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Silage quality is typically assessed by the measurement of several individual parameters, including pH, lactic
acid, acetic acid, bacterial numbers, and protein content. The objective of this study was to use a holistic
metabolic fingerprinting approach, combining a high-throughput microtiter plate-based fermentation system
with Fourier transform infrared (FT-IR) spectroscopy, to obtain a snapshot of the sample metabolome
(typically low-molecular-weight compounds) at a given time. The aim was to study the dynamics of red clover
or grass silage fermentations in response to various inoculants incorporating lactic acid bacteria (LAB). The
hyperspectral multivariate datasets generated by FT-IR spectroscopy are difficult to interpret visually, so
chemometrics methods were used to deconvolute the data. Two-phase principal component-discriminant
function analysis allowed discrimination between herbage types and different LAB inoculants and modeling of
fermentation dynamics over time. Further analysis of FT-IR spectra by the use of genetic algorithms to identify
the underlying biochemical differences between treatments revealed that the amide I and amide II regions
(wavenumbers of 1,550 to 1,750 cm�1) of the spectra were most frequently selected (reflecting changes in
proteins and free amino acids) in comparisons between control and inoculant-treated fermentations. This
corresponds to the known importance of rapid fermentation for the efficient conservation of forage proteins.

Ruminant animal production in the United Kingdom relies
mainly on grass (either grazed or conserved as silage and often
supplemented with high-protein feed concentrates) (28, 38). A
ban on animal protein in livestock feeds has led to renewed
interest in using plant-based N sources, for example, high-
protein legume crops such as red and white clover (which
typically contain 20 to 30% crude protein in the dry matter
compared to 15% in grasses) (D. E. Beever, Abstr. Proc. XVII
Int. Grassland Cong., p. 535–541, 1993). However, leguminous
crops tend to have intrinsically lower sugar content and a high
level of buffering capacity compared to grasses (6), which can
result in problems during ensilage. Silage is the product of an
anaerobic fermentation characterized by rapid acidification
due to lactate production by lactic acid bacteria (LAB). This
process comprises four main stages, as described in Table 1.
The duration of the first (aerobic) phase and the rate of pH
decrease in (anaerobic) phase 2 are both critical factors in
determining the quality of the silage at feed-out (10). Good
fermentation is characterized by a rapid initial decrease in pH.
The decrease in pH (compared to that of fresh herbage, with a
pH typically ranging from 5.6 to 6.6) to pH 4.2 or less ideally
should occur in 24 to 48 h (8). This rapid acidification inhibits
spoilage organisms such as clostridia, enterobacteria, yeasts,

and molds (7) and the action of intrinsic plant enzymes such as
proteases (7, 18, 28), thus preserving the nutrient value of the
feed for the ruminant. The acidification should also be stable
over time, allowing long-term storage of the silage (8).

The use of LAB inoculants to improve grass silage fermen-
tation (and, hence, quality) is now widespread (10, 22; M. K.
Woolford, Abstr. Proc. Alltech. 14th Annu. Symp., p. 181–200,
1998). Researchers are now applying knowledge gained during
the development of inoculants that work well for grass silage to
improve those for use in the ensilage of leguminous crops (28).

Near infrared spectroscopy (NIR) has previously been used
to derive models for the study of forage composition (36, 37),
sward quality (1, 44), and silage composition (42). Wachendorf
et al. (44) applied NIR to predict the clover content in mixtures
of red and white clover with grass, a value previously estimated
by manual separation of the plant material or by visual assess-
ment in the field. NIR covers the spectral region of wavenum-
bers from 10,000 to 4,000 cm�1. NIR region spectra are based
on the overtone and combination-band absorption character-
istics of CH, NH, and OH groups. By contrast, the mid-IR
(MIR) region (wavenumbers from 4,000 to 400 cm�1) (37) is
measured using Fourier transform infrared (FT-IR) spectros-
copy and provides much greater chemical information content
(17, 39) because it measures the fundamental vibration. In the
region of wavenumbers between 4,000 and 1,500 cm�1 there is
absorption by various stretching modes of functional groups of
molecules, and the region of wavenumbers below 1,500 cm�1 is
significant for deformation, bending, and ring vibrations and is
frequently referred to as the fingerprint region of the spectrum
(39). Reeves (36, 37) compared the use of NIR spectroscopy to
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that of MIR spectroscopy for the study of forage grasses and
concluded that MIR performed at least as well as NIR for
modeling grass composition. In a later paper, Reeves (35)
reported the possibility of combining both spectral regions but
showed that no significant advantage was gained by adding the
NIR to the MIR spectra.

Current methods to study silage fermentation rely on the
time-consuming measurement of various chemical and biolog-
ical parameters, such as levels of pH, dry matter (DM), lactic
acid concentration, volatile fatty acids, crude protein, ammo-
nia, dry-matter digestibility, and viable microbial counts (6, 46,
48). These data, although informative, only provide selective
information about the fermentation characteristics and a lim-
ited picture of the actual biochemical changes that occur dur-
ing fermentation. The application of a model fermentation
system and FT-IR spectroscopy provides a high-throughput
technique for studying the “silage metabolome” in toto. The
metabolome is defined as the total biochemical composition of
a sample at a given time (30). Analysis by FT-IR spectroscopy
also includes the measurement of proteins and nucleic acids
which are not naturally included in the metabolome definition.
FT-IR spectroscopy has previously been successfully applied to
study bioprocesses (industrial fermentations) with respect to
the detection of degenerate variants in solventogenic clostridia
(40), the monitoring of �2 interferon production by Escherichia

coli (27), and gibberellic acid production by the fungus Gib-
berella fujikuroi (26). These studies focused on analyzing the
actual bacteria or monitoring the production of a specific me-
tabolite. The approach taken here is more accurately defined
as metabolic fingerprinting.

FT-IR spectra are complex multivariate datasets, which can
be extremely difficult to analyze by simplistic visual methods;
consequently, multivariate mathematical modeling (chemo-
metrics) can be applied to identify patterns within sets of these
data (41). Two clustering methods are used here, viz., principal
component (PC) analysis (PCA) and discriminant function
(DF) analysis (DFA). These methods are used to discriminate
between red clover fermentations treated with different inocu-
lants. Since it has been shown that there is discriminatory
information within the FT-IR fingerprint, computational
search methods (such as genetic algorithms [GA]) can be used
to aid in the discovery of important biochemical features in
these spectra. These chemometric approaches are described in
more detail in the Materials and Methods section.

Here we show (using a model microtiter plate-based fermen-
tation system coupled with FT-IR spectroscopy for high-
throughput screening) how a metabolic fingerprinting ap-
proach can be applied to studies of model fermentation
dynamics in red clover to identify the presence of an inoculant
and to discriminate between the effects of different LAB in-
oculants over time. The results of three experiments studying
grass and red clover juice fermentation in response to inocu-
lation with a range of different LAB are presented.

MATERIALS AND METHODS

The model fermentation system. A model system (devised on the basis of the
use of 1-ml “microsilos”) was developed to permit high-throughput screening of
the effect of different LAB inoculants on the fermentation of grass and red clover
(9; H. E. Johnson, D. Broadhurst, G. W. Griffith, D. B. Kell, M. K. Theodorou,
and R. J. Merry, Proc. 19th Gen. Meet. Eur. Grassland Federation, p. 206–208,
2002). The system uses deep 96-well microtiter plates, with each well constituting
an individual fermentation combining herbage juice as the substrate and the
inoculant in question. Herbage juice was extracted from freshly harvested grass
and red clover cultivars with a silage press (Institute of Grassland and Environ-
mental Research, Aberystwyth, United Kingdom). The juice was diluted twofold
with sterile distilled H2O prior to loading the wells.

The LAB strains selected for use as inoculants are described in Table 2. These
bacteria were grown in MRS broth (Oxoid Ltd, Wade Road, Basingstoke, Hamp-
shire, United Kingdom) at 30°C for 20 h (as described by Winters et al.) (46). The
cultures were diluted in sterilized distilled H2O prior to application to give a final
concentration after inoculation of 106 CFU ml�1. Each well (1.2 ml in volume)
in the deep-well microtiter plate represents a single fermentation. In the control
samples, 1 ml of red clover juice was added to each well. In the inoculated
samples, 0.99 ml red clover juice plus 10 �l of inoculant suspension was added to

TABLE 1. The four main phases of the ensilage processa

Phase Key event Duration

Aerobic Aerobic organisms active Short lived (hours)
Oxygen depletion

Anaerobic Competition between
anaerobes

Days

Acidification
LAB domination in a

good fermentation

Stable (storage) Low pH Months
Maturation Inhibition of spoilage

organisms
Decrease in viable

microorganisms

Feedout Aerobic instability Days
Increase in pH
Increase in aerobes;

spoilage

a See reference 47.

TABLE 2. The LAB strains selected for screening in the microsilo fermentation experiments

Experiment Lab straina Strain isolated from: Source (code)b

II Lactobacillus plantarum (Lp01) Aberelan herbage IGER (EB2)
I � II Lactobacillus plantarum (Lp02) Perennial rye grass IGER (621)
II Lactococcus lactis Milk powder IGER (S614)
III Lactobacillus mali Cider apple juice NCIMB (10560)
III Lactobacillus delbrueckii subsp. lactis Unknown (Starter culture for Swiss cheese) NCIMB (8140)
III Lactobacillus brevis Silage NCIMB (947)
III Lactobacillus amylovorus Cattle waste—corn fermentation NCIMB (13276)

a All LAB strains were homofermentative (with the exception of L. brevis, which is heterofermentative).
b The isolates were obtained from either the National Collections of Industrial and Marine Bacteria (NCIMB) culture collection (http://www.ukncc.co.uk/) or the

culture collection at the Institute of Grassland and Environmental Research (IGER), Aberystwyth, United Kingdom.
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each well. The microtiter plates were then sealed with adhesive aluminum foil
and incubated at 25°C. At each sampling time point, the pH was measured and
the samples were stored in vials (Fisher Scientific Ltd.) at �80°C until further
analysis.

FT-IR spectroscopy. Samples were thawed at room temperature and vortexed
prior to FT-IR analysis. A total of 5 �l of sample was loaded onto a 400-well
bespoke aluminum plate. Each sample was loaded in triplicate (“machine rep-
licates”). The plate was then dried at 50°C for 45 min. The aluminum plate was
loaded onto a motorized xy stage of an adapted reflectance thin layer chroma-
tography accessory connected to an IFS28 FT-IR spectrometer (Bruker Spec-
trospin, Coventry, United Kingdom) equipped with a mercury-cadmium-tellu-
ride detector cooled with liquid N2 (16). The spectra were collected over a
wavenumber range of 4,000 to 600 cm�1. A total of 256 spectra were coadded
and averaged per sample to improve the signal-to-noise ratio. Further instrument
and methodological details are given in Winson et al. (45) and Goodacre et al.
(15).

The spectrum for each sample contained 882 data points (wavenumbers rang-
ing from 4,000 to 600 cm�1), each representing an absorbance value at a par-
ticular wavelength. These data were imported into Matlab software (version 6.2).
Unless otherwise stated, all further analyses were performed using Matlab. The
whole data set was used in the analysis after the characteristic CO2 peaks at 683
to 656 and 2,403 to 2,272 cm�1 were removed and replaced with a trend line (2).

Cluster analysis. Grouping of analytical data is possible either by means of
clustering methods or by projecting the high-dimensional data onto lower-di-
mensional space. There are many clustering methods available (12), but it has
been shown for spectroscopic data that a multistage analysis method in the form
of a projection algorithm (PCA) followed by a clustering algorithm (DFA) is
robust and reliable (15, 43).

PCA is an unsupervised clustering method requiring no a priori knowledge of
the data set under analysis and acts to reduce the dimensionality of multivariate
data while preserving most of the variance within; hence, it is termed a data
compression method (5, 21). In contrast to PCA, DFA is a supervised method.
A priori information about the class membership of the samples is used to
produce measures of within-group variance and between-group variance. These
data are then used to define DFs that optimally separate the a priori classes (i.e.,
biological replicates rather than machine replicates). The functions can then be
used as a coordinate system to visualize the DFA scores. The fact that replicates
must be within the same class is used to define the classes accordingly (32).

In this study the number of PCs used by the DFA was optimized by cross-
validation, which involves forming the model on a training data set and then
projecting a previously unseen set of data (the test set) onto the model, as
detailed previously (33). By adjusting the number of PCs used in the model and
then employing cross-validation an optimal configuration could be found. Each
FT-IR data set was divided by biological replicate into two groups (the training
set and the test set) in a ratio of 2:1.

GA. A GA is an optimization method based on the principles of Darwinian
selection (14) in which, iteratively, a set of parameter values for a given problem
evolves until an optimal, or near-optimal, solution is found.

Initially a random set of N objects, P1 � (p11, p12,. . ., p1N), each containing a
string of binary digits representing the parameters of the problem to be opti-
mized, is created. Each string is then tested against a function, f(pi), which
returns a value defining the quality of the parameters represented by that string
(referred to as its fitness value). Once all N fitness values have been assigned, a
new set of binary strings is created, P2. For P2 to be made fitter than P1, principles
analogous to genetic sexual and asexual reproduction within the initial set, P1,
are applied (3, 13, 31, 34). The aim of this process is to create new strings which
contain the best sections of two parent strings with high fitness values, thus
potentially increasing the new string’s fitness. At the same time the reproduction
process also facilitates a certain amount of stochastic searching of parameter
space for new parameter values by allowing not-so-fit parent strings to also
reproduce and by including a very small probability of random mutation of each
new binary string (by randomly changing binary values from 0 to 1 or from 1 to
0). The probability of a particular parent string being selected for reproduction
is proportional to its fitness, so strings with a high fitness value have a greater
chance of selection. The process of selection followed by reproduction followed
by mutation is repeated until N new strings (i.e., a new set, P2, to replace the old,
P1) are created. The fitness value is then evaluated for each of the new strings
(p21, p22,. . ., p2N), and the whole process repeats itself. The algorithm continues
until a predefined stopping criterion (such as arrival at a given optimal fitness
value, evaluation of a certain number of parameter sets, or convergence of the
top n% of the strings in a given set to similar intrinsic parameter values) is
reached.

In this study we used the GA to determine the subset of n wavenumbers (taken

from the data matrix) which, when applied to a discriminant multiple linear
regression (D-MLR) model (4), optimally distinguished between two selected
treatments. D-MLR GA analysis for all the possible combinations of the four
treatments (i.e., six pairwise combinations) was performed in experiment 2 after
96 h of fermentation. All calculations were performed using in-house software
written in C�� running in a Microsoft Windows NT operating system on an
IBM-compatible personal computer. Full details of GA-MLR were given previ-
ously (4), and a previous application using this technique to discriminate between
control and salt-treated tomato fruit was described previously by Johnson et al.
(20). Optimization is achieved by minimizing the residual mean square error of
prediction for RMSEPTEST, the internal validation set (given that it is less than
the residual mean square error of prediction for RMSEPTRAIN, the training set).

In C code:
If (RMSEPTEST � RMSEPTRAIN)
{
fitness_function � 1/RMSEPTEST;
}
else
{
fitness_function � 1/(RMSEPTRAIN�1000);
}
The fitness rule described above restrains the GA from selecting subsets of

variables whose MLR models over-train on the validation data set, thus produc-
ing a more robust model.

The GA uses two-point crossover with mutation (14), operating on a set of
binary-encoded strings, with each string representing v candidate wavelengths
(4); v can be set to any integer value (between 2 and the total number of
wavelengths used) prior to the execution of any single GA run. The selection of
parent strings for the next generation is carried out using a rank-based scheme
(D. Whitley, Abstr. Proc. Third Int. Conf. Genet. Algorithms, p. 434–439, 1989).
No two identical candidates were allowed in a given set of strings. A total of 50
independent GA runs was performed for each treatment combination. For a
given GA run the optimization process was terminated when the top 10% of the
stings in a given set were identical for over more than 20 generations.

Spectrum characterization was used to reduce the dimensionality of the GA
search space by focusing on key spectral features as follows. Salient features (i.e.,
subsets of important variables) were found by initially locating local maxima,
minima, and points of inflection along a spectrum representative of the total data
set [in this case, the mean spectrum of f(v), the total data set, was used], and then
points of maximum gradient either side of these stationary points were identified
to fully define the shape of the representative spectrum [i.e., points on f(v) where
df
dv

� 0 and
d2f
dv2 � 0 ]. The preprocessing step reduced the dimensionality of the

data from 882 variables per sample to 61.

RESULTS AND DISCUSSION

Experiment 1: a comparison between the ensiling charac-
teristics of grass and red clover in microsilos. The feasibility of
applying the model microsilo system followed by FT-IR spec-
troscopy for high-throughput screening of silage fermentations
was first investigated through a comparison of grass and red
clover herbage juices with and without the addition of the
bacterial inoculant Lactobacillus plantarum (isolate Lp02) (de-
scribed in Table 2) after incubation for 6 days at 25°C. Two-
phase PC-DF analysis of the FT-IR spectral data enabled clear
discrimination between the results seen with grass and red
clovers with and without the addition of the inoculant (H. E.
Johnson, D. Broadhurst, G. W. Griffith, D. B. Kell, M. K.
Theodorou, and R. J. Merry, Abstr. Proc. XIIIth Int. Silage
Conf., p. 378–380, 2002) (Fig. 1). The ability of PC-DF analysis
to identify herbage type and the presence of an inoculant
shows that the FT-IR spectral fingerprints contained important
biochemical data characteristic of each type of fermentation.

Experiment 2: monitoring fermentation dynamics and dis-
crimination between different inoculants in microsilos. In this
experiment, four different treatments were investigated,
namely, red clover juice alone and inoculated with Lactococcus
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lactis, L. plantarum isolate Lp01, or L. plantarum isolate Lp02
(Table 2). A total of 30 replicate fermentations were prepared
for each of the four treatments, giving a total of 120 samples.
This enabled destructive sampling at eight time points, with
three biological replicates for each treatment at each time. The
time points selected were 12, 14, 16, 18, 20, 22, 24, 48, 72, and
96 h after inoculation.

The separate addition of the three different bacterial inocu-
lants to clover juice in microsilos caused a more rapid decrease
in pH over a 96-h period compared to the results seen with an
uninoculated control (Fig. 2). In terms of pH decline, the effect
of inoculation with L. plantarum isolate Lp02 relative to that
seen with the other inoculant treatments was most apparent
after 12 to 18 h of fermentation, when the initial rate of pH
decline, which is critical to the maximization of silage quality
(47), was faster. L. plantarum isolate Lp01 also produced a
lower pH relative to the results seen with the uninoculated
control; however, this difference was not observed until 18 to
24 h of fermentation. Samples inoculated with either L. plan-
tarum isolate consistently had a lower pH relative to the results
seen with the other treatments. The addition of an L. lactis
inoculant appeared to have little effect on the pH of the fer-
mentation compared to the results seen with an uninoculated
control. These data clearly illustrate the various effects of dif-
ferent bacterial inoculants on the fermentation of red clover
juice.

A biochemical fingerprint was obtained using FT-IR spec-
troscopy for samples at each time point. The aim was to use a
combination of the cluster analysis techniques (PCA and

DFA) to study the effect of different inoculants on the fermen-
tation dynamics of red clover juice. PCA was first applied to
reduce the dimensionality of the data set. The DFA model was
then formed using a selected number of PCs, the number of
which was optimized by cross-validation as described in Mate-
rials and Methods. The figures presented here all show the
resultant PC-DFA models, with the optimized number of PCs
used indicated in the legends.

FIG. 1. Discrimination between grass and red clover herbage juices fermented for 6 days in the microsilo system with and without an L.
plantarum inoculant (isolate Lp02). A cross-validated DFA plot (using 12 PCs accounting for 99.75% of the total variance within the data set) is
shown. Both the training data (Œ) and the test data (�) are represented. A clear discrimination can be seen between the four treatments (grass
and red clover with and without an inoculant). This spectral heterogeneity was not reflected in the pH values measured. The circles around the
data points are to improve clarity and are not of any mathematical significance.

FIG. 2. Fermentation of red clover juice in the microsilo system, as
indicated by pH measurement with respect to four different treat-
ments: herbage juice only (control) (F), L. lactis (ƒ), L. plantarum
isolate Lp01 (■ ), and L. plantarum isolate Lp02 �). The data shown
represent mean values and standard deviations of experiments (n � 3).

1586 JOHNSON ET AL. APPL. ENVIRON. MICROBIOL.



This two-phase PC-DF analysis was performed individually
for each treatment over the 96-h incubation period. The aim
was to study the discrimination between samples over time and
to enable comparisons to be made between the fermentation
dynamics results for each treatment. For all the treatments the

results seen with the replicate samples in the DFA model
grouped together, with discrete clusters corresponding to dif-
ferent time intervals during the incubation being observed;
however, the time intervals to which these clusters corre-
sponded differed between treatments. This is illustrated in Fig.

FIG. 3. The dynamics of fermentation of red clover juice fermented at 25°C over a 96-h period without (control) (a) and with (b) an L.
plantarum Lp02 inoculant; samples were taken for analysis at 12, 14, 16, 18, 20, 22, 24, 48, 72, and 96 h after inoculation. Two cross-validated DFA
models (each using 20 PCs) accounted for 99.99% of the total variance within the data set and used a priori knowledge of class structure. Numbers
on the plot indicate fermentation times in hours. Solid triangles (Œ) represent training data; open squares (�) represent test data. The circles
around the data points are to improve clarity and are not of any mathematical significance.
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3a and 3b, which show the DFA models for the control and
Lp02 fermentations, respectively. These plots were selected as
they show very distinct fermentation patterns. The DFA model
for the Lp01 fermentation was very similar to that observed
with Lp02 (Fig. 3b), and treatment with L. lactis produced
fermentation dynamics comparable to that of the control.

In Fig. 3a there are three closely associated groups shown,
corresponding to samples taken at 12 to 18 h, 20 h, and 22 to
24 h of incubation. A similar trend of three discrete clusters
was observed with the addition of the L. plantarum Lp02 in-

oculant (Fig. 3b). Although clustering was tighter in the control
treatment, in both data sets there were no discrete clusters
over the first 12 to 18 h of incubation (Fig. 3). In contrast to the
control treatment (Fig. 3a), however, clusters in the inoculant
treatment showed greater separation at 20 h and 22 to 24 h of
incubation (Fig. 3b), indicating marked differences in the bio-
chemistry characteristics of the corresponding samples over
this time period. These marked differences are reflected in the
pH measurements taken at sampling; fermentations inoculated
with L. plantarum Lp02 showed the most rapid initial change
relative to the results seen with uninoculated control samples
(as depicted by the uppermost and lowermost curves in Fig. 2).
Further differences were observed as the fermentation pro-
gressed (Fig. 3). In the results seen with the control fermen-
tation (Fig. 3a) there is clear discrimination between samples
fermented for 48, 72, and 96 h. In contrast, the results for
Lp02-inoculated samples taken at these time points cluster
together and no such discrimination is observed (Fig. 3b).

The data presented in Fig. 3 are representative of the data
collected for all four treatments and show that it was possible
to discriminate between different time points within one treat-
ment. It was also possible to discriminate between the four
different treatments at a specific time point (for example, after
96 h of incubation), as shown in Fig. 4. The different inoculant
treatments are separated by DF 1 (DF1) and the incubation
time on DF2. Figure 2 shows clear differences between the four
treatments with respect to pH over the first 24 h of incubation.
Beyond this time point, the pH values differed by only 0.3 pH

FIG. 4. Discrimination (with respect to inoculants and time points) between the results seen with four fermentations of red clover juice. The
results of cross-validated DFA using 15 PCs accounting for 99.97% total variance and a priori knowledge of the sample class structure, for which
A (control), B (L. plantarum Lp01), C (L. lactis), and D (L. plantarum Lp02) represent the results seen after fermentation for 48 h (A1, B1, C1,
and D1), 72 h (A2, B2, C2, and D2), and 96 h (A3, B3, C3, and D3); circles and lightface characters indicate training data, and stars and boldface
characters indicate test data. The points shown represent the mean DFA scores calculated from three machine replicates taken for each sample.

FIG. 5. The fermentation of red clover juice over 48 h of incuba-
tion measured by pH with respect to five different treatments: herbage
juice only (F), Lactobacillus mali 10560 (Œ), L. delbrueckii subsp. lactis
8140 (■ ), L. brevis 947 (�), and L. amylovorus 13276 (‚). At h 0, the
red clover juice had a pH value of 5.6. Data shown are mean and
standard deviation values for the experiments performed (n � 3).
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units but (despite this small difference) clear discrimination
between the treatment results can be seen (Fig. 4).

Experiment 3: discrimination of homo- and heterofermen-
tative LAB inoculants. All plant material contains epiphytic
LAB populations with a predominance of heterofermentative
species and hence undergoes mixed-acid fermentation under
ensilage conditions (7). In comparison to homofermentative
species (and due to the pK of lactic acid), heterolactic species
are less effective at reducing pH in the silo; hence, the quality
of the resultant silage is very much dependent on the initial
bacterial population (18; Woolford, Abstr. Proc. Alltech. 14th
Annu. Symp., p. 181–200, 1998). In the previous experiments
homolactic-fermenting LAB were used (producing two lactic
acid molecules from one molecule of glucose, with a net gain
of 2 ATP) (25). Here we wanted to investigate whether FT-IR
could be used to identify heterolactic bacterial fermentation in
a range of homolactic species. Heterofermentative LAB pro-
duce lactic acid, ethanol, and CO2 (rather than lactic acid
alone) as well as smaller amounts of acetic acid, formic acid,
and glycerol, during fermentation.

This final experiment, comparing four different LAB strains
(three homofermentative strains and one heterofermentative
strain [Lactobacillus brevis 947]), as detailed in Table 2, fol-
lowed the same methodology as used previously. Although
some of these LAB strains are not typically used as silage
inoculants, all strains have been identified in lactic-acidic-type
fermentations (Table 2) (http://www.ukncc.co.uk/). At inocu-
lation, the pH of the diluted red clover juice was 5.6; addition
of 10 �l of inoculant to 990 �l of juice had no marked effect on

this starting pH. The microsilos were incubated and sampled in
triplicate at 16, 20, 24, and 48 h after incubation. The hetero-
fermentative L. brevis strain rapidly decreased the pH over the
first 16 h to a value of (on average) 4.7 compared to 5.6 for the
control. A similar pH decline was shown after inoculation with
Lactobacillus mali, with a mean pH value of 4.9 after 16 h (Fig.
5). After 24 h of incubation, cultures inoculated with L. brevis
and L. mali both had a pH value of 4.3 compared to 4.9 in
microsilos inoculated with Lactobacillus amylovorus, Lactoba-
cillus delbrueckii, and the control. Over the next 24 h, however,
the pH of all treatments (with the exception of that of L. brevis,
which reached a plateau at 24 h) decreased steadily, reaching
a range of pH 4.2 to 3.9 at 48 h.

The DFA model (Fig. 6) shows the clear discrimination
between the two types of fermentation over time. It can be
seen that L. brevis clusters in a different area of the DFA model
than the three homofermentative inoculants and the control.
After 48 h the pH values measured for all treatments were very
similar, ranging from 4.3 (L. brevis and the control) to 3.9 (L.
mali). However, despite these similarities there is still clear
discrimination between the two types of fermentation. These
results (although determined with only a few LAB inoculants)
highlight the potential of using FT-IR for the rapid identifica-
tion and detection of different fermentation types.

Application of GA to identify potentially discriminatory re-
gions in the FT-IR spectra. GA are members of a class of
optimization methods which permit the identification of po-
tentially key regions for discrimination between different treat-
ment pairs (4). Here we have applied the technique to try to

FIG. 6. Cross-validated DFA model showing the fermentation of red clover over a 48-h period in response to different LAB inoculants. The
DFA used 25 PCs, which accounted for 99.98% of the total variance within the data set, and knowledge of class structure, where A (control), B
(L. mali), C (L. delbrueckii), D (L. brevis), and E (L. amylovorus) represent the results seen after incubation for 0 h (A0, B0, C0, D0, and E0), 16 h
(A1, B1, C1, D1, and E1), 20 h (A2, B2, C2, D2, and E2), 24 h (A3, B3, C3, D3, and E3), and 48 h (A4, B4, C4, D4, and E4); circles and lightface
characters indicate training data, and stars and boldface characters indicate test data. The points shown are the mean DFA scores calculated from
three machine replicates taken for each sample.
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FIG. 7. Identification (using GA) of discriminatory regions in the FT-IR spectra for discrimination between treatments after 96 h of microsilo
fermentation. All pairwise treatment combinations were analyzed; with four treatments, this resulted in six possible combinations. Due to the
stochastic nature of GA, each analysis consisted of 50 independent runs of identically set-up D-MLR GA. Successful discrimination for a given
variable subset was defined as being achieved when both the RMSEPTRAIN percentage and the RMSEPTEST percentage were less than 20% for
the D-MLR model in question. The optimal model from each of the 50 GA runs was recorded. Then the numbers of times each variable (spectral
feature) was used in each of these models were summed. These data were plotted in the form of a frequency stem plot overlaid on a plot of the
total FT-IR input data set. The results of the six pairwise GA results are shown in panels a to f: (a) control and L. plantarum Lp01; (b) control
and L. lactis; (c) control and L. plantarum Lp02; (d) L. plantarum Lp01 and L. lactis; (e) L. plantarum Lp01 and L. plantarum Lp02; (f) L. lactis
and L. plantarum Lp02.

1590



identify the key spectral regions for discrimination between all
treatment combinations (four treatments [A, B, C, and D]; six
possible pair combinations) at 96 h, as described for experi-
ment 2. Successful discrimination for a given variable subset
was defined as being achieved when both the RMSEPTRAIN

percentage and the RMSEPTEST percentage were less than
20% for the D-MLR model in question.

Due to the stochastic nature of GA, each analysis consisted
of 50 independent runs of identically set-up D-MLR GA. The
optimal model from each of the 50 GA runs was recorded.
Then the numbers of times each variable (spectral feature) was
used in each of these models were summed. These data were
plotted in the form of a frequency stem plot overlaid on a plot
of the total FT-IR input data set. The results obtained for each
pairwise experiment are shown in Fig. 7. The GA was able to
discriminate all treatments by treatment type for both the
training and the test data with 100% accuracy. The results
obtained are shown in Fig. 7.

In all models a maximum of five and a minimum of two
variables out of 61 possible spectral features were needed to
discriminate between treatment pairs. Figure 7a shows that
only two wavenumbers (at 1,706 and 1,500 cm�1) were consis-
tently chosen to discriminate between the control and Lp01
samples. These regions correspond to the amide I region, a
strong C � O stretch at 1,706 cm�1 (identified using IR mentor
software; Bio-Rad Laboratories), and to the amide II region
(around 1,550 cm�1) (11). Variables within the amide I region,
which ranges from 1,740 to 1,670 cm�1, were also selected for
the discrimination between control and isolate Lp02 (Fig. 7c),
isolate Lp01 and L. lactis (Fig. 7d), and isolate Lp02 and L.
lactis (Fig. 7f). Figure 7c, 7d, and 7f show that at least one
variable within the amide I region was used by the GA in 49,
48, and 50 out of 50 GA runs, respectively.

In contrast to these results, the GA consistently chose a
different region at 2,950 to 2,965 cm�1 to discriminate the
fermentations produced with the two L. plantarum strains (Fig.
7e). This region is termed the fatty acid region, corresponding
to strong C-H vibrations. Although classification between the
other pairs of treatment combinations was 100% accurate,
many different combinations of variables were used (with a
maximum of 5 in any model and 50 models produced in total).
Figure 7b is distinct again in that the amide I and amide II
regions were not selected by the GA for the classification
fermentations with the control and with L. lactis; instead, vari-
ables were selected in the low-frequency region ranging from
974 to 931 cm�1 (on the edge of an region attributed to vibra-
tions corresponding to polysaccharides). The GA did not select
the same region to discriminate between all the additive com-
binations, indicating differences between samples with respect
to their biochemical fingerprints. Initial investigations indi-
cated that amide I and amide II were the regions of the FT-IR
spectra most frequently selected for discrimination between
treatments, potentially reflecting changes in proteins and free
amino acids occurring in the fermentations (8). During ensil-
ing, extensive proteolysis occurs; the rapid decrease in pH
during the first few days of fermentation through the addition
of homofermentative LAB inhibits the protease activity, thus
reducing proteolysis (19, 25). The application of both L. plan-
tarum strains resulted in a marked decrease in pH during the
first 24 h of the fermentation compared to the results seen with

the control and L. lactis (Fig. 2). When the GA was used to
discriminate either of the L. plantarum fermentations from the
results seen with control or L. lactis treatments, the amide
region of the FT-IR spectra was consistently selected. Studies
by Heron et al. (19) and Davies et al. (8) both investigated the
effect of application of a L. plantarum-containing inoculant on
the degree of proteolysis in ryegrass silage. The data from
these independent experiments led to the conclusion that the
addition of such an inoculant, which rapidly reduced the pH of
the fermentation through the efficient production of lactic acid,
reduced the extent of proteolysis. These results confirmed the
contention by Muck (29) that a combination of good silo prep-
aration and rapid pH decrease reduces proteolysis. From this
data, therefore, we can hypothesize that the GA-selected vari-
ables are related to the degree of proteolysis occurring during
ensilage, a factor known to play a role in determining the
nutritional value of silage to ruminants (28).

The data presented above demonstrate the potential of us-
ing a combination of microsilos and FT-IR spectroscopy for
the high-throughput screening of different LAB isolates as
potential silage inoculants. They also provide a means of mod-
eling fermentation dynamics and of detecting inoculant and
fermentation types. Here we used simple clustering techniques
and GA to deconvolve the multivariate spectral data, which
enabled clear discriminations between the effects of treatments
and time and allowed us to postulate the biochemical basis for
the effects. This is an inductive experimental approach in which
hypotheses are derived as the output rather than constituting
the input, providing a direction for future research (23, 24).
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