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Image registration describes the process of manipulating a distorted version of an image such that its pixels overlay the
equivalent pixels in a clean, master or reference image. The need for it has assumed particular prominence in the
analysis of images of electrophoretic gels used in the analysis of protein expression levels in living cells, but also has
fundamental applications in most other areas of image analysis. Much of the positional information of a data feature is
carried in the phase of a complex transform, so a complex transform allows explicit specification of the phase, and hence
of the position of features in the image. Registration of a test gel to a reference gel is achieved by using a
multiresolution movement map derived from the phase of a complex wavelet transform (the Q-shift wavelet transform)
to dictate the warping directly via movement of the nodes of a Delaunay-triangulated mesh of points. This warping map
is then applied to the original untransformed image such that the absolute magnitude of the spots remains unchanged.
The technique is general to any type of image. Results are presented for a simple computer simulated gel, a simple real
gel registration between similar “clean” gels with local warping vectors distributed about one main direction, a hard
problem between a reference gel and a “dirty” test gel with multi-directional warping vectors and many artifacts, and
some typical gels of present interest in post-genomic biology. The method compares favourably with others, since it is
computationally rapid, effective and entirely automatic.

Introduction and background
Proteomics and 2D gel technologies

There is a large and growing increase in the use of modern 2D
electrophoretic gel technology (‘proteomics’) for the purposes of
functional genomics (see e.g.Link,1 Mann,2 Aebersold,3 and refs.
therein).

Whilst mass spectrometry is the premier technology for
identifying specific proteins from such gels,4,5 comparative
proteomics, in which the same organism or type of extract is studied
under different conditions, relies solely on comparisons between
images in which 2D gels are stained with silver stain, a
chromophore such as Coomassie Blue, or fluorimetrically.6

Inevitably, such gels are less than perfectly reproducible, and the
image data obtained by an instrument from successive gels of even
the same sample will differ, due to calibration drift (see refs. 7–11)
of the electrophoresis equipment, changes in the exact experimental
conditions, and so on. For different samples there will of course be
the more interesting and genuine changes in spot intensities in the
gels. In consequence, it is necessary to align any new gel to make
it concordant with a similar reference gel, so that all the spots from
identical proteins are in the same places. Relative intensities can
then be compared, while new spots which are not present in the
reference gel (or alternatively species that are missing from the new
gel) can be detected and if appropriate identified.

Note that although 2 or 3 proteomes may be compared within the
same gel by dual- or triple-labelling, and with multispectral
imaging,6,12,13 this still does not solve the problem of irreproduci-
bility between days.

Image registration establishes the correspondence between two
images and determines a method of aligning them with each other.
It is the process of manipulating a new (test) image to match a

reference image by correcting spatial distortions and misalignments
in the test image. Gel analysts commonly do this manually by
visually or semi-automatically identifying significant equivalent
spots (“landmarks” or “control points”) in both gels, selecting them
manually, and then comparing the reference with the test gel so that
these spots are matched against the chosen equivalents in the
reference gel. This is the only method available in most of the
commercial and other proteome software such as Phoretix,
Melanie, PDQuest, Flicker and the like, and it is both very time
consuming, completely subjective (as it depends on which
landmarks and thresholds are chosen), and subject to error.11

Existing methods for automating image registration

Several broad categories of approach have been used in attempts to
automate the process of image registration. These often come from
video processing research, from medical scanning or astronomy,
but most deal only with images which are simply translated, rotated
and/or linearly stretched. These methods include grey-scale
histogram analysis,14–19 texture analysis,20,21 edge enhancement
and linking,16,20–25 region growing,20,26,27 contour follow-
ing,16,21,23,25,28 and the maximisation of spatial correlation or
mutual information between images.18,29–37

Landmark-based methods rely on marking and aligning easily
identifiable point features,15,18,38,39 and manual landmarking is one
of the main methods used in the commercial proteome software.
Segmentation methods divide the picture up into areas or
‘segments’, often by contour following, or by region growing and
the related watershed methods,40–44 which can then be moved for
image alignment.18,20 Deformable models (rubber-sheeting) can be
used in conjunction with both methods to warp the test image to the
reference.45–49

An ideal gel registration method would deal with general
warping functions and multi-directional warping vectors, and
would be completely automatic. It would also be able to preserve
additional or missing gel spots in the test image, since these small
differences are often the most significant factor in the subsequent
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analysis of the registered gels. Since the spatial differences between
the ‘same’ spots on different gels depend on where the spots are
located, the registration process must be able to cope with both
global and local deformations in the test image.

Since the spatial differences between the ‘same’ spots on
different gels depend on where the spots are located, the registration
process must be able to cope with both global and local
deformations in the test image. Gustafsson and colleagues9 used a
2-stage warp, the first of which involved a model of current leakage
during the electrophoresis (which may be restrictive to that model)
and the second a bilinear, multiresolution, gradient descent
algorithm, while Smilansky10 used a ‘shift vector list’ approach for
the gel warping problem, and also studied visualisation issues.
Veeser et al.11 described an approach using a gradient descent
algorithm to dictate the warping of a multiresolution grid across the
image in x-y to optimise a cross-correlation-based distance metric
formed on the local image area. We (unpublished) and others (e.g.
refs. 50–52) have developed one-step registration methods using
Genetic Algorithms that produces excellent robust registration but
at the cost of the computational intensity associated with evolution-
ary programming methods. The research presented here develops
on that work by presenting a much faster method, which is
deterministic instead of heuristic, using the phase of a recently
developed complex wavelet transform53–65 to dictate the movement
map. The basic idea is that intensities are largely encoded in the real
part of the complex wavelet transform while position is largely
encoded in the phase. Registration might then be achieved by
adjusting the phase of a test gel to reflect that of a reference gel.
Sub-pixel precision is achieved because the movement at each point
in the image is derived from an extrapolation of a phase difference
not from a direct pixel comparison.

Loo and Kingsbury66–68 have applied the complex wavelet
transform to watermarking, which is a similar problem to image
registration. Our method modifies this approach, speeding up the
calculations such as to make registration of gel images a viable
prospect on a desktop PC.

The fast complex wavelet transform
Since the spatial differences between the ‘same’ spots on different
gels depend on where the spots are located, the registration process
must be able to cope with both global and local deformations in the
test image. Multiresolution methods such as the wavelet transform
(e.g. refs. 69–75) allow this to be achieved, by simultaneously
operating on several scales at once.

Wavelet transforms give a measure of the correlation between
the image and a chosen “mother wavelet” function. This wavelet is
stretched, moved, and the correlation determined for each dilatation
and position. This stretching of the wavelet allows study at multiple
scales. Long wavelets highlight large-scale features in the image
and short wavelets highlight small-scale features. The summation
of all scales in the wavelet transform allows a very versatile and
powerful multiresolution representation of the image.69 If special
orthonormal wavelets are chosen, then the transform can be
perfectly inverted to reconstitute the original data in the same way
as the well known Fourier transform. The significant advantage of
the wavelet transform over the Fourier is that whereas the
sinusoidal base-functions of the Fourier transform are infinite in
length, wavelets are finite, and so allow the transform to contain
information about local features in the data, such as spots in
proteome gels.

A novel approach to robust, automated image registration

The fast wavelet transform has a severe drawback for this particular
application. This is its shift variance, such that a small displacement
of the signal can make large differences to the distribution of its
wavelet coefficients. Since registering gels (and images in general)
usually requires the removal of small displacements, this problem
becomes severely limiting. The reason for this shift variance is that

even with ideal perfect wavelets in a dyadically down-sampled fast
transform, the Nyquist criterion would only barely be satisfied at
each scale, and with practically realisable wavelets the data are
under-sampled.57,76

The continuous wavelet transform77,78 on the other hand is shift-
invariant. However, this transform is massively redundant, slow
and not invertible and thus not suitable for practical analysis of
large images.

In this paper, we produce a rubber sheeting method of
registration, applied using a multiresolution approach and con-
trolled by a movement map produced by a shift invariant wavelet
transform. This allows the correction of arbitrary displacements of
gel spots and areas, with arbitrary linkage between the corrections
to be applied at each level, instead of the global corrections of
simple translation, rotation and linear warping achieved by current
automatic registration routines. Specifically, we achieve the
identification and implementation of the vector corrections needed
to produce the movement map using phase-manipulation of a newly
developed complex wavelet transform.62–64 Importantly, the com-
plex nature of the wavelet coefficients in the complex wavelet
transform introduces a double redundancy into the wavelet
representation. Hence the amplitudes of the complex wavelet
transform coefficients are shift-invariant; and the phase is linearly
variant with shift, and locally referenced within the scope of each
individual wavelet coefficient.57,59,60 Whilst other wavelet trans-
forms exhibit shift-invariance, they do not exhibit the unique
combination of reconstruction, orthogonality, redundancy, locality
and linearity which is what gives this new transform the required
capabilities for image registration.

Exploitation and parameterisation of the complex wavelet
transform for automated image registration

Much of a data feature’s positional information is carried in the
phase of a complex transform,79 so a complex transform allows
explicit specification of the phase, and hence of the position of
features in the image. Phase differences between warped but
otherwise identical images give information about the relative
movement of regions of the images.62–64 The coefficients of
Fourier-based transforms store the sequence information globally,
whereas convolution based transforms such as the various wavelet
transforms store information locally. In a multiresolution repre-
sentation, then, all scales of movement can be specified, from
largest scale mass movements to tiny regional warpings.

The structure of a complex wavelet transform can be as simple as
that of the discrete wavelet transform using the Mallat Algorithm,74

except that the complex filters require complex coefficients and
generate complex output samples. Unfortunately it is very difficult
to obtain perfect reconstruction and good frequency characteristics
using short support complex FIR filters in a single tree. Kings-
bury53,59 introduces the dual tree complex wavelet transform which
adds perfect reconstruction to the other attractive properties of
complex wavelet: shift invariance, good directional selectivity,
double redundancy, and efficient order-N computation.

The structure of the Fast Dual Tree Wavelet Complex Transform
(DTWT.) uses two separate Mallat algorithm trees53,59 in parallel as
in Fig. 1.

However, when the outputs from the two trees are interpreted as
the real and imaginary parts of complex wavelet coefficients, the
transform effectively becomes complex. To invert the transform,
the perfect reconstruction filters G with the corresponding analysis
filters H are applied in the usual way to invert each tree separately,
and finally the two results are averaged, which is shown lower right
in Fig. 1.

A later development of the dual tree wavelet transform, called the
Q-shift transform (QSWT), has been proposed to make the sub-
sampling structure symmetrical.59–61 The differences mainly focus
on the filter design and the relative sampling delay of each tree at
each level.
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Extension of the DTWT and QSWT to two dimensions is easily
achieved by separable filtering along columns and then rows, with
4:1 redundancy produced in order to represent fully a real 2D
signal.

The mathematics of the DTWT has been covered very compre-
hensively in the references cited53–67,80 and is not reproduced here.
The practical considerations for the non-specialist use of this very
useful but not widely known algorithm are stressed instead of its
internal details in the hope of increasing its application to the many
signal processing fields to which it could be beneficial.

The output of this algorithm at each scale is a set of 6 subimages.
Each of these has its own directionality, in which the phase is most
sensitive to displacement. The impulse response of each subband
and directionality are shown in Fig. 2; and this directionality
provides the vital orientation information for creating movement
maps.

The QSWT-warp methodology

For this work, the more uniformly sampled QSWT was used. Tests
transforming, filtering, and retransforming particular images
showed little difference in utility of the various wavelet filters
supplied with the QSWT software.59–61 Here, the biorthogonal
Near-Symmlet-A wavelet was used for the initial stage of the
QSWT algorithm, in conjunction with the Q Shift A wavelet for the
rest of the algorithm trees.

The conventional way in which the DTWT has been used to date
is to form the Squared Difference Surface (SDS) for each pel in
each subband at each scale.62,64 (A pel is the scope of a wavelet
coefficient — i.e. that area of the image covered by that coefficient
at that scale such that at scale m, a pel is 2m3 2m pixels). The SDS
is a measure of similarity between the current pel in the test image
and displaced versions of the reference image, and is formed by a
2D scan of displacements around the centre of the reference pel for
each subband, and subsequently summing all these subbands to
form a dished surface. The formation of the SDS requires the
assumption that for small displacements, the amplitude of a
complex pel will remain approximately constant and the phase of
the pel will vary linearly with displacement (see ref. 64).

The minimum of the resulting surface gives the best estimate of
magnitude and direction for the displacement between the test and
reference pels. So computing it for each pel requires a 2D scan,

Fig. 1 The Dual Tree Algorithm (DTWT), comprising two trees of real filters, a and b, which produce the real and imaginary parts of the complex
coefficients. Figure after ref. 55.

Fig. 2 Impulse responses of subbands 1 to 6, showing their directionality.
The direction of greatest phase sensitivity is perpendicular to the
wavefronts.

A n a l y s t , 2 0 0 4 , 1 2 9 , 5 4 2 – 5 5 25 4 4



followed by curve fitting to the surface to find the exact minimum
position. The sharpness of this minimum in various directions
defines the reliability of that distance estimate in that direction.62,64

Unreliability arises both from the above assumption being violated,
and from the phase of tiny coefficients (subject to noise) having as
great a phase swing as large clean ones. Phase always varies from
2p to p no matter how large or small the amplitude of the
coefficient; so null areas of an image appear as important to a
phase-map as those areas containing significant features. The
reliability metric above is used to pick only the most dependable
movement estimates and interpolate the complete movement map
from these, rejecting unreliable estimates.

This procedure is firstly carried out at the longest scale of the
DTWT decomposition to derive the movement map at coarsest
resolution, then the results of this are carried through to the next
shortest scale, and the procedure repeated hierarchically through to
the shortest scale and finest resolution of decomposi-
tion.62,64,66–68

Observation, and Fig. 7 in ref. 64 and Fig. 3a of ref. 68 suggests
that the contours of the SDS for each individual subband are, at
least to a very close approximation, straight lines perpendicular to
the directionality of that subband, only forming a dished surface
when summed with all the other subbands for that pel. The
equiphase condition64 expressed in eqn. (1)

2m(W(n,m))T f = arg[D2
(n,m)(n)/ D1

(n,m)(n)] (1)

where m = scale, n = subband, D1 = DTWT reference coefficient,
D2 = DTWT test coefficient n = reference coefficient centre
position, f = movement vector to equiphase position from
reference pel centre and W = subband filter centre frequency, in
conjunction with the substantially planar nature of the SDS surface
for each subband implies that the phase gradient can be simply
extrapolated to solve this equation in the direction of that subband
in order to produce the projection of the movement for that pel in
the direction of that subband. This replaces a 2D scan with a single
calculation, giving the projection not only to sub-pel precision, but
also to sub-pixel precision. These movement bases for each
subband can then be vectorially added for all 6 subbands to produce
the overall motion vector for that pel.

The angular frequency of a subband, W, can be obtained from the
equations for the subband filter. However, non-specialists in filter
design can deduce its magnitude for any subband from the standard
relationship that W is the rate of change of phase with respect to the
independent variable and the experimental observation that move-
ment of a delta function diagonally produces a phase change rate of
2p/pel in the corresponding 45 degree subband. The direction of W
can be derived from the knowledge that W in eqn. (1) for a particular
subband is the centre frequency of this band and specifies its
direction.64 The distribution of centre frequencies of subbands is
represented graphically in Fig. 3.

Thus the scaling vectors of the W values for the subbands is given
by the complex vectors to the centre of the filter passbands as in
Table 1.

Comparing the movement map produced by the SDS vs. that
produced by the phase gradient shows the two approaches produce
virtually identical vector maps as shown in Fig. 4 for a pair of
proteome gels from Dictyostelium discoides cultures.81 However
the phase gradient method runs 100 times faster, taking 24 s instead
of 2630 s on a P700 PC.

Accordingly the phase gradient method was used to create the
movement maps for this paper. These movement maps were then
used to control image warping using Matlab.82

It should also be noted that the phase differences derived from
the equiphase condition above are identical to the phase of a cross
complex-wavelet transform between the test and reference images.
Computing the phase of the Cross QSWT directly is found to give
identical movement maps to solving eqn. (1).

The price paid for this massive decrease in computing intensity
is that this procedure does not give a direct measure of reliability

but as will be seen in the results later, this is not a requirement in the
application discussed here.

It may be thought that registration could be achieved simply by
substituting the phase from the reference image into the test image.
However, as noted in ref. 79, a phase only reconstruction of an
image reconstructs much of the structure of that image, giving a
result very similar to simply a high passed original image. So if the
phase of the reference image is substituted into the test image, then
the resulting image registers the common spots well, but tends to
ignore new or missing spots in the test image. Our new phase
gradient method avoids this problem by warping the original image
rather than a transformed version of it.

A measure of reliability can however be derived using the phase
gradient method. The derivation for the Squared Difference Surface
and by extension, the equiphase equation above relies on the
assumption that each pel has an effectively constant amplitude
between reference and test pels and only the phase changes
significantly, signifying a simple translation instead of a sig-
nificantly changed subimage. Also the algorithm may be unstable
for wavelet coefficients which are small in both reference and test
subimages, in a manner analogous to rounding error. Phase
differences between tiny coefficients span the same angular range
as those between huge coefficients, so phase does not ignore null
parts of the picture.

Thus, reliability could be enhanced by rejecting movement
vectors in which both instances of a particular pel amplitude are
small, which corresponds to a null part of the image (in our
particular application, there are no gel spots in the pel); and also
where amplitudes are substantially different signifying that pels are
significantly different (one is missing or gaining features compared
to the other — in our case gel spots are moving in or out of the scope

Fig. 3 Passband structure for scales 3 and 4. Subbands are numbered
(band,scale). Figure modified slightly for subband numbering after ref.
64.

Table 1 Scaling factors for specifying direction of W for each subband in
a scale

Band Subband scaling factor

1 1/3 + j
2 1/3 2 j
3 1 + j/3
4 1 2 j/3
5 1 + j
6 1 2 j
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of the pel such that one is comparing significantly different
subimages instead of a simple translation of substantially the same
subimage). Phase information is regarded as reliable where both pel
amplitudes are fairly similar — both subimages contain similar data
and phase information should purely reflect relative movement
between the pels.

A simple way to achieve this selection is to map (difference
between pel amplitudes)/(mean of pel amplitudes) between the
reference and test images to form a mask of movement vectors
reflecting pure translation where difference/mean is small. This
will give a sparse matrix of WT coefficients which can be
interpolated to full coverage.

For the particular case of proteome gel images, pel selection can
be further simplified. Registration should only use scales sig-
nificantly longer than the peak scale — that scale which contains
the maximum energy. The gel spots are all of roughly similar size
and will therefore fall into a very narrow band of scales, reflected
in this peak scale. It is not required to warp the gel on the scale of
single spots, since the warping mechanisms operate on a larger
scale than the size of single spots. Colloquially, we don’t want to
move bits of spots, only areas of them. In addition, with something
like a gel, where the features are concentrated around a narrow band
of scales, it is vital not to match longer scales since these will reflect
variations of spurious baseline background features rather than gel
spots, so the movement vector maps associated with these scales
will be wrong. Thus, at least the longest two scales, and the shortest
down to at least one scale longer than the peak scale, can be rejected
without further consideration.

Registration can be improved by removing the baselines from the
gel images in a prior preprocessing step, however the longest scales

of the wavelet transform still do not significantly contribute to the
registration. A suitable baseline removal method for proteome gels
is to form a 2D moving median average over the gel using a
sufficiently large footprint as to be significantly larger than twice
the largest gel spot. This will select the baseline and remove all
spots as outliers (exactly analogous to image despiking). Simply
subtracting this result from the gel image would subtract the
baseline and leave the spots sticking up from a flat background,
since in proteome gels, the “outliers” are the required signal.

However, when applied to gel images, intra-scale pel selection as
above was found to make little difference to the Minkowski
distance between images, and no visual difference, merely
introducing extra parameters. Thus we conclude that, at least in gel
registration problems, the cross spectral method of forming
movement maps is robust to error within each scale and doesn’t
need any special effort to differentiate between the reliability of
different subband coefficients This can be seen in the quality of
registrations presented later which were produced without any form
of pel selection other than baseline removal and then simply
rejecting the longest two and shortest three scales from the wavelet
transform.

The Matlab image warping algorithm from the Matlab Image
Processing Toolbox V.383 requires the setting of control points in
the test image and of 2D displacements by which these control
points are to be moved. These control points are then Delaunay
triangulated84,85 into a piecewise linear approximated surface and
the movement of the vertices of this surface dictate the warping of
the image.

We choose to impose a rectangular mesh on the image at each
successive iteration. Virtual control points are chosen to be the
vertices of this mesh, and are placed at the centre point of each pel
at that scale. The x-y displacements of these vertices are generated
by the x and y components of the sum of all the subband movements
of each pel at that scale

Fig. 4 Phase gradient movement map derivation vs. the standard Squared
Difference Surface method. The figures show the difference between
reference and test gels, gels from Dictyostelium discoides, such that the
warping between the two shows up as black/white doublets. The motion
vector arrows derived from the complex wavelet transform can be seen to
reflect the magnitude and direction of the doublets very well.

Fig. 5 Simple computer simulated reference and test gels for algorithm
development. The Euclidean distance between these gels is 6.7.
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A metric of similarity

Similarity between images can be judged by any of the current
methods for computing multivariate distances between the im-
ages86–90 for determining and subsequently adaptively (intelli-
gently) controlling the degree of transformation applied to the test
image in the registration process. Removal from the images of noise
and background levels must be done prior to this step.

However, our unpublished observations showed that a simple
pixelwise Minkowski Distance with radix two,89,90 equivalent to a
Euclidean distance, with each pixel representing a dimension/
variable was almost as accurate as any more complicated
alternative and is computationally very simple and quick.

Pel selection for proteome gels

Proteome gel images have certain features that make them simpler
to analyse than general images. They are a distribution of somewhat
similar sized spots superimposed on a background which should
possibly be, but for many reasons (e.g. ref. 12) in practice rarely is,
null. The longest scales hold information on the background and
tend to comprise only low amplitude coefficients. The shortest
scales hold information on the spots themselves, and those in
between hold information on the warping field of the gel. So after
the background has been removed by other means as a preprocess-
ing step, then most of the energy in the DTWT will be concentrated
in the shortest few scales, which represent the spots.

For registration, only scales longer than the peak scale (in terms
of energy contained per scale) should be used, since the peak scale
contains information on spots, and gel warping occurs at scales
longer than individual spot sizes (spots retain their relative
positions but move their absolute positions). Consequently, for the
purpose of forming a movement map, the longest and shortest
scales can be rejected as a form of denoising. Registration is carried

out using those remaining scales reflecting the scale of warping of
the images.

As stated above, the phase gradient method does not give a
reliability estimate for each pel within a scale, but this can be
obtained by rejecting small coefficients (which are unduly subject
to noise problems) and also by rejecting those in which the
amplitude changes significantly (which violate the assumptions
used to derive the equiphase equation). Constant amplitude pels
between the reference and test image signify that only movement is
occurring between those pels. Changing amplitude implies that
features are moving in or out of the pel scope. However,
experiments show that the phase gradient algorithm is sufficiently
robust that this intra-scale pel selection is not needed, at least in the
task of registering proteome gels. It makes negligible difference to
the results presented below although its inclusion does not
significantly slow the algorithm down either.

We would wish to stress that no user input is thus required, either
in setting control points or in the optimisation of their displace-
ment.

Results
Simulated gels

Initially the method was proved on simple computer simulated gels
consisting of 10 Gaussian spots randomly placed on a flat zero
background 128 3 128 pixels in size. The test gel was constructed
by moving the spots of the reference gel randomly by up to ten
pixels and adding another spot at pixel (45,96) to simulate a real
difference in proteome between the gels, as shown in Fig. 5.

Any registration algorithm must be able both to align the spots
existing in both gels while maintaining the information contained in
extra (or missing) spots in the test gel. In other words it must

Fig. 6 Progression of iterative registration of computer simulated gels by the phase gradient method. (A) Difference of original gels with first iteration
warping field superimposed. Euclidean distance between gels is 6.7. (B) Stage 1 registration with second iteration warping field superimposed. Euclidean
distance is now 5.9. (C) Stage 2 registration with third iteration warping field superimposed. Euclidean distance is now 4.0. (D) Final registration. Euclidean
distance is now 2.4.
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eliminate spurious differences between gels (warping) but maintain
real differences (different proteome structure). Computer simulated
gels like these make it much easier to show the effect of the
transformation on the vital missing or extra spots between the gels.
Real (i.e. experimentally acquired) gels are often so complicated
that it can be difficult to discern what is happening to (often very
faint) missing or extra spots. When the functionality of the method
is proved on such testbed images, it can be applied to real gels.
These computer-simulated gels purposely represent a controlled
but very difficult registration problem, with large, randomly
orientated and independent displacement of each individual spot. In

real gels the spot movement is much smaller and the warping varies
relatively slowly over the area of the gel with areas of spots locally
correlated in their displacements.

As stated above, with something like a gel where the features are
concentrated around a narrow band of scales, it is vital not to match
longer scales, since these will reflect variations of background

Fig. 7 Registration of the test and reference gels in Fig 5, using the MIR
method.11

Fig. 8 Dictyostelium discoides gel images: Reference gel is control
culture. Test gel is culture previously exposed to an electromagnetic field.
The Euclidean distance between the gels is 260.

Fig. 9 Iterative registration of Dictyostelium discoides gel images. A and
B use the QSWT phase gradient method, C the MIR-method. (A) Difference
of original gels with first iteration warping field superimposed. Euclidean
distance between gels is 260. (B) Final (4th iteration) registration. The
Euclidean distance is now 127, i.e. a ratio of 1:0.48. (C) Registration of the
same gels using the MIR method: the ratio of the Euclidean distances before
and after registration is 1:0.87.
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features rather than gel spots, so the movement vector maps
associated with these scales will be wrong. The shortest scales also
don’t reflect the gel spot movement field, and their inclusion is
found to makes no difference at all to the Euclidean distance of the
registered gel. So the heuristic is, at the initial iteration, to subtract
longest scales till minimum Euclidean distance, then subtract
shorter scales till Euclidean distance increases. The phase gradient
algorithm is easily fast enough to allow this. From then on, the
longest remaining scale is removed at each successive iteration till
only one scale remains.

Magarey and Kingsbury62,64 using the SDS method, form the
movement map at the longest scale, then uses the result of this as the
starting point for the map at the next shortest scale and so on. The
speed of the phase gradient algorithm allows a multiscale resolution
at each iteration, starting with full registration using the all
optimum scales to form the movement map as above, then
retransform and construct a multiscale partially registered image.
This can now be used as the base image for repeating the procedure
with another multiscale decomposition, which now no longer needs
the longest scale used previously since large scale movements have
been removed by the previous iteration, continuing till only the
finest significant scale is left.

Warping uses a scale-dependent mesh such that reconstructions
including long scales use coarser mesh than those later reconstruc-
tions using only shorter scales. Previous large scales will have
already removed large displacements, so we can use finer mesh for
better registration of fine detail. Warping mesh intersections are
placed at the pel centre for each scale.

For these computer simulated gels, scales 1 and 2 hold no
information on the movement field, and do not affect the
registration at all; while scales above 6 contain only small
amplitude coefficients and are rejected also. So in only 3 iterations,
registration is very good.

As in Fig. 1, the degree of registration throughout this work is
represented by the difference between the reference image and the
image at that stage of registration. Mismatched spots show as dark/
light doublets — the spacing and direction of these doublets
showing the magnitude and direction of the remaining registration
field required

The difference between the reference and original test gel,
together with the movement map created by stage one of the phase
gradient iteration using scales 5,4,3, is shown in Fig. 6a. The
movement map at this iteration can be seen to follow the
mismatched doublets quite well. Fig. 6b shows the next iteration
with the stage two movement map using scales 4,3 superimposed
upon the stage 1 registration. Fig. 6c shows the third iteration
movement map using scale 3 superimposed upon the second stage
registration, and Fig. 6d shows the final registration.

11 further iterations using scale 3 can reduce the Euclidean
distance down to a minimum of 2.1 with no visual improvement.

Note that all the doublets denoting mismatched spots in Fig. 6a
have been resolved very well (they should ideally disappear), and
that the integrity of the extra spot in the test gel has been
preserved.

We compared these registrations of the synthetic gel image with
the MIR algorithm published by Veeser,11 using the program they
produced for this available at http://vip.doc.ic.ac.uk/2d-gel/GelRe-
gister.exe. The basis of their algorithm is a hierarchical gradient
search optimisation of a three scale multiresolution grid.

The most obvious difference between MIR (Fig. 7)and the
present one is that the shape of the spots is significantly distorted

Fig. 10 Caenorhabditis elegans gel images. The Euclidean distance
between the gels is 259.

Fig. 11 Iterative registration of Caenorhabditis elegans gel images by the
phase gradient method. (A) Difference of original gels with first iteration
warping field superimposed. Euclidean distance between gels is 870. (B)
Final (4th iteration) registration. Euclidean distance is now 181.
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(and an artefact is visble in the top right hand corner). However the
registration is good in positional terms. The Euclidean distance
between the MIR-registered and the reference gel (as normalised to
an unregistered distance of 1) is 1.83, so the distortion of the spots
has apparently increased the overall Euclidean distance. The times
required for the registration were comparable (7s for MIR method,
5s for the QSWT).

Dictyostelium discoides

Having proved the efficacy of the GA registration method on
simulated gels, a pair of proteome gels from Dictyostelium
discoides81 were registered.

Before registration it is beneficial to remove the background
baselines due to non-uniform illumination of the images. The
baselines are first removed from the images by scanning a 2D
median filter of length and width significantly greater than twice
the largest spot diameter across the image in order to derive the
baseline by filtering off the spots; and then subtracting this baseline
from the image. The resulting gel-images are shown in Fig. 8.

The mismatch between these two gels is predominantly distrib-
uted around a dc shift, as can be seen in Fig. 8a.

Using the same procedure as for the synthetic gels produced a
similar registration sequence. The difference between the reference
and original test gel together with the movement map created by
stage one of the phase gradient iteration, using scales 6,5,4,3 is
shown in Fig. 9a. Again, the movement map at this iteration can be
seen to follow the mismatched doublets quite well. Further
iterations take the Euclidean Distance down through 191, 152, and
132 to produce the excellent final registration shown in Fig. 9b. The
equivalent registration using the MIR method is shown in Fig 9c.
The registration is good save for 3 unmatched doublets in the lower
center right. In this case the MIR method is slightly faster (8s vs.
25s), though we note that the MIR method is compiled while the
QSWT method implemented in Matlab is interpreted.

Registration to this degree is possible due to the cleanness of the
original gels.

Caenorhabditis elegans

Next, the method is demonstrated on a very difficult registration
problem with two C. elegans gel images (see ref. 91) with much
streaking on the test gel. Once again the baseline is removed by
median filtering and the resulting gel images are shown in Fig.
10.

This problem requires the resolving of multidirectional warping
vectors across the test gel as indicated in Fig. 11a.

Using the same procedure as for both the above gel pairs
produced a similar registration sequence. The difference between
the reference and original test gel together with the movement map
created by stage one of the phase gradient iteration, using scales
6,5,4,3 is shown in Fig. 11a. Again, the movement map at this
iteration can be seen to follow the mismatched doublets quite well.
Further iterations take the Euclidean Distance down through 254,
230 and 202 to produce the good final registration shown in Fig.
11b.

Streptomyces coelicolor

Especially following the completion of its genome sequence,92 S.
coelicolor proteome gels are currently of great interest,93–95 so we
include results (Fig. 12) for registering two 1024 3 1024 pixel
images from S. coelicolor growth curves to a reference gel using the
above method. These specific gels are from cultures of a mutant

Fig. 12 Iterative registration of S. coelicolor gel images by the phase
gradient method. (A) Difference between the original gels. The Euclidean
distance between these gels is 540. (B) Final (5th iteration) registration. The
Euclidean distance is now 370.

Fig. 13 Iterative registration of S. coelicolor gel images by the phase
gradient method. (A) Difference between the original gels. The Euclidean
distance between the gels is 650. (B) Final (5th iteration) registration; the
Euclidean distance is now 400.
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strain of M600 (M600 DbldA) grown in liquid culture in a minimal
medium supplemented with casamino acids and sampled at 19 h
and 36 h, respectively.

The algorithm can be seen to match spots warped in different
directions across these gels very efficiently, dealing (especially in
Fig 13) with quite large displacements, while preserving the
significant differences between the gels. It is also notable in Fig 13
that due to its hierarchical nature dealing with gross movement first,
then refining this estimate, the algorithm is able to resolve
situations where the correct match for a particular spot is not the
closest spot. This can probably be seen most clearly in the spot
distribution around x,y = 570,910.

Conclusions
The QSWT-Warp method allows the rapid and robust automatic
registration of a test image to a reference image, with no user input
required during the process of setting or optimising control points.
It deals with general warping functions both local and global, multi-
directional warping vectors, and is applicable to any form of
images. It is able to preserve real differences between the test image
and the reference image since it merely warps the test image under
the control of a complex wavelet transform but does not otherwise
transform it. It is able to register precisely and efficiently using an
iterative multiresolution approach, which is very fast on a modern
PC. The typical speed-up relative to our previous automated
registration routine based on evolutionary computing is approx-
imately 1000-fold.
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