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Abstract 

Four optimising methods for variable selection in multivariate calibration have been described: one for determining the 
optimal subset of variables to give the best possible root-mean-square error of prediction (RMSEP) in a multiple linear 
regression (MLR) model, the second for determining the optimal subset of variables which produce a model with RMSEP less 

than or equal to a given value. Algorithms three and four were identical to algorithms one and two, respectively, except that 
this time they use a cost function derived from a partial least squares (PLS) model rather than an MLR model. Applied to a 
typical set of pyrolysis mass spectrometry data the first variable selection method is shown to reduce the RMSEP of the 
optimal MLR or PLS model significantly when the number of variables is decreased by approximately half. Alternatively, the 
number of variables may be reduced substantially (> lo-fold) with no loss in RMSEP 
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1. Introduction 

When dealing with mathematical models which are 

spectroscopy [ 11. It is very tempting for the modeller 
to create a model using all available variables. This, 
however, creates several data analysis problems: 

built with little, if any, a priori information about the 

system under analysis it is often difficult to decide how l 

many variables to measure in order to build an ade- 
quate model. Often too many variables are measured. 

This usually happens when the modeller is unsure as to 
which are important or because the experimental 0 

procedure provides measurement of a large number 
of variables automatically, as typically occurs in 
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some of the variables may be completely irrelevant 
to the objectives of the model, and cloud any 
meaningful relationships that exist between other 
variables; 

in order to obtain reliable parameter estimates the 
number of observations made on each variable 
should be significantly greater than the number 
of variables. Failure to adhere to this criterion 
may lead to serious overfitting in multivariate 
calibration models [l-6]; 
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l variables may be correlated, in which case repli- 
cated information is redundant; 

l the signal to noise ratio of certain variables may be 

so low that their inclusion in the model may be 

questioned (and will certainly lead to a poorer 
model), especially if other ‘cleaner’ correlated 

variables are available [6]; 
l when the model parameters are optimised using 

iterative methods, a greater number of parameters 

can result in a more complex error surface to be 

optimised. This complexity may effect the overall 
convergence time of the model. 

For the above reasons it is advantageous to 
select the ‘best’ variables prior to the modelling 

process [7,8]. The general approach to variable selec- 
tion is to minimise a cost function, where the cost 

function calculates some metric to decide which sub- 

set of the available variables produces the ‘best’ 
model. Some sort of optimisation algorithm is then 
needed to select the subsets to be tested by the cost 

function. 

The simplest method of selection would be to 
examine all possible combinations of the variables 
exhaustively. If there arep initial variables and the best 

m are required then this would result inp!l(m!(p-m)!) 

possible subsets [9]. If p and m are large then this is 
computationally expensive (and in most situations 

practically impossible). Disqualifying this search 
method means that there is no guaranteed way of 
finding the optimal variable subset for a given model 
[IO]. However, as a rule, adequate local solutions can 
be found in a relatively short time. The three most 

popular optimisation strategies are fonvard selection 

(FS), backward selection (BS) and stepwise multiple 

regression (SMR). 

1.1. Forward selection 

Forward selection begins by looking at each indi- 
vidual variable. The one that evaluates the lowest cost 
function is kept. This variable is then examined in 
conjunction with each of the remaining (p-l) vari- 
ables until the pair that minimises the cost function is 
found. This pair is retained and tried in conjunction 
with each of the remaining (p-2) variables. This 
process continues until the optimum subset is found 
or a stopping criterion is met. 

1.2. Backward selection 

This algorithm operates in the opposite direction. 
Starting with p variables, each one is omitted in turn 

and the optimum subset retained. Then with this (p- 1) 
subset each of the remaining variables is omitted in 

turn and again the optimum subset kept. This process 
is repeated until an optimum subset of m variables is 
found or a stopping criterion is met. 

1.3. Stepwise multiple regression 

Stepwise multiple regression is a modified form of 
forward selection. The model starts out by including 

only one variable, and more variables are subsequently 
added, but at each stage a backward elimination-style 

test is also applied. If a variable is added, but becomes 
less important as a result of subsequent additions, 

SMR will allow its removal from the model. 
With the above methods each variable is studied 

independently, and no consideration is given to vari- 
able interaction. For example, variables pi and pj may 

be unimportant separately but in conjunction they may 
provide useful information. Thus with these methods 
only a very small part of the available search space is 

examined. In order to study the importance of uncor- 
related groups of variables as well as individual vari- 

ables a more global optimisation method needs to be 
used, where variables are selected or rejected simul- 

taneously. 
The simplest simultaneous selection method is the 

exhaustive-subset search. However this has already 

been eliminated as an option due to computational 
overheads. Other methods are based on a stochastic 

search of the problem space. The simplest but least 
effective stochastic search method involves generating 
a population of n subsets, each subset containing a 

random combination of variables taken from the total 
set. Each subset is then applied to the cost function. 

This function returns a single numerical value which is 
proportional to the ‘utility’ of the given subset. The 
subset with the best cost function response is consid- 
ered to be the optimum. This method has obvious 

flaws, the main one being that for the method to be 
useful the population of subsets has to be large, again 
leading to high computational costs. 

Another stochastic optimisation technique which is 
reasonably new to statistical modelling is the genetic 
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algorithm (GA) [ 11,121. Again in this algorithm a 

population of n subsets is created, each containing a 
random combination of variables. The cost function 
for each subset is then evaluated in turn. Then, using 

techniques loosely based on biological genetics and 
evolution, a new population is created. 

in chemometrics and analytical chemistry are avail- 
able [ 13,141, while the use of GAS for variable selec- 

tion in spectroscopy has been described, for instance, 
by [ 15-171. Other studies of wavelength selection in 

spectroscopy include [1,15,18-261. 

First, each subset is considered as a string of m l’s 

and O’s, where m is the total number of variables to 

choose from. The state of each variable is represented 
by a ‘ 1’ (selected to be in the model) or a ‘0’ (not 

selected). In genetic terms each variable is called a 
gene and a set of variables is called a chromosome. For 

example, in a variable selection problem starting with 

8 variables, one possible chromosome would be 

00110101. This can be translated such that variables 
3,4,6, and 8 are to be used in the modelling process and 
variables 1,2,5, and 7 are to be omitted. 

It occurred to us that a combination of GAS 
and some kind of supervised learning multivariate 

calibration method would provide an excellent 

approach to the problem of model selection, and the 
examples given here are with particular reference to 

pyrolysis mass spectrometry. Four algorithms are 
described: 

A weighted random selection is applied to the 
original population where the probability of a parti- 

cular subset (chromosome) being selected is a func- 

tion of its cost function response. Thus chromosomes 

with a good cost function response will have a greater 
chance of selection. Using this method two of the 

chromosomes are selected and ‘mated’, swapping 

sections of their respective gene sequences. This 
process produces two new ‘child’ chromosomes inher- 

iting characteristics of their ‘parents’. These child 
chromosomes are then subjected to random mutation 
where the state of each gene may be changed from a 

‘ 1’ to a ‘0’ or vice versa. The probability of this change 
is normally very small. 

one for determining the optimal subset of variables 

to give the best possible root-mean-square error of 
prediction (RMSEP) in a multiple linear regression 

(MLR) model; 
the second for determining the optimal subset of 

variables which produce a model with RMSEP less 

than or equal to a given value. This value is gen- 

erally the best RMSEP using all the variables. This 

method may also be expected to improve general- 

isation according to the parsimony principle [6] and 
is useful when the acquisition of extra variables is 

associated with a cost. 
algorithms three and four are identical to algo- 

rithms one and two, respectively, except that this 
time they use a cost function derived from a partial 

least square regression (PLS) model rather than an 
MLR model. 

The process of selection followed by reproduction 

followed by mutation is then repeated until n new 
chromosomes are created. The cost function is then 

evaluated for each of the chromosomes and the whole 

process repeats itself. 

Methods 

2. I. Linear modelling 

The algorithm continues until a stopping criterion is 

reached. For example, this may be that a given cost 
function response is met, a certain number of genera- 
tions has passed, or the chromosomes have converged 
to a similar configuration. 

The simplest method of producing a multivariate 

calibration model is to use MLR [27]. A fixed regres- 
sor model is used, of the form 

y=Xb+e, 

The five steps of encoding into chromosomes, where b is the unknown parameter vector, the X matrix 
initial population selection, evaluation of the cost and y vector are the measured calibration data for 
function, reproduction, and testing for the stopping regressor variables x and response variable y respec- 
criterion are the basic building blocks for all GAS. tively. The error vector, e consists of systematic 
However, there are various ways of carrying out each modelling errors and random measurement errors 
step. A full explanation of the subject of GAS can be assumed to have normal distribution and expected 
found in [ 11,121. Tutorial reviews of their applications value E(e)=O. Estimates of the parameter values are 



14 D. Bmadhurst et al./Analytica Chimica Acta 348 (1997) 71-86 

determined by minimising e. This is simply done by 
solving the equation 

b’ = (xrx)-‘XTy, 

where b’ is the least squares estimate of b. This 
produces a model: z=Xb’, where z is the predicted 
response vector given the calibration matrix X [27]. 

A possible problem with this method of parameter 
estimation is that XTX (the covariance matrix) can be 
ill-conditioned. Ill-conditioning occurs when there is 
(approximate) multicollinearity in the x variables (i.e. 
there is high correlation between some of the columns 
of X). Any high correlation will result in a numerically 
unstable (or incalculable due to singularity) inverse 
matrix creating large errors in the parameter estimates 
[28]. Multicollinearity is most readily observed when 
the number of rows exceeds the number of columns in 
X (i.e. there are fewer regression variables than mea- 
sured observations). In this case there is no way the 
regressor variables can be independent [9]. 

In spectroscopy, multicollinearity of the regressor 
variables is highly probable and often the number of 
observations is less than the number of regressor 
variables. Thus the only way to build stable MLR 
models is to apply variable selection techniques. 
Combining GAS and MLR should provide a reason- 
able modelling tool in many areas of multivariate 
analysis. The application of this hybrid method has 
already proved to be effective in the task of wave- 
length selection in spectroscopy [ 16,171. 

Another approach to linear modelling involves 
projecting the x variables onto a set of orthogonal 
latent variables. In principal components regression, 
PCR [4,9], the projection is carried out using a basis 
set formed from the eigenvectors of XTX. The latent 
variables are then used in a MLR model with the y 
variable. In PLS [4,29], the basis set is formed by 
looking at both the X matrix and the y vector, then 
again a simple linear regression is performed. 

In PLS the latent variables (factors) are extracted 
from the calibration data one at a time in order of 
decreasing relevance to the model. Due to this ranking 
and the fact that each variable is independent, the 
problem of latent variable selection is quite trivial. A 
model is built using just the first and most important 
factor and then evaluated, a second model is then built 
using the first two factors and again evaluated. The 
process is repeated adding more and more factors until 

the ‘best’ model is created. In the present implemen- 
tation, variables were mean centred and scaled to unit 
variance. 

It is often assumed that because the regressor vari- 
ables are projected onto, possibly a small number of, 
orthogonal latent variables there will be no need to 
apply selection algorithms to the regressor variables. 
However, even though the effects of multicollinearity 
in the calibration data are greatly reduced by projec- 
tion they are not completely removed. Also, when 
dealing with quite noisy data, the removal of irrelevant 
variables can only improve the overall model with or 
without latent variables. 

Although PCR is simpler to calculate, PLS has 
usually proved to be more effective [30] and is thus 
more widely used. Therefore, in the following algo- 
rithms only MLR and PLS models were investigated. 

2.2. Model validation 

In order to assess the utility of a newly formed 
model we need to obtain a value which gives a 
measure of its performance when presented with 
new data. A commonly used measure is the RMSEP 
[31]. This is simply the mean squared difference 
between the predicted response of a model, z, and 
the true response, y. Thus, 

n 
RMSEP = c(yi - zi)2/n, 

i=l 

where n is the number of objects. 
When a model is built using the calibration data 

there is a danger that the model will over-j2 the data. 
That is, the model will succeed in finding a relation- 
ship between the calibration data X and y but it will 
have poor predictive power. For a model to be truly 
valid it must be specific enough to describe the desired 
relationship but also general enough to ignore chance 
relationships such as noise. 

In order to avoid overtitting, some sort of model 
validation is needed. The two most popular methods 
are data-splitting and full cross validation. 

In data-splitting, the measured data, X and y, are 
split into two sets, commonly called the training set 
and test set (Xtrain, Xtrain and Xtest, y,,,,). The training 
set is then used to calibrate the model as described in 
Section 2.1, and the test set is left untouched until the 
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model has been built. Once built two measures of the 
model’s utility can be calculated. Both measures use 
the RMSEP equation. Firstly Xtrtin is applied to the 
model resulting in the prediction vector Zmain which 
leads to a calibration RMSEP (which will now be 
called RMS error in calibration RMSEC). Then X,,, is 
applied to the model creating the vector Z,,, which 
leads to a model independent estimation of the 
RMSEP. The RMSEP is normally greater than the 
RMSEC but gives a far greater indication of the 
model’s utility. 

The manner in which the data are split into the two 
groups is very important and has been the subject of 
several papers [32-3511. Both groups must be chosen 
to contain a representative spread of the measured (x 
and y) data to provide accurate measures of model 
validity. 

The drawback to the data-splitting method of vali- 
dation is that, by partitioning the data into two groups, 
information from which the model could be extracted 
is lost. This could result in a much poorer model. If the 
number of measured observations is very large then 
this may not be a problem. However, often the number 
of observations is limited. 

If data splitting is impractical, fill cross validarion 
methods can be used, of which the PRESS (PREdic- 
tion Sum of Squares) statistic is an example [7]. 
Consider a data set consisting of it objects in which 
the first object is withheld. The parameters for the 
model are then estimated. When the model is formu- 
lated, the response to the deleted object is predicted 
(zi,-i). The first object is then replaced in the data set 
and the second object removed; again the model 
parameters and the response for the missing object 
are estimated. This process is repeated until all n 
objects have at some point been eliminated from 
the modelling process. This results in the production 
of n model fits and n predictions from which n 
residuals, Ei,-i=yi-Zi,-i (i=1,2,. . .,n), can be calcu- 
lated. The PRESS statistic can then be calculated 
using the definition 

PRESS = &yi - zi,_i)‘. 
i=O 

Although full cross validation methods use more 
of the available data for building the model, they 
have the disadvantage that n ‘artificial’ models 

have to be built before a measure of overall model 
quality can be calculated. This may cause serious time 
delays in an iterative variable selection algorithm. 
Also it has been suggested that the statistical theory 
behind this method of validation is not yet fully 
understood and can possibly overestimate the model’s 
utility [33]. 

For the above reasons the algorithms presented in 
this paper use the data-splitting method of model 
validation. 

2.3. Model validation and genetic algorithms 

In the work presented in this paper, a GA is used to 
find the optimum subset of regressor variables for a 
given modelling method based on the results of cost 
function evaluations for all candidate genetic chromo- 
somes (variable subsets). The chromosomes will be 
passed to a modelling subroutine where the relevant 
columns of the calibration data (Xti, and X,,,) are 
extracted and used, together with ytrain and ytestr to 
calibrate and validate a model. The cost function 
evaluation will therefore be based on the RMSEP 
of this model. 

At the end of an evolutionary stage, each chromo- 
some in the genetic population will have an associated 
cost function value. This value is then used to deter- 
mine the probability of its associated chromosome 
being used to create the next generation. As new 
generations are created the cost function value is 
optimised. 

If the cost function is based on the RMSEP 
calculated for a given chromosome then the RMSEP 
is not independent of the overall modelling process. 
It is therefore questionable whether this is a suitable 
measure of validity for the final mathematical 
model (with the optimal variables selected). It is 
necessary to find a new independent measure of model 
validity. 

It is proposed that the available data are split into 
three sets: a training set (Xaain, ytrain) a model valida- 
tion set (X,.,, y,,) and an independent test set (Xits, 
yi,,). The training set is used to calibrate the model, 
producing an RMSEC value. The model validation set 
is used to test the models validity, producing an 
RMSEP,, value. The independent test set used to 
test the validity of the final model, producing an 
RMSEPi,, value. 
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2.4. Sofrware design and implementation Member functions 

The software described herein was written in-house 
using Microsoft Visual C++ (version 2.1) running 
under Microsoft Windows NT version 3.51 on an 
IBM-compatible PC. 

C++ is an object-oriented programming language. 
Object-oriented programming involves deconsttuct- 
ing the system to be modelled into component objects, 
each of which has a set of data elements and a set of 
functions that may operate on these data. At its most 
basic level an object-oriented system can be described 
as a set of objects that communicate with each other to 
achieve some goal. Each object may be considered as a 
small virtual computer with its own memory and its 
own instruction set. Communication is achieved by 
sending messages between objects which are inter- 
preted in a way dependent on the object’s instruction 
set. 

l Calibration and validation of the model for a given 
chromosome, run(*chrom x). The model object is 
given access to the data from a given chrom object 
x, relevant columns of the calibration data (Xuain 
and X,,,) are extracted and a model is built and 
validated. A cost function is then evaluated produ- 
cing a measure of chromosome fitness. All the 
calculated values are then passed back to the chrom 
object. 

2.4.3. PLS model (~1s) 
Data elements 

In this application, five object types (commonly 
known as classes) are defined as follows (the term in 
the parentheses is the class name): 

1. Matrix (matrix). 
2. MLR Model (mlr). 
3. PLS Model (~1s). 
4. Chromosome (chrom). 
5. Population (pop). 

Data sets (Xtinr Ytrain) (X,, Y,J and (Xits, Yits). 
Each is a matrix object. 
Maximum number of factors, fact_max. This value 
is used when trying to find the optimum number of 
factors to be used by the PLS model. A model is 
built and validated using 1 factor, then 2 factors, 
then 3 factors etc., continuing until fact_max fac- 
tors have been used. Then the ‘best’ number of 
factors is chosen by finding the minimum 
RMSEP,, from all the validated models. 

Member functions 

Identical to mlr. 

2.4.1. Matrix (matrix) 
Data elements 

2.4.4. Chromosome (chrom) 
Data elements 

l An array of double precision numbers 

Member functions 

l All the basic numerical operators associated with 
matrix algebra. 

2.4.2. MLR Model (mlr) 

An array of characters, string(chrom_length). This 
array represents the gene sequence of the chromo- 
some. Each element can either be a ‘ 1’ or a ‘0’. 
Chromosome length chrom_length. This is equal to 
the total number of available variables. 
Cost function evaluation, cost, RMSEC value, 
Cal-error; RMSEP,, value, mv_error; RMSEPits 
value, its-error. These variables are used to store 
the results obtained from the model built when the 
chromosome is passed to the model object. 

l 

l 

Data elements 

Data sets (Xtrai”, ~uti,) (JL Y,,> and (Xits, yits). 
Each of these is a matrix object. 
Maximum number of regressor variables, var_max. 
As explained earlier MLR requires that the inverse 
of the covariance matrix must be calculable, there- 
fore the number of variables selected for a model, 
var_ used, must be less than or equal to the number 
of measured observations. 

Member functions 

None. 

2.4.5. Population (pop) 
Data elements 

l An array of chrom objects, pool(p). 
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A model object, mod. 

Chromosome length chrom_Zength. This is equal to 
the total number of available variables. 
Population size p. This value is dependent on the 
total number of available variables, as the initial 
random population should provide good coverage 
of the total problem space. Computation time also 
has to be taken into account, sop should not be too 
large. 
Percentage of the population retained after each 
evolutionary stage, %r. In the original Goldberg 
algorithm [ 111, the chromosomes of a given gen- 
eration are completely replaced by a population of 
child chromosomes. In our algorithm the top %r 

chromosomes of a generation are kept for the next 
generation. In this way very good chromosomes are 
not lost in a single evolutionary stage. 
Maximum number of generations G. The GA will 
stop either when the population has converged or 
when the population has been through G evolu- 
tionary stages. As with the Goldberg GA [l l] 
repetition of existing chromosomes has been 
allowed. Convergence is defined as to have taken 
place when the top %r chromosomes of a given 
population are identical. 

maximum RMSEP,, determined from analysis 
of algorithm 1). 

3. 

4. 

GAPLS-E: Variable selection using a GA with the 
aim of minimising the RMSEP,, for a given PLS 
model. 
GAPLS-V: Variable selection using a GA with the 
aim of minimising the number of regressor vari- 
ables used to produce a PLS model with a pre- 
determined maximum RMSEP,, mv_max (the 
maximum RMSEP,, determined when using all 
the available regressor variables). 

All four methods use the same basic GA, differing 
only in the model object used in pop (mlr or pls) and 
the particular cost function subroutine used by this 
model. 

2.5.1. Cost function for GAMLRl 

Probability of crossover P(c). 

Probability of mutation P(m). 

if (var_used > var_max) 

1 
cost = le106; 

] 
else 

I 
cost = mv_error; 

I 

Member functions 2.5.2. Cost function for GAMLRZ 

Creation of the initial population, initialise( ‘file_- 
name’). The parameter,file_name, is the name of a 
file containing all the information needed to initi- 
alise all its data elements. 
Evaluate all the chromosomes in a population, 
evaZ(). 
Create a new population, reproduce(). 

if (var used > var_max) 

1 
cost = le106; 

] 
else 

I 
if (mv_error > mv_max) 

I 
cost = var_used/chrom_length; 

1 
else 

1 
cost = mv_error; 

] 
1 

,.5. The model selection algorithms 

1. 

2. 

Four algorithms will be described 

GAMLR-E: Variable selection using a GA with 
the aim of minimising the RMSEP,, for a given 
MLR model. 
GAMLR-V: Variable selection using a GA with the 
aim of minimising the number of regressor vari- 
ables used to produce a MLR model with a pre- 
determined maximum RMSEP,,, mv_max (the 

2.5.3. Cost function for GAPLSl 

cost = mv_error; 
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2.5.4. Cost function for GAPLs2 2.9. Pyrolysis mass spectrometv 

if (mv_error > mv_max) 

i 
cost = var_used/chrom_length; 

] 
else 

I 
cost = mv_error; 

1 

5 pl aliquots of the above samples were evenly 
applied onto iron-nickel foils to give a thin uniform 
surface coating. Prior to pyrolysis the samples were 
oven-dried at 50°C for 30 min. Each fermentation 
sample was analysed in triplicate and each lysozyme/ 
glycogen mixture in quadruplicate. The pyrolysis 
mass spectrometer used in this study was a Horizon 
Instruments PYMS-200X; for full operational proce- 
dures see [36,38,39]. The sample tube carrying the foil 
was heated, prior to pyrolysis, at 100°C for 5 s. Curie 
point pyrolysis was at 530°C for 3 s, with a tempera- 
ture rise time of 0.5 s. These conditions were used for 
all experiments. The data from PyMS were collected 
over the m/z range 5 1 to 200 and may be displayed as 
quantitative pyrolysis mass spectra; the abscissa repre- 
sents the mlz ratio whilst the ordinate contains infor- 
mation on the ion count for any particular m/z value 
ranging from 51-200 (e.g., as in Fig. 1). In all cases, 
data were normalised to a value of 216 for the total ion 
count, to remove the effects of sample size per se. 

2.6, Data sets used 

Two data sets were used to verify the effectiveness 
of the four model selection methods. The first data set 
was obtained using pyrolysis mass spectrometry 
(PyMS) on binary mixtures of the protein lysozyme 
with glycogen [36]. The second data set was also 
created using PyMS, in this case for the analysis of 
fermentation broths for a drug of commercial interest 

[371. 

2.7. Preparation of the lysozyme and glycogen 
mixtures 

Binary mixtures were prepared such that 5 ml of a 
solution contained O-100 ug of the determinand 
lysozyme (from chicken egg white, Sigma), in steps 
of 5 ug, in 20 ug glycogen (oyster type II, Sigma) 

[361. 

2.8. Preparation of the fermentation samples 

Samples were taken from fermentation broths. The 
identity of the producing organism and the structure of 
the metabolite of interest are proprietary; the micro- 
organism and the product are therefore coded M and P 
respectively. 

Samples were taken aseptically from fermentations 
and frozen until they were analysed by PyMS. The 
medium used to grow mutants derived from organism 
M was a complex medium containing mixed sugars 
and hydrolysed protein, and samples were taken at 
different times. The amount of P was determined 
using high performance liquid chromatography 
(HPLC). The error in these values was typically 
2-5% [37]. 

Prior to any analysis the mass spectrometer was cali- 
brated using the chemical standard perfluorokerosene 
(Aldrich), such that m/z 181 was one tenth of m/z 69. 

2.10. Model data 

2.10.1. Data set 1: lysozyme in glycogen 
The total data set consisted of the four normalised 

replicate pyrolysis mass spectra derived from the 
mixtures containing 0, 5, 10, . . ., 90, 9.5 and 1OOug 
of lysozyme (X-matrix), and the accompanying actual 
(true) amount of lysozyme in the mixtures (y-vector). 
Thus the number of regressor variables equals 150 (the 
mass range of the pyrolysis mass spectra), and the total 
number of objects equals 84. The X-data were mean 
centred and scaled in proportion to the reciprocal of 
their standard deviations. 

The above data set was then partitioned equally into 
the three following sub-sets (values in the parentheses 
are the dimensions of each matrix) 

l Xraim Ytrain (28 x 150, 28 x 1). 

l Kll”, ymv (28x 150, 28x 1). 
l Xi=, yits (28X150, 28x1). 

The data were partitioned using the ‘multiplex’ 
algorithm [35]. This algorithm systematically places 
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Fig. 1. Normalized pyrolysis mass spectra of 45 pg lysozyme 

mixed with 20 pg glycogen (A) and 50 pg lysozyme mixed with 

2Opg glycogen (B). It may be observed that the differences are 

relatively modest as judged by eye. 

data points into the above sets such that the training set 
range covers both the model validation set range and 
the independent test set range, and that all three sets 
are representative. The software used to implement 
this algorithm was written by Dr. Alun Jones and runs 
under Microsoft Windows NT on an IBM-compatible 
PC. The data were partitioned by the y-data. 

2.10.2. Data set 2: drug P in M 
The total data set consisted of the three normalised 

triplicate pyrolysis mass spectra derived from 39 
mixtures containing between 0 and 86.59 pg ml-’ of 
drug P in M (X-matrix), and the accompanying actual 
(true) amount of P in M (y-vector). Thus the number of 
regressor variables equals 150 (the mass range of the 

pyrolysis mass spectra), and the number of objects 
equals 116 (one object was lost during experimenta- 
tion). The X-data were mean centred and scaled in pro- 
portion to the reciprocal of their standard deviations. 

The above data set was then partitioned equally 
using the ‘multiplex’ algorithm [35] into the three 
following subsets (values in the parenthesis are the 
dimensions of each matrix): 

l Xtrain, ytrain (38 x 150, 38 x 1) 

l X,, Ymv (39x 150, 39x 1) 

l Xits, Yits (39x 150, 39x 1). 

The data were again partitioned using the ‘multi- 
plex’ algorithm [35]. 

3. Results 

3.1. Parameter values for the genetic algorithm 

All the results were obtained using the following 
parameter values in the GA: 

Chromosome length 150 
Number of generations 200 
Chromosome population size 200 
Percentage of each population kept 20% 
Probability of crossover 0.7 
Probability of mutation 0.1 
The choices were governed by a combination of 
known useful defaults [12], a number of preliminary 
experiments, and the processing power available. 

3.2. Data set 1 

3.2.1. Algorithm GAMLR-E 
The genetic algorithm GAMLR-E was applied to 

data set 1 five times. The stopping criterion used was 
to allow a maximum number of generations (200). By 
this time the GA was observed to converge to a 
constant RMSEP,.,,, Bach run took approximately 
1 hour using a 90 MHz Intel Pentium processor. 
The results are shown in Table 1. The best results 
obtained gave an RMSEPit, of 3.91%, using a subset of 
23 regressor variables. It is interesting to note that each 
of the five results yielded quite different variable 
subsets. Although some variables were selected in 
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Table 1 

Comparison of the quality of the MLR models produced by five 

runs of algorithm GAMLR-E on the lysozyme/glycogen data. The 

aim of this variable selection genetic algorithm is to optimise the 

percentage root-mean-square-error of prediction for an MLR 

model. Values for the percentage root-mean-square-error in 

calibration, % RMS-error of prediction in model validation (used 

as the cost function by the algorithm), and 8 RIvIS-error of 

prediction for an independent test set were calculated for each 

model and the RMSEPi, used as the final measure of model utility. 

The bold faced type indicates the optimal model 

Expt. Number of % RMSEC % RMSEP,, % RMSEP,, 

number variables 

as GAMLR-E. Each run took approximately 4 h using 
a 90 MHz Intel Pentium processor. The maximum 
number of factors from which the optimum for each 
model is found, fuct_mux, was set to 16. This value 
was chosen to be quite low because previous research 
into modelling these PyMS data using PLS suggested 
that only a small number of factors is needed 
[36,38,39], and second, as fuct_mux increases the 
computation time for each chromosome evaluation 
increases proportionally. Thus, to reduce overall 
computation time, fuct_ma.x must be kept reasonably 
low. 

1 23 0.528105 4.02438 3.91973 

2 21 2.69248 4.29649 6.6678 

3 22 2.34557 4.71219 5.15602 

4 23 0.511461 4.34628 4.94728 

5 19 2.5276 4.54529 5.39324 

The results of the five runs are shown in Table 2. 
The best results obtained gave an RMSEPits of 3.77%, 
using a subset of 71 regressor variables and 5 factors, 
compared with the PLS model built using all 150 
regressor variables which produced an RMSEPits of 
7.52% using 2 factors. 

more than one of the final subsets, none of these 
variables was selected in all of the subsets (Fig. 2). 
This suggests that for this data set the model error 
surface has many local minima, probably resulting 
from the large amount of multicollinearity in the 
regressor variables and the normalization used. 

Fig. 3 shows the model predictions versus known 
amount of lysozyme in glycogen for (a) the PLS model 
using all 150 regressor variables, (b) the best model 
produced by GAMLR-E, and (c) the best model 
produced by GAPLS-E. All three methods produce 
good models; however the two GAS produce signifi- 
cantly better results. 

3.2.2. Algorithm GAPLS-E Again there was no strong correlation between the 
The genetic algorithm GAPLS-E was applied to variable subsets chosen in each of the five experiments 

data set 1 five times using the same stopping criterion (data not shown). 

60 80 100 120 140 160 180 200 

Mass 

Fig. 2. Frequency of selection of individual variables upon repeated training of GAMLR-E on the lysozyme/glycogen dataset. 5 GAS were 

trained for 200 generations as described in the text, and the frequency of selection in the final chromosome plotted. 
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Table 2 

Comparison of the quality of the PLS models produced by five runs of algorithm GAPLS-E on the lysozyme/glycogen data. The aim of this 

variable selection genetic algorithm is to optimise the % RMSEP for a PLS model. Values for the RMSEC, RMSEP,,,, and RMSEPi,, were 

calculated for each model and the RMSEPi, used as the final measure of the utility of each model. The bold faced type indicates the optimal 

model 

Expt. number 

1 

2 

3 

4 

5 

Number of Number of 

variables factors 

67 5 

72 5 

71 5 

70 5 

68 5 

% RMSEC %RMSEP,, %RMSEPits 

2.63314 3.19682 3.89642 

2.77041 3.10056 5.37667 

2.29251 3.05553 3.77118 

2.47559 3.07834 3.86994 

2.61594 3.19676 4.94723 

No selection a 150 2 6.56 7.48 7.52 

a The model statistics for a PLS model built using all the 150 available regressor variables. 
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Fig. 3. Model predictions versus known amount of lysozyme in glycogen for (a) the PLS model using all 150 regressor variables 

(%RMSEC=6.56; %RMSEP,,=7.48; %RMSEPi,,=7.52) (b) the best model produced by GAMLR-E (%RMSEC=0.53; %RMSEP,,=4.02; 

%RMSEPi,=3.92), and (c) the best model produced by GAPLS-E (%RMSEC=2.29; %RMSEP,,,,=3.06; %RMSEPi,, =3.77). O=Results 

from training data set, l =Results from model validation data set, v=Results from independent test data set, -=Desired linear fit, 

-=Best linear tit. 
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Table 3 

Comparison of the quality of the MLR models produced by five 

runs of algorithm GAMLR-V on the lysozyme/glycogen mixture 

data. The aim of this variable selection genetic algorithm is to 

optimise the number of selected regressor variables for an MLR 

model given a maximum allowable model RMSEP For this set of 

experiments the maximum RMSEP was set to 5% (Chosen by 

examining the results in Table 1). Values for the RMSEC, 

RMSEP,, and RMSEPi, were calculated for each model and the 

RMSEPtu used as the final measure of the utility of each model. 

The bold faced type indicates the optimal model 

The results of the five runs are shown in Table 3. 
The best result produced a subset of 12 variables with 
a corresponding RMSEPi,, of 5.05%. 

Again there was no strong correlation between the 
variable subset chosen in each of the five experiments 
(data not shown). 

3.2.4. Algorithm GAPLSV 

Expt. Number of RMSEC RMSEP,,,, RMSEPio 

number variables 

1 16 2.37686 4.55442 6.52044 

2 12 1.92472 4.63949 5.05392 

3 17 1.4685 4.41333 4.95204 

4 14 2.3492 3.82072 4.02591 

5 15 2.05237 4.37819 4.88966 

The genetic algorithm GAPLS-V was applied to 
data set 1 five times using the same stopping criterion 
as GAMLR-V Each run took approximately 4 h using 
a 90 MHz Intel Pentium processor. The maximum 
number of factors, fact-w, was 16. The threshold 
value for the RMSEP,, was set to 7.5%, the 
RMSEP,, for the PLS model built with all the 
regressor variables. 

3.2.3. Algorithm GAMLR-V 

The results of the five runs are shown in Table 4. 
The best result produced a subset of 8 variables with a 
corresponding RMSEPi,, of 7.11%. 

The genetic algorithm GAMLR-V was applied to 
data set 1 five times. The stopping criterion used was 
to allow a maximum number of generations (200). By 
this time the GA was observed to converge to a 
constant cost value. Each run took approximately 
1 hour using a 90 MHz Intel Pentium processor. 
The threshold value for the RMSEP,, was set to 
5%, since this was approximately the worst RMSEPits 
result from the GAMLR-E experiments. This value 
was chosen because the aim of this GA is not to 
produce the best model error but to reduce the number 
of regressor variables while retaining a reasonable 
model. 

Again, there was no strong correlation between the 
variable subset chosen in each of the five experiments 
(data not shown). 

3.3. Data set 2 

3.3.1. Algorithm GAMLR-E 

The genetic algorithm GAMLR-E was applied to 
data set 2 five times. The stopping criterion used was 
to allow a maximum number of generations (200). By 
this time the GA was observed to converge to a 
constant RMSEP,, Each run took approximately 
1.5 h using a 90 MHz Intel Pentium processor. The 

Table 4 

Comparison of the quality of the PLS models produced by five runs of algorithm GAPLS-V on the lysozyme/glycogen mixture data. The aim 

of this variable selection genetic algorithm is to optimise the number of selected regressor variables for a PLS model given a maximum 

allowable model RMSEP For this set of experiments the maximum RMSEP was set to 7.5% (the RMSEP,, for the PLS model built using all 

variables). Values for the RMSEC, RMSEP,,,, and RMSEPt,, were calculated for each model and the RMSEPi,, used as the final measure of the 

utility of each model. The bold faced type indicates the optimal model 

Expt. number Number of variables Number of factors RMSEC RMSEP,, RMSEPru 

1 8 2 7.02031 5.76% 7.11044 

2 8 2 6.92487 7.24001 7.51208 

3 6 2 6.78251 7.34695 9.0413 

4 8 2 7.27413 7.06115 7.16085 

5 8 2 6.87259 6.50481 7.41126 

No selection ’ 150 2 6.56 7.48 7.52 

’ The model statistics for a PLS model built using all the 150 available regressor variables. 
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Table 5 

Comparison of the quality of the MLR models produced by five 
runs of algorithm GAMLR-E on the Drug P in M data. The aim of 

this variable selection genetic algorithm is to optimise the % 

RMSEP for an MLR model. Values for the RMSEC, RMSEP,,,, and 

RMSEPits were calculated for each model and the RMSEPitS used 

as the final measure of the utility of each model. The bold faced 

type indicates the optimal model 

and 2 factors, compared with the PLS model built 
using all 150 regressor variables which produced an 
RMSEPits of 26.65% using 2 factors. 

Expt. Number of RMSEC RMSEP,, RMSEP,,, 
number variables 

1 31 4.710397 29.76779 36.16139 

2 33 3.372574 30.18265 40.25185 

3 33 1.984519 31.20229 41.28882 

4 30 3.171707 24.06169 43.20344 

5 28 4.55253 24.38563 40.94605 

results are shown in Table 5. The best results obtained 
gave an RMSEPits of 36.16%, using a subset of 31 
regressor variables. 

Fig. 4 shows the model predictions versus known 
amount of drug P in M for (a) the PLS model using all 
150 regressor variables, (b) the best model produced 
by GAMLR-E, and (c) the best model produced by 
GAPLS-E. Both the GAMLR-E algorithm and the 
GAPLS-E algorithm produced poor models, not 
managing to improve on the PLS model using all 
the variables. However, the results do show the sig- 
nificance of using three data sets in the model con- 
struction. Looking at both Tables 5 and 6 the 
difference between RMSEP,, and RMSEPits for a 
given model can be as much as 10%. The GAS used 
optimise the RMSEP,,. Thus the final model pro- 
duced may have selected variables that fit both the 
desired relationship and also noise in both the training 
set and the model validation set. 

There was no strong correlation between the vari- 
able subset chosen in each of the five experiments 
(data not shown). 

3.3.3. Algorithm GAMLR-V 

3.3.2. Algorithm GAPLS-E 

The genetic algorithm GAPLS-E was applied to 
data set 2 five times using the same stopping criterion 
as GAMLR-E. Each run took approximately 6 h using 
a 90 MHz Intel Pentium processor. The maximum 
number of factors from which the optimum for each 
model is found, ji.i.ct_mau, was set to 16. 

The genetic algorithm GAMLR-V was applied to 
data set 2 five times. The stopping criterion used was 
to allow a maximum number of generations (200). By 
this time the GA was observed to converge to a 
constant cost value. Each run took approximately 
1.5 h using a 90 MHz Intel Pentium processor. The 
threshold value for the RMSEP,, was set to 25%, as 
this was approximitely the worst RMSEPits result 
from the GAMLR-E experiments. 

The results of the five runs are shown in Table 6. The results of the five runs are shown in Table 7. 
The best results obtained gave an RMSEPits of The best result produced a subset of 21 variables with 
26.81%, using a subset of 52 regressor variables a corresponding RMSEPits of 29.8%. 

Table 6 

Comparison of the quality of the PLS models produced by five runs of algorithm GAPLSE on the Drug P in M data. Tbe aim of this variable 

selection genetic algorithm is to optimise the % RMSEP for a PLS m&l. Values for the RMSEC, RMSEP,,,, and P&lSEPi, were calculated 

for each model and the RMSEPi, used as the final measure of the utility of each model. The bold faced type indicates the optimal model. 

Expt. number 

1 

2 

3 

4 

5 

Number of Number of 

variables chosen factors 

52 2 

40 2 

54 2 

54 2 

54 2 

RMSEC RMSEP,, RMSEPi, 

18.15354 15.94651 26.81851 

18.08919 16.05765 29.32971 

17.41474 16.04009 27.80314 

16.82047 16.01987 28.88494 

17.74341 15.92745 27.63066 

No selection a 150 2 18.70379 21.85767 23.65989 

a The model statistics for a PLS model built using all the 150 available regressor variables. 
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Fig. 4. Model predictions versus known amount of drug P in M for (a) the PLS model using all 150 regressor variables (%RMSEC=18.7; 
%RMSEP,,=15.9; %RMSEPtr,=26.8) (b) the best model produced by GAMLR-E (%RMSEC=4.71; %RMSEP,,=29.77; 
%RMSEPi,=36.16), and (c) the best model produced by GAPLS-E (%RMSEC=lS.lS; %RMSEP,,=15.95; %RMSEPi,=26.82). 
O=Results from training data set, l =Results from model validation data set, ~=Results from inde~ndent test data set, -=Desired 

linear fit, 
___. 

=Best linear fit. 

Table 7 
Comparison of the quality of the MLR models produced by five 
runs of algorithm GAMLR-V on the drug M in P data. The aim of 
this variable selection genetic algorithm is to optimise the number 
of selected regressor variables for an MLR model given a 
maximum allowable model RMSEP For this set of experiments 
the maximum RhISEP was set to 25% (Chosen by exa~ning the 
results in Table 1). Values for the RMSEC, RMSEP,, and 
RMSEPirs were calculated for each model and the RMSEPi,, used 
as the final measure of the utility of each model. The bold faced 
type indicates the optimal model 

Expt. Number of RMSEC RMSEP,, RMSEPits 
number variables 

1 15 9.908754 24.99203 40.00901 

2 21 6.08971 26.37244 29.81002 
3 17 8.060885 21.2908 36.17023 
4 18 7.587493 24.09643 36.87597 
5 15 9.870897 24.12415 45.63229 

There was no strong correlation between the vari- 
able subset chosen in each of the five experiments 
(data not shown). 

3.3.4. Algorithm GAPLS-V 

Finally, the genetic ~go~t~ GAPLS-V was 
applied to data set 1 five times using the same stopping 
criterion as GAMLR-V Each run took approximately 
6 h using a 90 MHz Intel Pentium processor. The 
maximum number of factors, fac8_~, was 16. The 
threshold value for the RMSEP,, was set to 22%, the 
RMSEP,, for the PLS model built with all the 
regressor variables. 

The results of the five runs are shown in Table 8. 
The best result produced a subset of 7 variables with a 
corresponding RMSEPits of 22.4%, and as before there 
was no strong correlation between the variable subset 
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Table 8 

Comparison of the quality of the PLS models produced by five runs of algorithm GAPLS-V on the IysozymeIglycogen mixture data. The aim 

of this variable selection genetic algorithm is to optimise the number of selected regressor variables for a PLS model given a maximum 

allowable model RMSEP For this set of experiments the maximum RMSEP was set to 22% (the RMSEP,, for the PLS model built using all 

variables). Values for the RMSEC, RMSEP,,,, and RMSEP,,, were calculated for each model and the RMSEP,,, used as the final measure of the 

utility of each model. The bold faced type indicates the optimal model 

Expt. number 

1 

2 

3 

4 

5 

Number of Number of 

variables factors 

6 2 

5 2 

7 1 

5 1 

6 1 

RMSEC RMSEP,, RMSEPit. 

23.2693 20.66878 24.88209 

22.0307 19.54071 28.78681 

24.4616 22.66555 22.42222 

20.02679 21.60076 28.23605 

24.29657 21.57894 24.41206 

No selection a 150 2 18.69731 

a The model statistics for a PLS model built using all the 150 available regressor variables. 

21.8501 23.65169 

chosen in each of the five experiments (data not 

shown). 
The results from this algorithm are good. The 

number of variables was reduced significantly and 
the RMSEPits is even better than the models built 
using GAMLR-E, GAPLS-E and PLS model using all 

available variables. 

4. Conclusion 

Four optimising methods for variable selection in 

multivariate calibration have been described: one for 
determining the optimal subset of variables to give the 
best possible root-mean-square error of prediction 
(RMSEP) in a multiple linear regression (MLR) 

model, the second for determining the optimal subset 
of variables which produce a model with RMSEP 

less than or equal to a given value. Algorithms three 
and four were identical to algorithms one and two, 

respectively, except that this time they use a cost 
function derived from a PLS model rather than an 

MLR model. 
Two data sets were used to verify the effectiveness 

of the four model selection methods. The first data set 
was obtained using pyrolysis mass spectrometry 
(PyMS) on binary mixtures of the protein lysozyme 
with glycogen [36]. The second data set was also 
created using PyMS, in this case for the analysis of 
fermentation broths for a drug of commercial interest 

[371. 

The results obtained from applying the four opti- 
mising algorithms to the two data sets showed that the 

hybrid genetic algorithm/multivariate calibration is a 
valuable approach to the problem of model selection. 

Both the MLR and PLS models produced were of 
similar standard which suggests that once a suitable 

subset of orthogonal regressor variables has been 
selected nothing substantial is gained by projecting 

these variables onto a set of latent variables. When 
priority is given to reducing the number of regressor 

variables in a model rather than minimising the 

RMSEP both algorithms performed extremely well 

on average reducing the number of variables used 
from 150 to fewer than 20. 
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