
On Fitness Distributions and Expected Fitness Gain of
Mutation Rates in Parallel Evolutionary Algorithms

David W. Corne1, Martin J. Oates2, Douglas B. Kell3,4

1Department of Computer Science, University of Reading, UK
d.w.corne@reading.ac.uk

2Evosolve Ltd, Stowmarket, Suffolk, UK
moates@btinternet.com

3Institute of Biological Sciences, University of Wales, Aberystwyth, UK
dbk@aber.ac.uk

Abstract. Setting the mutation rate for an evolutionary algorithm (EA) is con-
founded by many issues. Here we investigate mutation rates mainly in the con-
text of large-population-parallelism. We justify the notion that high rates
achieve better results, using underlying theory which notices that parallelization
favourably alters the fitness distribution of a mutation operator. We derive an
expression which sets out how this is changed in terms of the level of paralleli-
zation, and derive further expressions that allow us to adapt the mutation rate in
a principled way by exploiting online-sampled landscape information. The ad-
aptation technique (called RAGE - Rate Adaptation with Gain Expectation)
shows promising preliminary results. Our motivation is the field of Directed
Evolution (DE), which uses large-scale parallel EAs for limited numbers of
generations to evolve novel proteins. RAGE is highly suitable for DE, and is
applicable to large-scale parallel EAs in general.

1 Introduction

Setting the mutation rate for an evolutionary algorithm (EA) is complicated by the fact
that much depends on various details of the EA and the application. Nevertheless,
much published work provides generally accepted guidelines. An overall consensus,
justified by theory [3,4,9] is that a rate of 1/L (where L is chromosome length) is often
near-optimal (this can also be said of experimental biology [5]). When they have en-
gaged in comprehensive parametric investigations in specific cases, researchers (e.g.
[4]) have sometimes found that higher rates are better. Bäck also notes [4] that the
optimal rate seems to increase with λ in a (1 + λ) evolution strategy, but that no useful
analytical results are known. However, the general suitability of 1/L in standard (i.e.
serial implementation) settings has been more often confirmed than challenged. Thus,
Oates et al [10] find a wide range of optimal mutation rates, with this range tending to
include 1/L. Meanwhile, recent theoretical work of note has studied the competent

4 Present address: Dept Chemistry, UMIST, PO Box 88, MANCHESTER M60 1QD

design of parallel EAs [7], but the issue of mutation rate in this context has been little
explored.

When we consider mutation rate setting in parallel EAs, there is a straightforward
intuitive argument for high rates. These generally make higher-fitness mutants avail-
able, but with low probabilities; however, the larger the population, the better the
chances of a high-rate yielding such mutants. In particular, parallelization means that
this benefit is not at the expense of time. If we can evaluate P mutants in parallel, then
we can regard the mutation operation as having effectively changed in nature. That is,
we can evaluate P mutants in unit time, and can take the ‘result’ of the parallelized
operation to be the fitness of the best of them. The mathematics of this follow.

1.2 Notes on Relevance and Applicability

Improved and cheaper hardware, and the wider availability and use of cluster-based
computation, now makes the use of parallel implementations of EAs more feasible,
and indeed such is now increasingly widespread. This heralds a need for better under-
standing of parallel EA design. Cantú-Paz [7], among others, is paving the way re-
garding several aspects of parallel EA design. Here we focus on mutation rate setting.

One relevant parallel EA application (which the authors are working on) is in the
protein engineering/biotechnology community, and is called ‘Directed Evolution’
(DE). This refers to (what amounts to) the application of EAs to the discovery of
novel proteins [1,2,12]. Consider, for example, the task of finding a protein which can
bind to a particular area of a virus, and remain thermostable at body temperature. To
address this in DE, a population of proteins is artificially evolved. They undergo se-
lection, mutation and other operations in the normal way. There are, of course, many
problems with this as regards its in silico implementation, since we know far too little
about protein folding to implement the representation correctly, let alone estimate a
novel protein’s fitness. The trick, however, is that DE works entirely biologically. The
‘representation’ of a protein is actually via a gene encoding its overexpression (i.e.
many copies are present) within a suitable cell (typically the bacterium E. coli). The
cell’s metabolism naturally produces the protein itself, and fitness comes from direct
measurement of the protein’s efficacy regarding the target activities of interest. Muta-
tion is typically done by using so-called ‘sloppy’ or ‘error-prone’ versions of the Po-
lymerase Chain reaction (PCR) in an in vitro step. Many details are of course omitted
here, but none which alters the fact that the range of potentially applicable DE strate-
gies essentially matches much of the space of EA designs. In particular, the biotech-
nology (with ‘high-throughput screening’) currently allows up to some 1,000,000
mutants to be evaluated per generation, and mutation rate is fully controllable (essen-
tially by varying the conditions of the PCR reaction). DE is a technology with im-
mense potential for novel and highly beneficial protein products, but the ‘search
spaces’ are massive, and much depends on appropriate design and parameterization of
DE strategies.

1.3 A Note on Related Work

Seminal work by Fogel and co-authors (e.g. [8] and subsequent papers) relates closely
to that described here, but there are subtle differences in approach and applicability
which are worth noting. In [8] and related work, Fogel et al., like us, essentially rec-
ognize that repeated applications of genetic operators yield valuable information
which can be employed to choose and parameterize the operator(s) more wisely. In [8]
however, this is done essentially using extensive offline prior sampling (consuming
significant numbers of fitness evaluations). Apart from our focus on the way that ap-
plicable mutation rates increase with parallelization, the main difference in this work
is that we derive an approach which can be applied online, exploiting theory (relying
on our restricted attention to standard mutation of k-ary chromosomes) which enables
us to choose from among many appropriate rates having only sampled (in principle) a
single rate previously This work is hence more applicable in cases where time saving
in highly-parallelized EAs) is a premium concern.

2 Fitness Distributions and Expected Fitness Gain

Imagine a mutation operator which, with respect to a given parent, has n possible
fitness outcomes (f1, f2,…,fn). The fitness distribution gives, for each f1, the chance the
mutant will have that fitness. E.g. consider a mutation operator which flips a single
randomly chosen bit in a binary string of length L, and where the fitness function is
MAX-ONES, in which we seek to maximize the number of 1s in the string. If L=100
and the parent has fitness 80, then the fitness distribution can be written as ((79,
0.8),(81, 0.2)); i.e. the chance of the mutant having fitness 79 is 0.8, and the chance of
it having fitness 81 is 0.2 (and fitness 82 zero). In contrast, an operator which flips
two randomly chosen (but distinct) genes gives approximately: ((78, 0.64), (80, 0.32),
(82, 0.038)).

‘Expected fitness gain’ essentially means what we expect the result of the mutation
to yield in terms of a fitness improvement, keeping in mind that mutants less fit or
equally fit as the parent will yield zero gain. Throughout, we assume a simple (but
powerful) EA model which corresponds to a (1+ λ)-ES where λ is essentially the
population size, which (by default) we assume is fully parallelized. Thus raising λ, up
to the limit of parallelization, does not increase the elapsed time between generations.
Consequently, an operator’s fitness distribution is changed (since it now returns the
‘best of λ’ mutants), and so therefore is the expected fitness gain per generation. We
argue that this expected gain increases faster for high-rate operators than for low-rate
operators, and consequently there is a point or threshold (in terms of λ, which we will
hereon simply call P) at which the higher rate becomes preferable.

2.1 Exploiting Parallelism Leads to Improved Fitness Distributions

From hereon we will work with the gain distribution, which only considers non-worse
mutants. In the first case above, this is ((80, 0.8), (81, 0.2)), showing, for example,
that the result of a mutation will be no change in fitness 80% of the time. For two-gene
mutation it is ((80, 0.962), (82, 0.038)). It is natural to ask, what is the expected gain
in one application of the operator? This is the sum of outcomes weighted by their
probabilities. In the one-gene case this is 80.2, and in the two-gene case it is 80.076.

However, if we can suitably exploit parallelism, the gain distributions of higher rate
operators become more favourable, and ‘overtake’ those with conservative distribu-
tions. Some simple intuition for this can follow from our running example. Imagine
that we are able to evaluate 20 fitnesses in parallel. A single operator application (i.e.
in unit time) now yields 20 mutants, from which we take the best. Now, the gain dis-
tribution of the single-gene operator is approximately ((80, 0.0115), (81, 0.9885)), in
which the chance of achieving 81 is precisely the chance that not all of the 20 mutants
were neutral (i.e. 1 − (1 − 0.2)20). But the gain distribution of the two-gene operator is
now ((80, 0.461), (82, 0.539)). The expected fitness achieved after one time unit is
therefore 80.9885 in the one-gene case and 81.078 in the two-gene case, so the higher
rate operator has the more favourable distribution.

More generally, the ‘P-parallelization of µ’ is an operator which applies µ to the
same parent P times in parallel, and the returned result is the best of these P (or the
parent). P-parallelized µ has a gain distribution which we can state as follows, using
Blickle and Thiele’s analysis of tournament selection [6]. We will assume r distinct
fitness outcomes, and give the gain distribution of µ in the form
((f1,p1),(f2,p2),…,(fr,pr)) where the terms’ meanings are obvious from the examples
above. An intermediate step is to note the ‘cumulative gain distribution’
((f1,π1),(f2,π2),…,(fr,πrr)) where πi is the probability of the mutant’s fitness being either
f1 or worse, hence:

�

=

=
r

j
ji f

1

π
 (1)

and we can also note of course that π1 = f1 and πr = 1.
We can now write, following [6], the gain distribution of the P-parallelised opera-

tor as ((f1,q1),(f2,q2),…(fr,qr)) where qi = πi
P − πi−1

P, in which it is implicit that π0 = 0.
What is of particular interest is the expected fitness per application of the operator. P-
parallelisation changes this, from:

�
=

=
r

i
iiE pff

1 to:
��

=
−

=

−==
r

i

P
i

P
ii

r

i
iiE fqff

1
1

1

)(ππ
 (2)

A key point is that the P-parallelisation of a ‘high-rate’ operator µH will often achieve
a better expected gain than the P-parallelisation of its ‘low-rate’ counterpart µL. By
simple calculations and approximations (which we shall omit), we can show, for ex-
ample, that in a case with just three fitness outcomes and distributions as follows:

)),(),,(),,((332211 LfLfLf ,)),(),,(),,((332211 HfHfHf

where H3 > L3 and L3 ≈ 0 then P-parallelized µH exceeds P-parallelised µL in expected
fitness gain when P > (H1

P − L1
P)/H3, from which two observations are apparent: first,

if L1 > H1 then any value of P will lead to a better expected gain for the ‘high-rate’
operator. At first this seems odd, but notice that L1 and H1 denote the probabilities in
the respective cases that the gain will be zero. Hence, since L1 > H1 the chance of at
least some gain is necessarily higher for the high-rate operator. Otherwise, in the more
normal situation H1 > L1, the expression reflects arguably modest needs in population
size for parallelized µH to outperform parallelized µL.

To express the more general case for two operators µ1 and µ2, where (without
loss of generality) µ1 has a better expected fitness gain than µ2 when both are P-
parallelised, first, we can rearrange equation (2) to become:

r
P

rrr
PP

E ffffffff +−++−+−= −− 11232121)(...)()(πππ
and we can simplify this by considering only cases where fitness levels increase in

units (hence fk – fk+1 always equals –1), and obtain:
�

−

=

−=
1

1

r

i

P
irE ff π

 Now, given two
operators µ1 and µ2, we can simply derive:

��
−

=

−

=

−=−
1

1

1

1
22)()()()(

r

i

P
i

r

i

P
iEE ff 11 µµµµ ππ

When this exceeds zero, the P-parallelization of µ1 will have a better expected gain
than that of µ2. One general observation can now be made. In the limit as P becomes
very large, the dominant terms are those involving the cumulative probabilities with
the highest indices, and we can write:

))()(()()()()(2111212 µµµµµµ1 rr
P

r
P

rEE ppPff −≈−≈− −− ππ
Hence, in the limit, the superiority of µ1 over µ2 after P-parallelization is guaranteed
as long as µ1 has a better chance than µ2 of finding the highest fitness.

Finally, we mention some illustrative calculations in the context of MAX-ONES
with L=100. Space issues preclude a fuller display, but we note for example that for a
parent with fitness 50, P-parallelized mutation at 9/L starts to outperform (in terms of
expected gain) a similar parallelization of 1/L at P = 3. When fitness of parent is 80,
the expected gain of P-parallelised 1/L is outperformed by that of 10/L at P = 362.

2.3 Adapting Rates in Parallel EAs Based on Expected Fitness Gain

A wider applicability emerges from recasting entries in the gain distribution in terms
of numbers of point mutations and the fitness/distance correlation. That is:

)()(),(,

1
1 xcmdxmp ij

L

j
ji ⋅=�

=
+

 (3)
in which we assume the operator under consideration is per-bit flip mutation on binary
strings with rate m, and x stands for a specific parent, rather than a fitness. Meanwhile,
p1+i(m,x) stands for the chance of a mutant of x having the ith fitness better than that of

x, while dj(m) gives the chance of the operator yielding a mutant j Hamming units
distant from x, and cj,i(x) gives the proportion of mutants j Hamming units away from
the parent which have the fitness indexed by i. The summation goes up to L, which is
the highest Hamming distance attainable. Notice that:

��
�

�
��
�

�
−= −

j
L

mmmd jLj
j)1()(

 (4)
In particular, it does not depend on the landscape under consideration, while cj,i(x)
expresses the detailed fitness/distance correlation map in the region of x, and does not
depend on the mutation rate. Also, we reserve p1 to stand for the following

�

=

−=
H

i
ipp

2
1 1

 (5)
Where H is the highest fitness attainable. Now, imagine the requirement to set suitable
parameters for a parallel (1+P)-EA. By substituting equations (3) and (5) into (2) (via
(1) and (4)), we can find the expected fitness gain per generation for any parent and
any mutation rate, and we will suppose that a good rate to set per generation is one
which maximizes this expected gain. However we need data for equation (3). The
term dj(m) is analytically accessible, but cj,i(x) will generally be unknown. Data perti-
nent to it will normally be available, however, and we now propose a method for ap-
proximating cj,i(x) from online sampled fitnesses. This leads to a principled technique
for adaptively resetting the mutation rate in such EAs after each generation. The de-
pendence on straightforward bit-flip (in general, k-ary) mutation is partly a restriction
on applicability, but also the key enabling factor, since this makes equation (4) avail-
able, which in conjunction with sampled data allows us to estimate gains for arbitrary
rates, even though we may have sampled at only one rate.

We outline the approach first, and then set it out in detail. The essential idea is that
mutation rate will be reset between generations based on expected gain. We assume,
in the present work, a (1+P)-EA. In generation 0, P mutants of a randomly generated
initial solution are generated; by the time we complete generation g, we have gener-
ated gP mutants, and have thus obtained P items of data from which to build an ap-
proximation of cj,i(x) for each of g parents x. This is used, together with equations (1–
5), to find a good rate to use for generation g+1. A rather necessary further approxi-
mation stems from the fact that our sample model of cj,i(x) is silent with regard to
individuals which are fitter than the current best – but the current best is (in a (1+P)-
EA) the parent from which we will be generating mutants. To get around this, we set
the mutation rate one generation ‘out of phase’. Another difficulty is that we do not
yet have a direct analytical route to find the m with maximal expected gain; how we
deal with this and other issues is set out in the pseudocode description which follows.
Before that, some further notation will serve to clarify the way that we handle ap-
proximations to cj,i(x).

Given an arbitrary problem, but assuming a binary encoding, and per-bit flip muta-
tion, let cf,j,g stand for the proportion of individuals which have fitness g among those
which are j Hamming distant from an individual with fitness f. Notice that cj,i(x) is
generally an approximation to cj,g(x) for any given x with fitness f. In cases such as

MAX-ONES (and many others, including some classes of rugged landscapes) the
approximation is exact, but in general note that, where X = {x |f(x) = f}:

�
∈

=
Xx

gjgjf xc
X

c)(
||

1
,,,

i.e. it is an average over all x with the same fitness. Intuitively, we might expect the
approximation to improve with j. Next we define: nf,j,g to be the number of points
sampled by a search algorithm which have fitness g, are mutants of a point with fitness
f, and are j Hamming distant from their parent. By also defining sf,j as the total number
of samples found so far which are j units distant from a parent with fitness f, we can
now note that the operational approximation to cf,j,g is: nf,j,g/sf,j. We simplify matters by
assuming a modestly-sized integer range.of fitnesses. In some cases in practice, how-
ever, it may be pragmatic (at least for the purposes of the calculations for setting the
mutation rate), to map the range of fitnesses found so far onto a limited number of
‘fitness levels’, each standing for a fixed range, e.g. J3 may capture all fitnesses be-
tween 0.7 and 0.8.

Now we can describe our routine for adaptively setting mutation rates in a fully-
parallel (1+P)-EA. We assume that the time between generations (fitness evaluation)
is significant enough for us to ignore the modest overhead in this routine.

1. Initialise: start with a randomly generated initial solution (our ‘best-so-far’ b), and

set an initial rate m . Initialize z values si,j, for i from 1 to z, and reserve space for
z2L values nf,j,g, initialized to 0.

2. Generate: Produce a set M = {m1,m2,…,mp}containing P mutants of the best-so-
far solution, and evaluate the fitness f(mi) of each mi.

3. Calibrate: We now have P items of data with which we can improve (or initially
construct) an approximation to cf(b),j,g. For each individual mi:

Where h is the Hamming distance between b and mi, increment sf(b),h by 1.
If f(mi) > f(b), increment nf(b),h,f(mi) by 1.

4. Adapt: We now reset the mutation rate as follows, essentially by calculating what
the best rate ‘should’ have been in the current generation, and setting that for the
next generation.
With reference to equation (5), approximate p1+i(m,b), for i >1, by setting cj,g(b) =
nf(b),j,g /sf(b),j for all g > f(b) and all j up to and including the most distant mutants
of b which have been sampled. Then, assigning i ∈ {1,2,3…H} for convenience,
such that fitness i is the ith in a ranked list of fitnesses in improving order starting
with f(b), calculate:

jij

L

j
ji snmdbmp ,1,,1

1
1 /)(),(⋅=�

=
+

 for i > 1 and then
�

=

−=
H

i
ipp

2
1 1

 for each of a range of values of m from 1/L to 10/L.
Using the results, and equations (1–6), we can then calculate fE(m) for the P-
parallelised version of each rate m. Although requiring precision, the calculations
are essentially straightforward and speedy, and arbitrarily many rates may be tried

(e.g. 100), within an arbitrary range which perhaps goes beyond 10/L. Finally, set
m to be that rate which returned the best value of fE(m).

5. Book-keeping: At this stage we reset the best-so-far solution b to be the fittest
individual from the set M∪{b}.

6. Iterate: If a termination condition is reached, stop. Else, Return to step 2.

We will call this technique RAGE (rate-adaptation with gain-expectation)

3 Experiments

Here we report on preliminary testing of RAGE to establish proof-of-principle. We
see its primary niche as being large-scale-parallel EAs, with limited numbers of gen-
erations. In these experiments we test the straightforward hypothesis that the theoreti-
cal basis of RAGE, and hence the justification behind each renewed rate setting per
generation, should improve results over elementary methods. Later work will compare
RAGE against other suitable mutation-rate adaptation techniques.

 We used RAGE on four test problems: MAX-ONES with L = 100, and three sim-
ple deceptive problems with block sizes 3, 4, 5, with L = 90, 100, 100 respectively.
For each, we experiment with two-scenarios: a (1+100)-EA run for 20 iterations, and a
(1+1000)-EA run for 10 iterations. For each of these 8 cases, we try 10 versions of
RAGE, differing only in the initial mutation rate in the first iteration (after which
RAGE ‘kicks in’), which ranged from 1/L to 10/L in steps of 1/L. Our comparative
technique is a straightforward fixed mutation rate throughout, again trialled for each of
the 10 rates between 1/L and 10/L. Each experiment was repeated for 50 trials.

Table 1. Comparison between RAGE and fixed-rates on MAX-ONES and Deceptive (block
sizes 3, 4 and 5) using (1+100) and (1+1,000)-EAs

Problem

Method
 (population size)

RAGE vs
Fixed

Best RAGE/
Best fixed

Best
fixed rate

(1+100), 20 gens 8 / 2 / 0 96.98 / 95.88 2/L MAX-
ONES (1+1000), 10 gens 7 / 3 / 0 94.74 / 94.48 4/L

(1+100), 20 gens 9 / 1 / 0 105.98/105.82 2/L Deceptive,
block size 3 (1+1000), 10 gens 7 / 3 / 0 104.54 / 104.02 4/L

(1+100), 20 gens 6 / 4 / 0 105.14 / 105.06 2/L Deceptive,
Block size 4 (1+1000), 10 gens 7 / 3 / 0 106.65 / 105.84 4/L

(1+100), 20 gens 9 / 1 / 0 103.6 / 100.66 2/L Deceptive,
Block size 5 (1+1000), 10 gens 7 / 3 / 0 101.52 / 102.26 4/L

Table 1 summarises the results, in the following way. Taking for example the row

for the deceptive problem, block size 3, using a (1+100)-EA, column 3 summarises
the results of 10 pairwise statistical comparisons, one for each mutation rate in the set
{1/L, 2/L, …, 10/L}. In the comparison for 3/L, for example, a standard statistical test
was performed comparing 50 trials of RAGE using 3/L as the initial rate, with 50 trials
using 3/L as the fixed rate in each generation. We score 1 for a ‘win’ if RAGE was

found superior with confidence at least 99%, 1 for a ‘loss’ if the fixed rate was supe-
rior, and 1 for a tie if the comparison was not conclusive. Column 3 adds these scores
for each of the 10 rates. In column 4, the best RAGE mean result is shown (best of the
10 RAGE experiments with different initial rates) and is compared with the best fixed-
rate mean result (best of the 10 fixed-rate experiments with different fixed rates).
Column 5 indicates which rate gave the ‘best fixed-rate’ result in column 4.

Clearly, RAGE consistently outperforms fixed-rates, whatever the fixed rates are
set at. The prospects for RAGE are therefore quite promising, Also, as generally ex-
pected, significantly higher rates than 1/L work best, increasing with population size,
although there is too little data here on that topic to allow any further discussion Fi-
nally, though there is evidence that RAGE is a worthwhile technique, insufficient tests
have been performed so far to establish it as a generally useful rate adaptation scheme.
We discuss this point further below.

4. Concluding Discussion

By considering the concept of the ‘gain’ distribution of the per-bit flip mutation opera-
tor, we have been able to derive expressions which allow us to see how the gain distri-
bution varies with mutation rate m and how it changes when the mutation operation is
parallelised in the context of a (1+P)-ES. These investigations are particularly appli-
cable to rate setting in parallel EA implementations, insofar as expected fitness gain is
a good measure of the quality of an operator. By using online sample approximations
to the exact expressions, we have proposed a routine called RAGE (Rate Adaptation
with Gain Expectation), which is suitable for setting mutation rates on a per-
generation basis in parallel EAs. Preliminary results show fairly convincingly that
RAGE outperforms fixed-rate schemes for a wide range of fixed rates.

The background to the theory included here, and the subsequent proposed RAGE
method, is the authors’ interest in finding a principled way to control mutation in very-
large-scale-parallel evolutionary algorithms. The application of chief interest is Di-
rected Evolution (as discussed in section 1.3), and the RAGE method can be used in
that context. The DE application brings with it certain constraints and preferences
which affect the choice of rate adaptation technique used (and EA technique in gen-
eral) One major point is that very large populations are possible in DE, and conse-
quently a considerable amount of appropriate landscape (fitness) data are available at
each generation, so it would seem to be sensible to employ a technique which ex-
ploited this data as far as possible (rather than use, for example, deterministic fixed
rates). A further issue is that using distinct and adaptive rates per individual (such as
employed in modern evolution strategies) or distinct and adaptive rates per gene, are
both (although ultimately possible) currently infeasible in the context of large-scale
DE. The choice of adaptive mutation strategies in DE is thus practically limited to
per-generation adaptation.

The essential point about the theory in section 2 is the ability to estimate the gain
distribution of any mutation rate based on online-sampled landscape information seen
to date (section 2.3). Calculating expected fitness gain is one way to exploit this esti-

mated gain distribution, but ongoing work is exploring other methods, since expected
gain per se, which is essentially an average, is likely to be unduly influenced by high
probabilities for modest gains, hence perhaps unwisely favouring lower rates.

Finally, although we focus on a (1+P)-ES, the ideas underlying RAGE are certainly
not restricted to this specific selection method. By building a model of landscape
structure information as time progresses, RAGE-like adaptation can in theory be used
to infer a promising rate with which to mutate any selected parent, via appealing to
landscape information pertaining to the fitness of that parent. Developing similar
techniques for recombination operators is less straightforward, however this is possi-
ble and is the topic of ongoing work.

Acknowledgements

We thank the BBSRC (the UK Biotechnology and Biological Sciences Research
Council) for financial support, and Evosolve (U.K. registered charity number
1086384) for additional support during this work.

References

1 Arnold, F. M. (ed). Evolutionary protein design. Advances in Protein Chemistry, vol. 55.
Academic Press, San Diego, 2001.

2 Arnold F. Combinatorial and computational challenges for biocatalyst design. Nature
2001;409:253-7.

3 Bäck T, Optimal Mutation Rates in Genetic Search, Proc. 5th ICGA, pp 2 – 9, 1993.
4 Bäck T, Evolutionary Algorithms in Theory and Practice, OUP, 1996.
5 Baltz, RH. Mutation in Streptomyces. In: Day L, Queener S, editors. The Bacteria, Vol 9,

Antibiotic-producing Streptomyces. Academic Press, 1986:61-94.
6 Blickle, T., Thiele, L. (1995). A Mathematical Analysis of Tournament Selection, in L.J.

Eshelman (ed.) Proc. 6th International Conference on Genetic Algorithms, Morgan Kauf-
mann, pp. 9–16.

7 Cantú-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic
Publishers.

8 Fogel, D.B. and Ghozeil, A. (1996). Using Fitness Distributions to Design More Efficient
Evolutionary Computations, in Proceedings of the 3rd International Conference on Evolu-
tionary Computation, IEEE, pp. 11-19.

9 Mühlenbein, H. How genetic algorithms really work: I. Mutation and Hillclimbing, in
R.Manner, B. Manderick (eds), Proc. 2nd Int'l Conf. on Parallel Problem Solving from Na-
ture, Elsevier, pp 15-25.

10 Oates, M. and Corne, D. Overcoming Fitness Barriers in Multi-Modal Search Spaces, in
Foundations of Genetic Algorithms 6 (2000), Morgan Kaufmann.

11 Rechenberg I, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution, Frommann-Holzboog, Stuttgart,1973

12 Voigt CA, Kauffman S & Wang ZG. Rational evolutionary design: The theory of in vitro
protein evolution. In: Arnold FM, editor. Advances in Protein Chemistry, Vol 55, 2001:79-
160.

View publication statsView publication stats

https://www.researchgate.net/publication/220702183

