering them, since a number of authors (e.g. 
Ditto et al., 1990; Ott et al., 1990; Garlinkel et al., 
1992; Schiff et al., 1994, Skinner, 1994, and see Ott 
et al., 1994) have indeed shown how a knowledge 
of the non-linear dynamics of such low-dimen- 
sionally chaotic systems may be exploited to gain 
a very effective control of them. 
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