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Introduction 
 
There is a clear trend in post-genomic studies [1-5] to understand gene function [6, 7], pharmaceutical 
mode of action [8], cytotoxicity [9, 10]  and the like by expression profiling at the level of the 
transcriptome [11-13], the proteome [14-17] and the metabolome [1, 18-28]. Our interest is focused on 
the latter [7, 29-37]. 
 
The result of these expression profiling studies is likely to be values for concentration of hundreds or 
thousands of molecules. Finding useful rules to ‘explain’ e.g. the differences between healthy and 
diseased individual is a combinatorial optimization problem [38, 39] of high dimensionality. 
Conventional analyses merely look at the differences between individuals, but the biggest differences 
may not be relevant to the higher-order trait of interest; this is of course well-known in MCA where 
large changes in enzyme concentration may cause negligible changes in flux through pathways of which 
they are a part [40-42]. We consider that finding the most interesting and significant differences from 
such data is in fact best cast as a (more or less standard) machine learning problem [7, 29, 34, 36, 37].  
 
Of the numerous methods available (e.g. [43-47]) we have found that a variant of genetic programming 
[48-54], which we call genomic computing [29, 34, 35, 55], allows one to evolve simple rules that are 
highly discriminatory and have great explanatory power, i.e. not only do the rules provide the correct 
answers but the answers are intelligible and provide the nonlinear mapping directly from the important 
‘input’ variables to the trait of interest. 
 
Results and discussion 
 
We shall give three metabolomic examples in which highly complex datasets, which could not be 
deconvoluted successfully in their original form, succumbed to genomic computing such that we can 
simply describe which segments of metabolism best explain differences between organisms of different 
types and thus are most appropriate for detailed study. The examples are: 
 

1. A study of plant defence metabolites [56] which led to the discovery of two important new 
candidates [34]; 

2. A study aimed at finding the most important metabolic differences between cultivars of olive 
[29, 57]; 

3. A study aimed at establishing targets for therapeutic intervention following the genetic induction 
of muscular dystrophy (for data see [58]). 
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We discuss case number 1 in detail. This was a ‘transgene discovery’ problem in which we measured a 
series of metabolites via HPLC and used these as the inputs to a Genetic Program designed to find a rule 
which would tell from the metabolome data whether the transgene of interest was present or absent. The 
experiment was also aimed at investigating the biosynthesis and function of salicylic acid in plant 
defense by the expression of a salicylate hydroxylase enzyme to block accumulation [56]. 
 
Salicylic acid has been known for many years to play a key role in defence mechanisms in many plants 
and is associated specifically with the hypersensitive response (HR) and the phenomenon of Systemic 
Acquired Resistance  (SAR; [59-62]. A bacterial gene encoding the enzyme salicylate hydroxylase (SH-
L) expressed from the CaMV 35S promoter has provided a useful tool to block SA accumulation in 
transgenic tobacco [56, 60, 61].  Six-week old transgenic tobacco plants (35S-SH-L) and control plants 
(Samsum NN) were inoculated with Tobacco Mosaic Virus (TMV) at a temperature (32ºC) non-
permissive for the hypersensitive response [61, 63]. Under these conditions the TMV can replicate and 
spread without inducing lesion formation. Following a shift to a permissive temperature (24ºC) the HR 
is induced synchronously, with cell death visible after 8 hours.  Leaf tissue from TMV-inoculated, 
temperature-shifted plants was sampled at different time points (0-24h), flash frozen in liquid N2, 
extracted in 90% methanol, dried, partitioned with dichloromethane and then analysed by HPLC using 
standard procedures [56]. A total of 48 peaks (V1 – V48) from the HPLC traces were digitized and 
integrated using standard software provided with the instrument, and a total of 36 samples studied.  
 
The metabolite peak values were used as inputs to the Genomic Computing software Gmax-bio (Aber 
Genomic Computing, Unit 8, Science Park, Aberystwyth SY23 3AH, UK), with the presence or absence 
of SH-L in the genotype being encoded 1 or 0.  
 
One of many rules which evolved could be written as follows: 
SCORE = Sqrt((V37/V24)) + Sqrt(V30/(V24+V42)); Probability that plant contains the transgene = 1 / 
(1 + Exp(-(-8.046777 + SCORE * 1.872833))).  
This rule had an accuracy of more than 95%. A power of genomic computing is that it ranks variables in 
order of their utility in successful rules. The top 3 variables are peaks 24, 30 and 42, and peak 24 is 
indeed salicylate (though the computational analysis was done single-blind so this was not known to the 
author). The other two variables, previously unheralded in this field, are now under active study as 
major new components of the plant defence response. Thus the GP discovered not only what differences 
there were but which were important to the biological pathway of interest, and turned metabolomic data 
into biochemical knowledge. 
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