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With biomedical literature increasing at a rate of several
thousand papers per week, it is impossible to keep
abreast of all developments; therefore, automated
means to manage the information overload are required.
Text mining techniques, which involve the processes of
information retrieval, information extraction and data
mining, provide a means of solving this. By adding
meaning to text, these techniques produce a more struc-
tured analysis of textual knowledge than simple word
searches, and can provide powerful tools for the produc-
tion and analysis of systems biology models.

Introduction
With an overwhelming amount of biomedical knowledge
recorded in texts, it is not surprising that there is so much
interest in techniques that can identify, extract, manage,
integrate and exploit this knowledge; moreover, discover
new, hidden or unsuspected information. It is noteworthy
to compare the number of MEDLINE1 searches in March
2006 (82.027 million) with the number in January 1997
(0.163 million) (Figure 1). MEDLINE1 contains �15 mil-
lion references to journal articles in the life sciences, and
its size is increasing at a rate of more than 10% each year.
With the popularity of open access journal publishing, such
as BioMed Central (http://www.biomedcentral.com/), full
text articles are becoming more available. The availability
of huge textual resources provides the scientist with the
chance to search for correlations or associations such as
protein–protein interactions [1,2] and gene–disease asso-
ciations [3–6]; however, the traditional information retrie-
val framework, which relies on keyword-based approaches,
cannot address this information overload. For this reason,
scientists have focussed their attention on text mining
(TM) techniques, which enable them to collect, maintain,
interpret, curate and discover the knowledge needed for
research or education efficiently and systematically.

Consequently, in the past five years there has been an
upsurge of research papers and overviews [7–12] on the
topic of TM from biomedical literature – the primary goal of
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TM [13] is to retrieve knowledge that is hidden in text and
to present the distilled knowledge to users in a concise
form. TM can discover associations, patterns and clusters
of related texts; however, even such abstractions from the
raw data provide users with a bewildering number of
possible associations. One important potential area for
the application of TM is systems biology. In most analyses,
systems biology involves the iterative interplay between
computational modelling, high-throughput and high-
content experimentation, and technology development
[14]. Being a highly interdisciplinary subject, it involves
collating knowledge from wide areas of biology and the
exact sciences, and is a particularly favourable domain for
the exploitation of TM technology. The main purpose of
this review is to outline the basic techniques of TM and to
set down some areas of their application tomodern systems
biology.
Hypothesis generation using TM
Systems biology is one of the key examples of a field where
the mode of scientific knowledge discovery is shifting from
a hypothesis-driven mindset to an integrated holistic
mode that combines hypotheses with data [14,15]. Data
in systems biology can be found in heterogeneous forms,
including structured data from databases, experimental
data and unstructured data from texts. The amount of
unstructured textual data is increasing at such a pace it is
difficult to discover knowledge and generate scientific
hypotheses without the use of knowledge extraction tech-
niques, which are largely based on TM. In the data-rich
but hypothesis-poor sciences [16], including functional
genomics and most of biomedicine, the normative hypoth-
esis-driven, deductive scientific method becomes increas-
ingly difficult to sustain because it is unable to deliver
advances in knowledge quickly enough [17]. As a comple-
ment to hypothesis-driven deductive science, we are now
witnessing the emergence of data-driven inductive meth-
ods of scientific discovery. These are characterized by the
rapid ‘mining’ of candidate hypotheses from the litera-
ture, which are then subsequently tested or validated
against available experimental data. The notion of
d. doi:10.1016/j.tibtech.2006.10.002
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Glossary

Annotation: a layer of representation attached to text. For example, linguistic

annotations reveal the linguistic structure in text; thus, the sentence ‘secretion

of TNF was abolished by BHA’ can be encoded as NN (noun: secretion), IN

(preposition: of), NN (noun: TNF). Syntactic tree annotations show the

syntactic structure of the phrase ‘secretion of TNF’ is a NP (noun phrase)

composed of a NP (noun phrase) realized into secretion (NN) and a PP

(prepositional phrase) containing a preposition, of, (IN) and a NP TNF (NN).

Semantic annotations reveal terms and named entities in the text, for example,

genes and proteins.

Deep parsing: provides relationships not explicitly stated among words in a

sentence. For example, in the sentence ‘p53 is shown to activate transcription’,

deep parsing encodes this information as ‘p53’ is a subject of the predicate ‘to

activate’ and ‘transcription’ is an object.

Homonyms: words having the same form but different meaning, for example,

gene names can be the same as general language words, such as amid, can or

for.

F-measure: the harmonic mean of the precision (or sensitivity) and recall (or

specificity) values, that is, F = (2.specificity.sensitivity/specificity + sensitivity).

Full parsing: finds deep syntactic relations from the whole of a sentence, for

example, a relation between a passive verb and its semantic object. We

demonstrated that the human AMID gene promoter was activated by p53,

where p53 is the subject of the sentence, and human AMID gene promoter is

the object.

Parsing: (syntactic parsing) involves assigning a syntactic structure to a

sentence using grammar and a dictionary.

Precision: measures the proportion of the entities and/or relations that the

system has returned correctly: it measures the accuracy of the system.

Predicate argument structure: a normalized form representing syntactic

relations, as in the example ‘ENTITY1/NN ACTIVATE/VB ENTITY2/NN’. In this

sentence, activate is the predicate, which contains the main meaning of the

predicate argument structure, and ENTITY1 and ENTITY2 are its arguments,

carrying information about the participants described by a predicate.

Ontologies: conceptual models that aim to support consistent and

unambiguous knowledge sharing and provide a framework for knowledge

integration.

Recall: measures the proportion of correct entities and/or relations the system

has returned: it measures the ‘coverage’ of the system.

Sensitivity: the conditional probability that the case is correctly classified

{=true positives/[true positives + false negatives]}.

Specificity: the conditional probability that non-cases are correctly classified

{=true negatives/[true negatives + false positives]}

Term: the linguistic realisation of a specialized concept in a given domain.

Unlike words, the main purpose of terms is the classification of specialized

knowledge.

Training data (training corpus): used for statistical and/or machine-learning

approaches in text mining. Training data have to be carefully constructed (they

should not be too general nor too specific) to avoid skewed results.

Token: the elementary, linguistically plausible unit (e.g. word, number,

punctuation symbol,). A text is segmented into tokens as an important and

necessary pre-processing step in natural language processing.

Box 1. Natural language processing and text mining

Natural language processing (NLP) is the activity of processing

natural language texts by computer to access their meaning. NLP

systems can analyze (parser) natural language using lexical

resources (dictionaries), where words have been organized into

groups after a grammar (syntactic level) and a semantic layer has

assigned meaning to these words or groups of words. Text mining

discovers and extracts knowledge from unstructured data, whereas

data mining discovers knowledge from structured data. In this view,

text mining comprises three major activities: information retrieval,

which gathers relevant texts; information extraction, which identi-

fies and extracts a range of specific types of information from texts

of interest; and data mining, which finds associations among the

pieces of information extracted from many different texts.

Figure 1. The growth of Medline access. Data are replotted from http://

www.nlm.nih.gov/bsd/medline_growth_508.html.
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conceptual biology [18] complementing empirical
evidence [19] is, to some extent, driven by the increasing
availability of large textual digital repositories but most
crucially by the TM tools that add value to them. Swanson
pioneered the research of knowledge discovery from texts
[20] by exploring the benefits of inferring associations in a
series of experiments using simple semi-automated
methods to aid human discovery (Arrowsmith; http://
arrowsmith.psych.uic.edu/arrowsmith_uic/index.html).
Titles from MEDLINE1 were used to make connections
between seemingly dissociated arguments: the connection
between migraine and magnesium deficiency [21],
which has been subsequently validated experimentally;
between indomethacin and Alzheimer’s disease [22]; and
between Curcuma longa and retinal diseases, Crohn’s
disease and disorders related to the spinal cord [23].
Weeber et al. [24] used similar techniques, based on bib-
liographic evidence, to suggest using thalidomide for treat-
ing a series of diseases such as acute pancreatitis and
chronic hepatitis C.
www.sciencedirect.com
Hypothesis generation in TM relies on the fact that
‘chance’ connections or associations between disconnected
entities or facts can emerge to be meaningful. Here, we
shall briefly describe the building blocks of the TM and
natural language processing techniques that enable us to
make associations for hypothesis generation (Box 1).

TM steps for knowledge discovery
The process of TM encompasses the following major steps:
information retrieval, information extraction and data
mining.

Information retrieval

Information retrieval (IR) [25] is the activity of finding
documents that answer an information needwith the aid of
indexes. Almost all computer usersmake habitual use of IR
systems (search engines) such as GoogleTM. The user,
however, is nevertheless faced with reading many docu-
ments to discover the facts reported in them. Apart from
general-purpose search engines, many IR tools have been
designed specifically to query the databases of biomedical
publications such as PubMed� [26–29]. Systems based on
IR techniques include:

� T
extpresso (http://www.textpresso.org/) [30] – uses a

custom ontology to query a collection of documents for
information on specific classes of biological concepts (e.g.
gene, allele or cell) and their relations (e.g. association
and/or regulation).

http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html
http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html
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� Q
ww
uery Chem [31] (http://www.QueryChem.com) –
combines chemical structure with text based IR using
chemical databases and Web API (Google) to retrieve
information and relations between compound struc-
tures and their properties.
� i
HOP [32] (http://www.ihop-net.org/UniPub/iHOP/) –
visualizes the interactions between genes.
� E
BIMed(http://www.ebi.ac.uk/Rebholz-srv/ebimed/
index.jsp) – also retrieves sentences based on detecting
co-occurrences between biological entities.
� G
oPubMed (http://www.gopubmed.org/) – a thesaurus-
driven, GO-based abstract-classification system.
� P
ubMatrix (http://pubmatrix.grc.nia.nih.gov/) – searches
PubMed comparing lists of terms (see Glossary),
for example, genes or proteins, given by the user with
a set of functionalities, and outputs several papers
associated with the list of terms and the functionalities
[27].
� P
ubFinder (http://www.glycosciences.de/tools/Pub
Finder) – leverages a small set of seed abstracts
provided by the user that are relevant to a specific
scientific topic. The result is a ‘hit-list’ of references
ranked according to likelihood.
Information Extraction

When the aim is to identify and tabulate the facts reported
in large numbers of documents in a literature source,
information extraction (IE) becomes a more relevant tech-
nology. The goal is to extract information from text without
requiring the end user of the information to read the text.
Having used a search engine, the user must read each
document to know the facts reported in it. IE can be used to
support a fact-retrieval service or as a step towards text
mining based on conceptually annotated text.

Data mining

Data mining (DM) is used to discover unsuspected associa-
tions between known facts extracted by IE – this step
encapsulates the integration of text mining with data
mining. Most data mining techniques applied to biology
assume highly structured biological data, unlike the
unstructured textual data used by TM techniques.
Unstructured textual data have already been used to
improve the results of PSI–BLAST (position specific iter-
ated BLAST; http://helix.nih.gov/docs/gcg/psiblast.html),
and sequence homology searches [33–35] have successfully
integrated TM with DM for the sequence-based functional
classification of proteins using supervised machine-learn-
ing methods. Finally, and because these clusters are rarely
properly validated [36], TM has been used to go a step
further from gene expression clustering and interpret
these clusters by associating them with published litera-
ture [37,38]. In the following sections, we concentrate on
the challenges of terminological processing and novel tech-
niques for information extraction.

Recognizing biological entities in text. Why it is
difficult?
Terms are the backbone of specialized knowledge because
they denote the biological entities of the documents.
Unfortunately, the naming of biological entities is often
w.sciencedirect.com
inconsistent and imprecise [39]. Metabolites, proteins and
genes often have a variety of names (terms) for denoting
the same concept. For example, the metabolite glucose-6-
phosphate is referred to as variants and permutations of a

or b, D- or L-glucose (or hexose)-6-(mono)-phosphate.
Furthermore, within the same text a term can be given
in an extended compounded form then later expressed
through various mechanisms, including orthographic var-
iation (usage of hyphens and slashes e.g. amino acid and
amino-acid), lower and upper cases (NF-KB and NF-kb),
spelling variations (tumour and tumor), various Latin
and/or Greek transliterations (oestrogen and estrogen),
and abbreviations (RAR and retinoic acid receptor).
Further complexity is introduced when authors vary the
forms they use in different ways (e.g. different reductions,
such as thyroid hormone receptor and thyroid receptor, or
the SB2 gene and SB2) or use embedded variant forms
within larger forms (CREB-binding protein, where CREB
is actually cAMP-response-element-binding protein).
Therefore, a term is increasingly viewed as an equivalence
class of termforms, the rich variety of which have to be
recognized, indexed, linked and mapped to the abundant
biological databases and ontologies (see Glossary). Ontol-
ogies are crucial for text mining because they provide
semantic interpretation to text and also constrain the
possible interpretations of biological entities (terms)
(Figure 2): when we provide semantic interpretation to
text, we link terms to concepts in ontologies [40,41],
whereby textual evidence is used to update and to main-
tain existing ontologies [42].

Named entity recognition (NER) is the first step of IE.
NER relies on automatic term recognition (ATR), which
extracts terms from a collection of documents (whereas
ATR detects terms as opposed to general language words).
It assigns to terms such as ‘monocyte’ an appropriate label,
for example, CELL_TYPE, and the recognized terms are than
classified into broader domain classes (e.g. genes, proteins
or tissues). An example of such a system is TerMine (http://
www-tsujii.is.s.u-tokyo.ac.jp/termine/), which is currently
developed by the National Centre for Text Mining (http://
nactem.ac.uk/).

The majority of approaches in the biology domain
integrate term recognition and term classification in a
single step. Some approaches have been based on using
dictionaries [1,43] to locate terms in the text; however,
many terms cannot be recognized if we use straightforward
dictionary or database look-up owing to term variation and
homonyms (see Glossary). For example, when names from
FlyBase were used as a terminological source for recogni-
tion of gene names in the literature, the results showed an
extremely low precision (see Glossary) – 2% for full articles
and 7% for abstracts – with recall (see Glossary) in the
range 31% (for abstracts) to 84% (for full articles) [43]. This
is, of course, species-dependent, and for the fly the results
are not as good as those for yeast are. To overcome the
problems inherent to dictionary-based approaches, several
groups [44,45] suggested machine learning and probabil-
istic techniques to deal with term variation. These boosted
their performance.

Rule-based systems use rules that describe common
naming structures for certain term classes, based on
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Figure 2. Relationships between text, databases, systems biology models and ontological resources. Ontologies provide descriptions of biological concepts and their

relations. Linking domain-specific terms to their descriptions in the ontologies provides a platform for semantic interpretation of textual information. An explicit semantic

layer, supported by the use of ontologies, enables text to be mined for interpretable information about biological concepts. The knowledge extracted from text using

advanced TM can then be curated and used to update the content of biomedical ontologies, which currently lag behind in their attempts to keep abreast of new knowledge

because of its rapid expansion. Scientific databases, systems biology models and textual information are associated with each other through ontologies.

574 Review TRENDS in Biotechnology Vol.24 No.12
morphological, orthographic and syntactic characteristics
[46,47]. These perform better than the other methods
described above but have to be customized to new
domains. By contrast, machine-learning techniques
[48–52] depend on the existence of training data (see
Glossary) to learn features that are useful and relevant
for NER.

Text mining tasks, particularly NER and IE, use the
standard evaluation metrics of precision, recall and F-mea-
sure (see Glossary). Most text mining systems for NER and
IE (relation extraction) use the F-measure to evaluate their
results. The majority of systems compare their results
with a ‘gold standard’: the most popular annotated corpora
used by the text mining community as gold standards are
GENIA (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/) [53]
and PennBioIE (http://bioie.ldc.upenn.edu/publications/
latest_release/data/index.html; Box 2).
Box 2. Evaluating the results of text mining processes

It is imperative when we evaluate text mining tasks that these

should be important to the biology community [54]. Two main

biological tasks have been used for text-mining-evaluation chal-

lenges: document retrieval and biological database curation.

Recent challenge evaluations for text mining in biology include:

� KDD Challenge Task 1 (2002) IE from Biomedical Articles (http://

www.biostat.wisc.edu/�craven/kddcup/tasks.html)

� TREC Genomics Track (2003, 2004) (http://trec.nist.gov/pubs/

trec12/t12_proceedings.html) [55]

� BioCreAtIvE (2004) [56] (http://biocreative.sourceforge.net/)

� BioNLP, JNLPBA (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/

ERtask/report.html)

www.sciencedirect.com
Term variation and ambiguity hamper the recognition
of biomedical entities
Term variation and term ambiguitymake the identification
of biological entities difficult. Asmentioned above, a concept
can be denoted by various realizations, which are known as
termvariants.Aparticularly commontermvariation type in
biology is representation by acronyms. In MEDLINETM

abstracts, 64 242 new acronyms were introduced in 2004,
with the estimated total being 800 000 [57]. It was reported
[58] that 5477 documents could be retrieved by using the
acronym JNK, whereas only 3773 documents could be
retrieved by using its full term, c-jun N-terminal kinase.
Finding all the term variants in text and linking them to the
same concept is important for improving the results of
IR, to avoid irrelevant information from being retrieved
(low precision) and relevant information being overlooked
(low recall).

Acronym recognition aims to extract pairs of short
forms (acronyms), for example, ADM, and their long
(expanded) forms – adrenomedullin abductor digiti minimi
adriamycin – occurring in text. Existing methods for
acronym recognition can be categorized into three groups:
using heuristics and/or scoring rules [59–61]; machine
learning [57,62]; and statistical methods [63].

Term ambiguity occurs when the same term refers to
many concepts. An example of term ambiguity is the term
promoter, which refers to a binding site in a DNA chain,
at which RNA polymerase binds to initiate transcription
of mRNA by one or more nearby structural genes, whereas
in chemistry it refers to a substance that in small amounts
can increase the activity of a catalyst. Homologues and

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
http://bioie.ldc.upenn.edu/publications/latest_release/data/index.html
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Figure 3. A text mining pipeline from unstructured to annotated data using part-of-speech tagging, named entity recognition and syntactic analysis (parsing), using external

resources (i.e. dictionaries and ontologies). Each module enhances text representation with a layer of annotation, which represents explicit linguistic and/or semantic

information attached to text in machine-usable form. Such information is inferred by a human reader using (i) linguistic and general knowledge, and (ii) domain-specific

expertise. However, for the text to be analysed automatically at a higher semantic level, such knowledge has to be explicitly represented in a machine-readable form. The

given figure illustrates the output representation of the sentence ‘secretion of TNF was abolished by BHA in PMA-stimulated U937 cells’ with multiple layers of annotation,

including syntactic, semantic and ontology related.
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ad hoc choices of gene or protein names (e.g. yotiao)
aggravate the problem of ambiguity. This problem is alle-
viated by using term disambiguation approaches, such as
supervised techniques to assign automatically gene names
to their LocusLink ID [64]; applied machine learning
techniques to disambiguate genes, proteins and RNA in
text [65]; and manual rules combined with a variety of
supervised and unsupervised approaches [66]. One way to
ensure that mappings to other public databases are
consistent is to use data resolution software based on
life science identifiers (http://lsid.sourceforge.net/).

Information extraction
Recognizing biological entities is the first step of IE
(Figure 3). Text is typically tokenized (see Glossary), to
identify the limits of words and sentences, then tagged
(part-of-speech tagging) by assigning labels such as NOUN,
VERB or ADJECTIVE to each word. Syntactic analysis
(Figure 4) identifies the basic textual chunks of a sen-
tence.

To detect and extract the types of evidence needed for
hypothesis generation, we need semantic interpretation of
the text, upon which we base relation extraction. Relation
www.sciencedirect.com
extraction extracts pairs or triples of biological entities, for
example, p53 INDUCES Peg3 or Pw1 mRNA expression.

Some IE systems in biology use pattern matching
approaches [67], which sometimes have limited general-
isation. Moreover, the closer the analysis is to the text, the
more patterns are needed to take account of the large
amount of surface grammatical variation in texts. Their
main limitation is that some measure of semantic proces-
sing beyond pattern matching is required that is superior
to either text strings or annotations (see Glossary) con-
nected with surface analyses.

Other approaches use a combination of syntactic and
semantic parsing (see Glossary). McDonald [68] deploys
rules weighted from corpus evidence for extracting path-
way relations, whereas Šaric [69] extracts relations con-
cerning the regulation of gene expression. A more
promising approach is sublanguage-based IE systems,
which exploit the linguistic particularities of the biological
language [70,71] to good effect. Few IE systems [72–75] use
deep linguistic knowledge (full parsing; see Glossary). The
advantage of full parsing is that we can easily make
generalizations for more than one type of biological inter-
action. To achieve this generalisation, we use predicate

http://lsid.sourceforge.net/


Figure 4. A typical output of syntactic analysis, showing how a sentence S0 is chunked into noun phrases (NP), verb phrases (VP), adjectives (AJ) and determiners (DT).

576 Review TRENDS in Biotechnology Vol.24 No.12
argument structures (PAS; see Glossary), which are
canonical representations of sentence meanings that
represent relations in an abstract manner (Figure 5).

The importance of using PAS is that all the syntactic
variations of the sentences in Box 3 can be normalized into
one structure {‘activate’ ARG1 Entity 1 [semantic subject]
ARG2 Entity 2 [semantic object]}. We have applied this
approach to extract protein–protein interactions [75,76]
from the whole of Medline.

Full parsing tuned to biology has been realized in two
systems that are currently used at the National Centre
for Text Mining: MEDIE (http://www-tsujii.is.s.u-tokyo.
ac.jp/medie), which retrieves relations and their concepts
from the whole of Medline as a real time application;
and InfoPubMed (http://www-tsujii.is.s.u-tokyo.ac.jp/
info-pubmed/), which combines full parsing and machine
learning techniques to recognize different types of inter-
actions (e.g. inhibit, enhance or promote) between genes
and proteins, based on ontological information. MEDIE
enables the user to perform semantic querying, thus
going beyond keyword searching (Figure 6). These sys-
tems rely on a combination of deep linguistic knowledge,
the richness of annotations obtained from biological
resources (ontologies) and efficient parsing technologies
Figure 5. A predicate argument structure (PAS) for the verb exclude, linking it with

CRP and thrombosis. PAS is a normalized form representing syntactic relations. In

this sentence, exclude is the predicate, which contains the main meaning of the

predicate argument structure, and CRP and thrombosis are its arguments, carrying

information about the participants described by a predicate. ARG1 denotes a

subject relation and ARG2 an object relation. This PAS represents the sentence

‘CRP excludes thrombosis’.

www.sciencedirect.com
to produce biological interactions and relations extracted
from text, thus enabling the biologist to make general-
isations and generate hypotheses.

Potential applications in systems biology: from fact
discovery to hypothesis generation and model
construction
Text mining techniques can be applied in a variety of
areas of systems biology, and some applications are
already beginning to emerge [75,77–79]. Although these
are early days, it is clear that direct linkage of biochem-
ical and signalling models to the literature that under-
pins them is a goal that is now within our grasp. Systems
biology modelling [14,80] starts with a qualitative or
structural model: these are commonly derived from gen-
ome sequences [81–84] and can be integrated, clearly and
usefully, with literature-derived evidence. We note that
this task (given the pathway, find the literature) is con-
siderably easier than its converse [71]. A particular area
of significance involves hunting for the parameters of the
individual reactions of systems biology models [78]
because these are mandatory for the purposes of ordinary
differential equation (ODE) modelling [85]. The struc-
ture, equations and parameters, including starting or
Box 3. Syntactic variations

Syntactic variations characterize the different realizations of a

predicate (verb); thus, for the verb ‘activate’, we can have several

syntactic variations.

Active Main Verb: Entity1 recognizes and activates Entity2.

After an Auxiliary Verb: Entity1 can activate Entity2 through a region

in its carboxyl terminus.

Passive: Entity2 is activated by Entity1a and Entity1b

Past Particle: Entity2 activated by Entity1 are not well

characterized.

Verb of a relative clause: the herpes virus encodes a functional

Entity1 that activates human Entity2.

Infinitive: Entity1 can functionally cooperate to synergistically

activate Entity2.

Gerund in a prepositional phrase: the Entity1 has key roles by

activating Entity2.

http://www-tsujii.is.s.u-tokyo.ac.jp/medie
http://www-tsujii.is.s.u-tokyo.ac.jp/medie
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Figure 6. This figure shows part of the output of MEDIE answering the query ‘what causes colon cancer?’ The answers are retrieved from 14 785 094 MEDLINE articles,

indexed by full parsing analysis and using predicate argument structures.
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fixed concentrations, define the ODE system and can be
stored in a transmissible form as SBML [86] (systems
biology markup language; http://www.sbml.org). A desir-
able goal now is to extend SBML to include the evidence
for the models it describes. Another alternative is to have
a BioPAX file [87] (http://www.biopax.org/) linked to a
complementary SBML file. Overall, we have taken the view
[14] that distributed environments using systems such as
Taverna [88,89], or others [90–92,] to enact the necessary
bioinformatic workflows might well provide the best way
forward for linking systems biology modeling activities.
Because the difficulties of interoperability seem, in fact,
to be much more about data structures (syntax) than about
their meaning (semantics) [93], this undertaking might
turn out to be considerably easier than anticipated.

Outlook
We consider that important future directions for the
exploitation of TM in systems biology include the following.

(i) T
www.s
he availability of full texts is clearly of great
significance because abstracts usually lack the
relevant information. This is particularly true of
the values of kinetic and binding parameters.
(ii) A
 close integration of TM and DM techniques will
benefit more widespread applications, for example,
chemical structural similarity searches [31,94], the
integration of medical records with genomic data and
evidence from the literature for pharmaceutical
applications. This will best be done in a distributed
manner.
ciencedirect.com
(iii) V
isualization from text mining results. Current
visualization methods [95] are still rather crude
and there is much room for improvement here.
(iv) B
etter benchmarks for evaluating text mining tools
that are relevant to biological needs [54].
In conclusion, although the exploitation of text mining

technologies is still in its early phases, they are now
becoming sufficiently mature that they can be expected
to become tools in the armory of every biologist and bio-
technologist.
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