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Diploid cells of Saccharomyces cerevisiae were grown under controlled conditions with a Bioscreen instru-
ment, which permitted the essentially continuous registration of their growth via optical density measure-
ments. Some cultures were exposed to concentrations of a number of antifungal substances with different
targets or modes of action (sterol biosynthesis, respiratory chain, amino acid synthesis, and the uncoupler).
Culture supernatants were taken and analyzed for their “metabolic footprints” by using direct-injection mass
spectrometry. Discriminant function analysis and hierarchical cluster analysis allowed these antifungal com-
pounds to be distinguished and classified according to their modes of action. Genetic programming, a
rule-evolving machine learning strategy, allowed respiratory inhibitors to be discriminated from others by
using just two masses. Metabolic footprinting thus represents a rapid, convenient, and information-rich
method for classifying the modes of action of antifungal substances.

For scientific reasons and because of the needs of the phar-
maceutical and agrochemical industries, there is much current
interest in detecting the site or mode of interaction between an
exogenous ligand and a cell or organism, especially in identi-
fying new ones (6, 44, 45). Such studies are nowadays typically
carried out by using high-throughput methods, but there is
often an inverse relation between the speed of an assay (in-
volving, e.g., a cloned receptor with a fluorescence readout)
and the amount of information it contains (which in this case
is restricted to the target of interest). However, array-based
methods are showing promise in this regard (3, 20, 34, 37, 46).
Genome-wide screens can also provide such information (9,
10, 19) but require numerous strains or cell lines to be studied
in parallel. Methods with high information content would com-
bine the virtues of screening just a small number of strains with
a high-dimensional readout similar to that provided by the
array-based methods.

Metabolic control analysis (see, e.g., references 7, 15, 16, 21,
and 29) tells us that while changes in the activity of a target
enzyme tend to have only small effects on the flux through
metabolic pathways, they can and do have substantial effects on
the concentrations of metabolic intermediates. Since the use of
metabolomics, especially in the form of “metabolic fingerprint-
ing,” has a much higher throughput and is much cheaper than
are, say, transcriptomics and proteomics (8, 14, 26, 42), it
makes an attractive candidate for mode-of-action studies (18)
and has been used to advantage by Ott and colleagues (2, 38),
where the metabolic fingerprints of cells or tissues exposed to
specific substances with known targets were analyzed for their
modes of binding or action by using pattern recognition tech-
niques.

Normally, metabolomics measures (or seeks to measure) the
concentrations of all the small molecules within a cell or tissue;
and for purposes of functional genomics, we and others have
exploited such strategies in the analysis of gene deletion mu-
tants in Saccharomyces cerevisiae (5, 41). However, because of
the need to separate cells from medium and to extract the
metabolome of the former separately, these methods are not as
convenient as one would wish. In consequence, we have re-
cently shown that the analysis of the metabolic footprint, the
cocktail of metabolites left behind or secreted into the me-
dium, differs reproducibly in single-gene mutants and can be
measured rapidly and conveniently via direct-injection mass
spectrometry (1) or Fourier transform infrared spectroscopy
(22).

The question of whether metabolic footprinting of strains
treated with different pharmaceuticals might also be used in
discriminating the modes of action of different substances then
arises. The purpose of the present study was to explore this
question, and we show here, using metabolic footprinting and
both unsupervised and supervised methods of machine learn-
ing analysis, that we can indeed classify a number of fungicides
according to their modes of action.

MATERIALS AND METHODS

Fungicide screening. (i) Yeast strain. The BY4743 diploid strain (MATa/
MAT� ura3�0/ura3�0 leu2�0/leu2�0 his3�1/his3�1 �/lys2�0 met15�0/�) was
used throughout.

(ii) Screening methodology. A library of agrochemical fungicides supplied by
Aventis CropScience was screened for activity against yeast in a Bioscreen
microtiter plate (Honeycomb II plates; Labsystems) format. Stocks (25 mg ml�1)
of each compound were prepared in dimethyl sulfoxide (DMSO). From these
stocks, three additional stocks (2.5 mg ml�1, 250 �g ml�1, and 25 �g ml�1) were
prepared by serial dilution, such that each compound could be screened at log
concentrations so that a broad picture of its inhibition behavior could be ob-
tained. Stocks were aliquoted into glass vials and stored at �40°C.

From a washed starter culture, a stock of 5 � 105 cells ml�1 was prepared, and
550 �l was aliquoted into a series of 1.5-ml sterile microcentrifuge tubes. A total
of 5.5 �l of fungicide at each concentration to be tested (250, 25, 2.5, and 0.25 �g
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ml�1) was then added to the appropriate microcentrifuge tube and vortexed to
ensure good mixing. DMSO control tubes (5.5 �l of DMSO added to 550 �l of
cell suspension) were also set up. From each microtube, 100 �l was pipetted into
each of five adjacent Honeycomb plate wells to produce a set of five replicate
wells per treatment. Plates were then placed in the Bioscreen, where they were
incubated at 30°C and shaken at medium intensity. Optical density (OD) at 600
nm was measured every 20 min for the duration of the screen (typically, 24 to
36 h).

The percent inhibition for each compound was calculated as the difference in
the OD of treated cultures between 0 and 17 h expressed as a percentage of the
change in the OD of the DMSO controls over the same time span.

(iii) Metabolic footprinting of fungicide-treated cultures. All footprinting of
fungicide-treated cultures was performed in (Bioscreen) microtiter plate format.
For all footprinting studies of fungicide-treated cultures, each compound (which

had been demonstrated to have reasonable activity against yeast following
screening) was added at four different concentrations which had been found to
inhibit yeast growth over the approximate range of 20 to 80% (compared with
DMSO controls). The aim was to obtain an approximate fixed percentage of
growth inhibition such that any changes in the footprint could be ascribed to the
mode of action of the inhibitor and not, say, changes in growth rate.

Footprints were typically collected at 24 h (and no later than 28 h) at a point
at which the majority of cultures appeared to have entered stationary phase (1).
Plates were then removed from the Bioscreen and 90 �l was removed from each
well, placed in a sterile 0.5-ml microcentrifuge tube, and spun for 5 min. Ap-
proximately 80 �l of the resulting supernatant was then removed and stored at
�40°C in polystyrene microtiter plate (Nalgene) format until mass spectrometric
analysis. Samples were diluted for mass spectrometry and analyzed exactly as
described previously for deletion mutant footprints (1).

(iv) Mass spectrometry. Direct-injection mass spectrometry was performed
exactly as described previously (1).

(iv) Numerical methods. Principal-components (PC) analysis (PCA), discrimi-
nant function (DF) analysis (DFA), and hierarchical cluster analysis (HCA) were
carried out by using programs written in MATLAB (Mathworks, Cambridge,
United Kingdom) exactly as described previously (1). Genetic programming was

FIG. 1. Growth curves (each an average of results from five replicate plate wells) from Bioscreen microtiter plate wild-type diploid cultures
treated with 10 different (respiratory and nonrespiratory) fungicides at four different concentrations, plus DMSO control. (Concentrations are
given in the graph key as parts per million.)

TABLE 1. Concentrations of nonrespiratory inhibitors used in
metabolic footprinting comparisons of fungicide-treated

wild-type yeast

Compound type and fungicide(s)

Concn (ppm) used for footprinting for
compound no.

1 2 3 4

Ergosterol biosynthesis inhibitors
Epoxiconazole 0.025 0.0175 0.0125 0.00625
Fluquinconazole 1.25 0.625 0.4 0.3125
Triadimenol 2.5 0.625 0.3125 0.25
Fenpropimorph 25 12.5 6.25 2.5

Uncoupler of oxidative
phosphorylation

Fluazinam 12.5 6.25 2.5 1.25

Amino acid biosynthesis inhibitor
Chlorimuron ethyl 125 62.5 25 12.5

TABLE 2. Concentrations of respiratory inhibitors used in
metabolic footprinting comparisons of fungicide-treated

wild-type yeast

Fungicide

Concn (ppm) used for
footprinting for compound no.:

1 2

Azoxystrobin 2.5 0.25
Carboxin 25 2.5
Kresoxim methyl 2.5 0.25
AEC605025 2.5 0.25
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FIG. 2. Inhibition profiles (when screened against wild-type diploid BY4743, on glucose-containing footprinting medium) induced by the (a)
nonrespiratory and (b) respiratory fungicides selected for the metabolic footprinting mode of action comparison when applied at the concentra-
tions given in Tables 1 (nonrespiratory inhibitors) and 2 (respiratory inhibitors). Growth inhibition was calculated as the difference in the OD of
cultures (an average of six replicates) between 0 and 24 h expressed as a percentage of the change in the OD of DMSO controls over the same
time span.
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performed with the program gmax-bio (Aber Genomic Computing [http://www
.abergc.com])

RESULTS AND DISCUSSION

A typical set of growth curves of the diploid strain in the
Bioscreen, at different concentrations of inhibitors, is given in
Fig. 1. It is clear that the Bioscreen provides an accurate and
convenient system for registering the growth of these cells and
its inhibition by the inhibitors. It also shows that, with the
possible exception of fenpropimorph, there is no regrowth in
the presence of the inhibitors, i.e., a phenotypic (or conceivably
genotypic) emergence of resistance in the cells after they have
been exposed to the inhibitors (as has been noticed, for exam-
ple, in bacterial experiments [40]).

The effect of the different concentration categories on the
inhibition profiles of the nonrespiratory inhibitors is given in
Fig. 2, and the equivalent concentrations are shown in Table 1.
The two concentrations of respiratory inhibitors used are given
in Table 2.

Metabolic footprints were taken from these cells and sub-
jected to mass spectrometric analysis exactly as described pre-
viously (1).

Following PCA (data not shown), DFA was performed on

the data, a cross-validation analysis demonstrating that PCs
1 to 20 (99.9% of the variance) were sufficient to give rea-
sonable clustering according to compound class without
compromising the overlap of training and test data (Fig. 3).
HCA was additionally performed on the DFA scores (score,
1 to 3; averaged according to compound) in order that
grouping relationships might be better visualized (Fig. 4).
Clearly, the greatest separation is between respiratory and
nonrespiratory inhibitors, which form two separate branches
in the resulting dendrogram. Interestingly, within the respi-
ratory inhibitor branch, the complex III strobilurin-type in-
hibitors form their own subbranch, while the complex II
inhibitor carboxin groups with the DMSO control form a
separate subbranch. A particularly interesting feature is that
the classification works over a range of doses. This robust-
ness to the actual dose represents a significant benefit in
setting up experiments, since this could save a lot of time on
preliminary, dose-setting experiments. It is noticeable that
the DMSO control appears on the same branch with inhib-
itory compounds rather than, as one might possibly hope,
forming a separate branch on its own. However, even at a
concentration of 1% (128 mM), the level of DMSO is some-
what above that (50 mM) which was demonstrated by Panek

FIG. 3. DFA was performed (and simultaneously cross-validated [1]) for PC scores (1 to 20, 99.9% of the variance) obtained from an analysis
of footprints collected from wild-type diploid yeast cultures treated with 10 different inhibitors. DFA classes were assigned according to compound,
regardless of the concentration at which it was applied. Labels are as follows: AE, AEC605025; AZ, azoxystrobin; CE, chlorimuron ethyl; CX,
carboxin; E, epoxiconazole; F, fenpropimorph; FQ, fluquinconazole; T, triadimenol; Z, fluazinam. Concentrations 1 to 4 for each nonrespiratory
inhibitor are given in Table 1. Concentrations 1 and 2 for each respiratory inhibitor are given in Table 2.
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FIG. 4. The DFA scores (1 to 3) from the analysis illustrated in Fig. 3 were averaged according to compound (i.e., scores for the members of
each class were averaged) and subjected to HCA. A separation of the respiratory and nonrespiratory inhibitors was observed in the resulting
dendrogram. Fluazinam (marked with an asterisk) is cited as an uncoupler of oxidative phosphorylation (17), and although it might conceivably
be regarded as a respiratory inhibitor, it is not, of course, a respiratory chain inhibitor, and the level of inhibition it induces in cells growing on
a fermentable carbon source is too great to arise from the inhibition of respiration-coupled processes alone; and therefore, this compound must
inhibit other reactions within the cell, most likely on some proton-coupled uptake process necessary for fermentative growth.
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et al. (39) to affect various cellular processes, and so it
cannot be considered entirely benign.

In a similar vein, we trained a genetic program (4, 12, 23, 24,
30–33, 35, 36) to evolve rules that would discriminate respira-
tory from nonrespiratory inhibitors. DMSO samples were re-
moved, as their status would of course be known. To guard
against overtraining, the data were split into three partitions, in
accordance with accepted modelling practice (e.g., see refer-
ence 43). The genetic programming was trained on the first
partition, terminating evolution after 20 generations. This cy-
cle was repeated 10 times. Each of the resulting 10 rules gave
perfect classification on the training partition. Each rule was
then applied to the second partition in order to test its gener-
alization capability, and of the 10 rules, 6 also gave perfect
classification on this partition. These six rules were then ap-
plied to the third partition (which had not been used in any way
in forming or selecting the rules), and in each case a perfect
classification was obtained. In partitioning the data, replicates
of individual inhibitors had been retained within single parti-
tions, and thus, the third partition contained only samples
treated with inhibitors that were not represented in either of

the first two partitions but whose modes of action were never-
theless correctly classified.

Each of the six successful rules used a combination of just
three m/z ratios to discriminate the classes. All but one of the
six rules contained an m/z ratio of 144, but no other m/z ratio
appeared more than once. Plotting m/z 144 in turn against each
of the other variables used by the rules revealed three cases
(m/z 141, 179, and 189) where clusters visually separable with
straight lines were obtained (see the example of m/z 144 versus
141 in Fig. 5). Thus, as in previously described related strate-
gies (1, 11, 13, 23, 25, 27), it seems that these classifications can
be performed effectively by using only a very small number of
the variables from these high-dimensional data sets, and there
are also likely to be other combinations of peaks in these
spectra that are equally able to discriminate classes. It is pos-
sible that a chemical interpretation of these peaks may lead to
the identification of useful markers for understanding the bio-
chemical basis of these discriminations.

Within the nonrespiratory branch, it was pleasing to observe
that the sterol biosynthesis inhibitors formed one branch (al-
beit the morpholine fenpropimorph forms a subbranch with

FIG. 5. Discrimination of respiratory and nonrespiratory inhibitors by using genetic programming to select discriminatory variables. Data were
acquired as described above in the legends to Fig. 3 and 4 for all samples except fluazinam, and a genetic program was trained by using gmax-bio
to evolve rules that can discriminate respiratory (symbols inside the top left dotted box) from nonrespiratory (symbols outside of the dotted box)
modes of action. Variable (m/z) 144 was a member of all but one of the selected rules. In this example, its values are plotted against those of one
of several other variables (m/z 141) that were used by the rules, here resulting in linearly separable clusters (shown as dotted lines). Triangles,
training set; closed circles, test set for validation purposes; open circles, independent test set.
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the azole epoxiconazole) while the amino acid biosynthesis
inhibitor and uncoupler form another. The separation of the
respiratory inhibitors from the remaining compounds is
scarcely surprising given that the former inhibitors give rise to
only limited or no inhibition of growth rate. Consequently, in
order to determine whether similar grouping relationships
might be observed between the remaining (nonrespiratory)
compounds in the absence of variance contributed by the re-
spiratory inhibitors, data for these latter compounds were re-
moved from the data set, and the remaining compounds were

then resubjected to PCA, DFA (PC scores of 1 to 20, employ-
ing the same compound-based class system), and HCA (DFs 1
to 3, averaged according to compound). The resulting dendro-
gram (Fig. 6) illustrates that the grouping relationships ob-
served in Fig. 4 are preserved among these nonrespiratory
inhibitors, in that the sterols form a group away from the rest
of the inhibitors and the uncoupler is separated from the ace-
tolactate synthase inhibitor.

The attractions of the metabolic footprinting approach are
its rapidity, ease of implementation, and reproducibility, while

FIG. 6. Data for the respiratory inhibitors were removed from the data set employed in the analyses illustrated in Fig. 3 and 4, and PCA and
DFA were performed on the data for the remaining (nonrespiratory) inhibitors. Again, DFA classes were assigned according to compound,
regardless of their concentration of application. DFA scores (1 to 3, averaged according to compound) were then subjected to HCA, and a
dendrogram was produced.
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as a pattern recognition strategy (8, 14), it is not designed
(immediately) to determine the molecules that are most im-
portant to or responsible for any particular discrimination.
However, the simplicity of some of the rules determined by the
genetic programming approach means that, in many cases, just
a few rules are sufficient (e.g., as shown in Fig. 5). This result
means that if a tandem mass spectrometer is available, only
those masses need to be studied to achieve identification (and
these could then be confirmed by other methods such as gas
chromatography-mass spectrometry or nuclear magnetic reso-
nance. Such an iterative strategy is entirely appropriate for
postgenomic studies (28).

In conclusion, the present work has shown, complementarily
to previous studies in which gene knockouts were used (1), that
the metabolic footprints of wild-type strains treated with in-
hibitors with different modes of action contain sufficient infor-
mation to allow such modes of action to be discriminated from
the metabolic footprints alone.
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