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Summary
It is considered in some quarters that hypothesis-driven
methods are the only valuable, reliable or significant
means of scientific advance. Data-driven or ‘inductive’
advances in scientific knowledge are then seen as
marginal, irrelevant, insecure or wrong-headed, while
the development of technology—which is not of itself
‘hypothesis-led’ (beyond the recognition that such tools
might be of value)—must be seen as equally irrelevant to
the hypothetico-deductive scientific agenda. We argue
here that data- and technology-driven programmes are
not alternatives to hypothesis-led studies in scientific
knowledge discovery but are complementary and itera-
tive partners with them. Many fields are data-rich but
hypothesis-poor. Here, computational methods of data
analysis, which may be automated, provide the means of
generating novel hypotheses, especially in the post-
genomic era. BioEssays 26:99–105, 2004.
� 2003 Wiley Periodicals, Inc.

‘‘Simply gathering data without having any specific question
in mind is an approach to science that many people are
doubtful about. Modern science is supposed to be mostly
hypothesis-driven’. . . .My first studies of the worm lineage
didn’t requireme to ask a question (other than ‘What happens
next?’). They were pure observation, gathering data for the
sake of seeing the whole picture. . . . This kind of project suits
me—it’s never bothered me that it doesn’t involve bold
theories or sudden leaps of understanding, or indeed that it
doesn’t usually attract the same level of recognition as they
do.’’ John Sulston.(1)

Introduction

Thegeneration and testing of hypotheses is widely considered

to be the primary method by which Science progresses. So

much so that it is still common, in some circles, to find a

scientific proposal or an intellectual argument damned on the

grounds that ‘‘it has no hypothesis being tested’’, ‘‘it ismerely a

fishing expedition’’, and soon. Extremeversions run ‘‘if there is

no hypothesis, it is not Science’’, the clear implication being

that hypothesis-driven programmes (as opposed to data-

driven studies or technology development) are the only con-

tributor to the scientific endeavour. In our view, such divisive or

exclusive views—possibly based on amisreading of Popper(2)

and/or more readable commentators such as Medawar(3)—

misrepresent the complex intellectual and social intricacies

that more correctly characterise the generation of knowledge

and understanding from the study of natural phenomena and

laboratory experiments.

A discussion of some of these important issues(4) was

initiated in this journal by John Allen,(5) and elicited some

further debate.(6–10) However, the somewhat polemical start-

ing position(5) inevitably organised the combatants into an

either-or view that is too simplistic. The purpose of this essay is

to promote the view that the hypothesis-driven and inductive

modes of reasoning are not competitive but complementary

(see also Ref. 11). Our motivation, in part, is to understand the

failure of the prevailing scientific practices to have predicted

the existence of so many genes (many of them essential) that

were uncovered by the systematic genome sequencing

programs,(12) and to rehearse the relative roles of inductive

expression profiling methods, technology development and

scientific hypothesis testing in post-genomic systems biology.

Abstractions and data
It is commonplace in philosophy to distinguish the world of

the mind, knowledge, ideas, thoughts, hypotheses, rules and

other mental constructs from physical and material reality as

perceived byour senses ormeasuredby our instruments (data

or observations). Tomake things simple, we refer to these two

elements as Ideas and Data, respectively. This is the first

important distinction to make (Fig. 1), and recasts our ques-

tions in terms of the nature of the form of the relationship

between Ideas and Data. It is (we hope) obvious that (i) the

logical means of going from one to the other depend on the
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direction involved (i.e. one is not simply the reverse of the

other,(13) and (ii) the process is to be seen as an iterative cycle.

Logical inference: deduction, induction
and abduction
Inference is the derivation of new facts from existing facts or

premises by any acceptable form of reasoning. Three main

types of logical inference are deduction, induction and abduc-

tion. The direction of (hypothetico-)deductive reasoning is

from Ideas toData;(14,15) anexperimenter hasan idea, designs

and performs a controlled experiment with a predicted

outcome that leads (for a well-designed experiment) to data

that are either consistent or inconsistent with the hypothesis.(2)

The distinction between abduction and induction is not

settled(16) and, for our purposes, we combine the two under

one heading—induction, and note the key point that they go

from Data to Ideas. This is generalisation from cases, and can

also be seen as going from effect to cause, a process referred

to as ‘inverse entailment’. Thus, by deduction, we can say IF it

rained (cause), THEN the grass will be wet (effect). However,

we cannot with certainty invert the argument to read IF the

grass is wet (effect) THEN it has rained (cause) as the wetting

might have been done with a garden hose.

The reason that Deduction appears to enjoy preferred

philosophical status then seems to be that if the axiom and the

observation are correct the logical inference must be correct

(all whales are blue; George is a whale; therefore George

is blue). By contrast, induction is seen as being insecure

philosophically as it falls to counter-examples. If George is a

whale and is blue, Anne is awhale and is blue, Percy is awhale

and is blue, andsoon,we can induce the idea (hypothesis) that

all whales are blue. When Moby Dick comes along and is a

whale but white, the inductively generated hypothesis is found

to be false. The problem with this cosy distinction is that the

appearance of Moby Dick also falsifies the deductive version

(‘the great tragedy of Science: the slaying of a beautiful

hypothesis by an ugly fact’—T.H. Huxley). Of course, in the

real world, we know that preferred hypotheses survive any

number of inconvenient facts.(17) We thus see that the great

philosophical preference for deduction has no genuinely

secure basis, but seems to be rooted in a qualitative logical

system that is based on a search for certainty or inevitability.

Neither of these is noticeably a property of the world of

complex, non-linear systems such as those that are the

hallmark of modern biology.

Cause and effect in post-genomic

science and systems biology

Parameters and variables
In a dynamical system, the parameters are the parts of the

system, which have values that are either controlled by the

experimenter or are invariant during the experiment. In

metabolic biochemistry, these might be parameters such as

thepH, or the kcat of anenzyme.Variables are those things that

change during an experiment as a result of a change in the

parameters. In metabolic biochemistry, the variables include

metabolic fluxes and concentrations. Although it is often very

desirable to be able to estimate the parameters from the vari-

ables (see, for example, Refs. 18,19 and see later), the

parameters are the causes and the variables the effects. (Note

however that the time elapsed during an experiment is often

regarded as an ‘honorary’ variable.)

Pre- and post-genomics
The cause–effect relationship for genetics/genomics and

observable phenotypes is, of course, that the phenotype is

caused by the genotype, not vice versa, although it is poss-

ible to infer the genotype from the phenotype. Similarly, our

perception of the relationship between gene and function

(however defined(20)) depends, as in Fig. 1, on the direction

involved. Pre-genomic molecular biology tended to be ‘func-

tion first’ and sought genes that were involved in providing that

function. Post-genomics starts with, nominally, all the genes,

for many of which there is no corresponding biochemical

activity or function known, and is thus ‘gene first’.(21) Why,

then, did the hypothesis-driven mode of reasoning fail to find

the approximately 40% of the genes that were uncovered,

even in well-worked model organisms, after whole-genome

sequencing methods were applied? We think that the main

Figure 1. Scientific advance may be seen as an iterative

cycle linking knowledge and observations. The hypothetico-

deductive mode of reasoning uses background knowledge to

construct a hypothesis that is tested experimentally to produce

observations. This is only half the story, however, as the

inductive mode of reasoning is based purely on generalising

rules (or hypotheses) fromexamples, i.e. it is purely data-driven

(and the hypothesis is the end, not the beginning). Because of

the high dimensionality of typical data, computer-intensive

methodsare required to turn thedata into knowledge.Weargue

here that scientific advance should exploit both deductive and

inductive modes of reasoning in an iterative cycle.
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reason is that classical molecular genetics was both reduc-

tionist and qualitative.

Understanding complex systems—holistic
and reductionist strategies
At least two strategies for understanding complex systemscan

be envisaged. The reductionist view would have it that if we

can break the system into its component parts and understand

them and their interactions in vitro, then we can reconstruct

the system physically or intellectually. This might be seen

as a ‘bottom-up’ approach. The holistic approach takes the

opposite view, that the complexities and interactions in the

intact system mean that we must study the system as a

whole. Although these ideas are far from new,(22–26) such

strategies are nowadays often referred to as ‘systems

biology’.(27–32) The molecular biology agenda was explicitly

reductionist. The other chief attribute of the molecular biology

of the last 50 years is that it was largely qualitative.(33,34)

The aim was to make statements that were either true or

false (strains X and Y do or do not carry mutations in the

same gene, ‘UUU does or does not code for phenylalanine’).

Experiments were designed to have qualitative readouts

(e.g. growth or nogrowth, red orwhite colonies etc.). Plausibly,

many of the genes ‘missed’ before systematic genome se-

quencing were missed because their mutation had only

quantitative effects, and thus could not be detected via the

classically qualitative readouts of molecular biology.

Rather than being a Johnny-come-lately, the systems

approach is the normal starting point in engineering. An

engineer would be very surprised to be told that to understand

a complex system like a car s/he should fragment it in a

blender, centrifuge the bits to separate items of different

relative density, and then separate them further on the basis of

size and charge in a 2D gel. Having done this, s/he is informed

that the study of each of the bits would then allow under-

standing of how the car really worked. We find it useful to

deploy this style of reductio ad absurdam when conveying to

biologists how unnatural the bottom-up reductionist approach

is to an engineer. Of course, both approaches are of value and

can be seen as complementary (Fig. 2), but the specific point

in the present context is that, by and large, engineering

strategies and (by extension) Systems Biology do not repre-

sent hypothesis-driven science.

Quantitative expression profiling methods
and scientific hypothesis testing
A now-common strategy in post-genomic biology is to mea-

sure, quantitatively, the action of all (or as many as possible)

of the genes at the level of the transcriptome, proteome,

metabolome and phenotype (see, for example Ref. 35), and to

use computerised methods to infer gene function via various

kinds of pattern recognition techniques.(36,37) Such activities

are seen as lacking in hypotheses, and are an explicit target

of Professor Allen.(5) Actually nothing is completely value-

free, and a linkage back to the world of ideas can always be

traced; what is meant by Professor Allen is that there is no

specific hypothesis, as clearly one can always cast the

hypothesis in terms of a view (‘hypothesis’) that generating

such data from a specific set of samples will at least be of

value. Thus, throughout, we use ‘hypothesis’ to mean a

specific proposition about the behaviour of a (biological or

other) system, based on a logical reasoning that leads to an

experimentally verifiable prediction that is either confirmed to

be consistent with it or otherwise.

Hypothesis-free science

Epidemiology
The science of epidemiology (see, for example Refs. 38,39)

seeks to find the genetic, environmental or other character-

istics that are differentially prevalent in those with diseases

relative to those who are classed as being well. It holds a

special place as a well-established science that is essentially

data-driven, and in which hypotheses are the result of the

epidemiological study of interest, not its starting point. None-

theless, it is possible to cast epidemiology into a similarly

hypothesis-driven mode as that given above (e.g. ‘‘the

hypothesis is that there will be associations between an

environmental or genetic precondition, as in the old ‘biochem-

ical individuality’(40,41) or the new ‘pharmacogenomics’,(42) and

the prevalence of a disease or response in that subset of

the population exhibiting the ‘behaviour’ or the genotype’’).

However, by all common sense, the same criticism can be

levelled at epidemiology as at expression profiling by those

who complain that ‘there is no hypothesis’. In a similar vein,

we comment that almost all kinds of data mining (see, for

example, Refs. 43–45) equivalently search for patterns, and

generalise rules as inductive inferences from associations or

patterns that occur regularly. Indeed, datamining is practically

synonymous with ‘knowledge discovery’ in databases.(46,47)

To this extent, a significant part of the scientific discovery

process involves establishing regularities of this type.

Figure 2. Holism and reductionism as complementary and

iterative strategies for understanding complex systems.
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Are there many other important biological
advances that have been hypothesis-free?
The classical inductive learning example comes from astron-

omy and is represented byKepler’s Laws. Based on a series of

paired data listing the orbital periods, P, and the semi-major

axis of their elliptical orbits round theSun, a, of the planets then

known, Kepler induced a mathematical relationship between

them, which became known as Kepler’s (Third) Law of pla-

netary motion: P2 / a3 or P2¼ constant� a3. No hypothesis

was being tested, although subsequently (as in Fig. 1) Newton

showed (hypothesised?) that an inverse square law of

gravitational attraction could largely account for the equations

of planetary motions proposed by Kepler. Are there examples

of important hypothesis-free advances in biology? Although it

is not necessarily easy to prove an ‘absence’ (of a hypothesis),

we certainly think so, and some examples follow.

First, we mention technological developments. These are

certainly important in science and that they are science is

attested by the fact that many have won Nobel science prizes

for their creators. In biological chemistry, the development of

methods for sequencing proteins and nucleic acids by Sanger

(see for example Ref. 48) or of the polymerase chain re-

action by Mullis(49) and of soft-ionisation mass spectrometric

methods (see, for example Refs. 50,51) are three obvious

examples. Beyond a recognition (hypothesis?) that the ability

to perform such analyses would be scientifically valuable, it is

not reasonable to claim that these advanceswere ‘hypothesis-

driven’, and certainly not to suggest that these authors might,

at the time of their invention, have imagined the importance of

these developments to the human genome project nor the

significance of mass spectrometry in proteomics. A recent UK

initiative in ‘Basic Technology’ (see http://www.rcuk.ac.uk/

basictech/) explicitly recognises that the results of the

technology development that it is promoting are not hypoth-

esis-driven, but that excellent hypothesis-driven science could

result from it (again, much as in Fig. 1).

Perutz(52) comments ‘‘I have also found that scientific

advances are notmade by any one singlemethod. Some arise

following Popper’s hypothetico-deductive one; others are the

result of induction fromobservation that Newton prescribed. In

practice, scientific advances often originate from observation,

made either by accident or design, without any hypothesis or

paradigm in mind. The discovery of pulsars by Tony Hewish

and his colleagues was accidental and came as a surprise.

The idea that radio pulses might be emitted by rotating

neutron stars arose afterwards.’’ The discovery of the cosmic

microwave background by Penzias and Wilson was equally

serendipitous, and clearly—by definition—serendipitous

scientific discoveries(53) arise from observations made with

no hypothesis (or at least no hypothesis directed to that

specific end) being tested.

Modern biology rests on three major pillars—the Theory of

Evolution by Natural Selection, Mendel’s Laws of Inheritance,

and the double helical structure of DNA. We will now examine

how these pillars were built and whether hypothetico-

deductive or inductive reasoning was involved.

Neither Darwin nor Wallace, at the time they started to

collect specimens andmake observations of the living world in

far-flung parts of the globe, sought to test any specific

hypothesis. Their aim, and the principal item on the agenda

of Victorian biology, was to catalogue all the living organisms

on the planet (a goal that has yet to be achieved). It was only

when they started to organise their specimens, and make

sense of their observations, that they entered upon the grand

synthesis that is the Theory of Evolution by Natural Selection;

Mayr discusses this extensively.(54,55) Mendel’s Laws of In-

heritance provided the mechanism that was missing from

Darwinian theory, and certainly appear to have been the

product of hypothetico-deductive reasoning. Thus the initial

theoretical basis of biology is a telling example of the com-

plementarity of the inductive and deductive approaches.

However, what of the structure of DNA itself, the very

foundation of molecular biology?

ErwinChargaff discovered (see, forexample,Ref. 56)using

thin-layer chromatographic methods, that—within the preci-

sion available—the ratio G:C and A:Twas approximately unity

in all organisms’ DNA, whatever the total GþC content the

DNA of any specific organism. He did not set much store by

this, stating(56) that ‘‘A comparison of the molar proportions

reveals certain striking, but perhaps meaningless, regula-

rities’’. Chargaff made his measurements, not to test any

specific hypothesis, but ‘‘to gain an insight into the differences

in composition, and therefore, presumably, in nucleotide

sequence, distinguishing . . .DNAs . . . derived from different

species.’’(57) The 1952 paper(57) also did not attach any

particular significance to theG:C andA:T ratios, as opposed to

the A:G and T:C ones; nevertheless the data provided an

important clue that enabled Watson and Crick(58) to solve the

structure of DNA. Indeed, Watson and Crick themselves, had

no specific hypothesis—other than the conviction that the

molecular structure of the genetic material should provide

some clue as to gene function. Rosalind Franklin, whoseX-ray

diffraction data they used, certainly had no hypothesis about

the structure of DNA—believing firmly that it would fall out of

the Patterson calculations.(59)

When one of us (SGO) embarked upon the sequencing of

theDNAmolecule ofSaccharomyces cerevisiae chromosome

III (the first chromosome to be sequenced fromany organism),

he had no specific hypothesis in mind. Yeast chromosomes

were of a size thatmeant that their sequencingwas achievable

using the current (then manual) technology. Most importantly,

Carol Newlon’s isolation and cloning of a ring derivative of

chromosome III(60) meant that a chromosome-specific library

of clones was available. Before the sequencing of chromo-

some III became a European endeavour, SGO would give

seminars in which he stated that he ‘expected to find the
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unexpected’. He did not predict that there would be approx.

five times as many genes on the chromosome as had been

found by classical genetics, nor that the relationship between

physical and genetic distances would vary somuch across the

chromosome, nor the existence of transposition ‘hot-spots’,

nor a new class of transposons,(61) nor a number of other

phenomena that have proved fertile areas for subsequent

enquiries using the hypothetico-deductive approach.

Observational biology
Before the advent of reductionist molecular biology, biology

was largely an observational science. It is not obvious that

much of observational biology was hypothesis-driven: finding

an organelle and calling it a mitochondrion is hypothesis-free

(although seeking the function of mitochondria by inferring the

consequences of inhibiting their function can well be). Brent

points out that much of post-genomic biology is, in this sense,

observational in character.(62,63)

The value of data
Intellectual activity, including that which produces patentable

inventions and other outcomes commonly recognised as

‘intellectual property’, can be seen as the navigation of a

complex search space or ‘landscape’ in search of ideas or

material inventions that are, in a quasi-evolutionary sense,

‘better’ or ‘fitter’ than those pre-existing.(64–68) The only

hypotheses here, then, are that a knowledge of the landscape

will help in guiding the search,(69) and that there are toolswhich

can improve the chances of getting to the top of Everest rather

than being stuck on Snowdon. The mere generation and

dissemination of data, the latter now of course to be done

electronically and via the Web, is then seen—when viewed in

the correct context—as a highly valuable component of the

scientific process, even when no hypothesis was involved in

the generation of those data.

The role of computers

Can computational activity generate
new knowledge?
Going back to the early days of ‘artificial intelligence’, projects

such as DENDRAL and METADENDRAL(70–73) (and see

http://smi-web.stanford.edu/projects/history.html#DENDRAL

and http://smi-web.stanford.edu/projects/history.html#META-

DENDRAL) sought explicitly to enquire as to whether scientific

reasoning could bemechanised. Specifically, this involved the

computational analyses of paired datasets—in this casemass

spectra and the structure of the chemicals from which they

came—with a view to determining (i) whether one could infer

one (the structure) from the other (the spectrum), and (ii) what

rules underlying any such successful inferences had been

discovered by (in) the computer. Although these particular

projects are largely of historical interest, their positive out-

comes made it clear, for instance, that induction could be

automated as heuristic search. Other summaries of the use of

computational intelligence in relation to creativity or to scien-

tific discovery appear in Refs. 15,67,68,74–81.

The future: intelligent search
Active Learning(82–86) ‘‘studies the closed-loop phenomenon

of a learner selecting actions or making queries that influence

what data are added to its training set’’.(82) Most modern

strategies for navigating complex combinatorial optimisation

landscapes involve some kind of active learning as so defined.

Studies on active learning in functional genomics have been

initiated using logic programming.(87,88) Other strategies

are often based on evolutionary algorithms,(89–94) and truly

‘closed loop’ strategies—in which the next experiment is

iteratively selected, performed and analysed entirely by

computational means without human intervention—have

been in existence or mooted for some time.(95–99) It seems

obvious that automating the processes of Fig. 1 in a closed-

loopmannerwill form at least part of the scientific landscape of

the future.

In conclusion, we would like to stress that hypothesis-

drivenanddata-drivensciencearenot in competitionwitheach

other but are complementary and best carried out iteratively.

The development of suitable technologies and the generation

of relevant data sets are activities of great scientific value in

their own right, and the computer-assisted generation of new

knowledge should not be seen as inimical to the creative

brilliance of scientists but as a tool that can greatly assist it.
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