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Abstract 

One way to obtain an intuitive understanding of the wavelet transform is to explain it in terms of segmentation of the 
t ime-frequency/scale  domain. The ordinary Fourier transform does not contain information about frequency changes over 
time and the short time Fourier transform (STFT) technique was suggested as a solution to this problem. The wavelet trans- 
form has similarities to STFr ,  but partitions the time-frequency space differently in order to obtain better resolutions along 
time and frequency/scales. In STFT a constant bandwidth partitioning is performed whereas in the wavelet transform the 
t ime-frequency domain is partitioned according to a constant relative bandwidth scheme. In this paper we also discuss the 
following application areas of wavelet transforms in chemistry and analytical biotechnology: denoising, removal of base- 
lines, determination of zero crossings of higher derivatives, signal compression and wavelet preprocessing in partial least 
squares (PLS) regression. 
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1. Introduct ion 

1.1. History 

Wavelet  is a word which means a ' smal l  wave ' .  It 
is a theoretical formalism that was initiated by the 
French seismologist  Jean Morlet  [1-3]  in 1980. He 
subsequently collaborated with the theoretical physi-  
cist  Alex  Grossmann [4-6]  where wavelets  were 
broadly defined in the context of  quantum physics. 
This provided an understanding of  wavelets based on 
physical  intuition. But the mathematical  theory lead- 
ing up to wavelet  theory can be traced much further 
back in time. In many ways it was initiated by  Joseph 
Fourier  (1807) with his theories of  frequency analy- 
sis. After  1807 the first mention of  mathematical  ob- 
jects  that are wavelets appeared in an appendix to the 
thesis of  Haar in 1909. The Haar wavelet  has the 
proper ty  of  being so-cal led compactly supported 
which means that it vanishes outside of  a finite inter- 
val (see Section A.1). The Haar wavelets are not 
smooth functions (i.e. continuously differentiable) 
which of  course l imited their application. Gradually,  

mathemat ic ians  moved  from the concept  of  fre- 
quency analysis to scale analysis which involves 
creating mathematical  structures that vary in scale. 
Assume that a signal approximation is wanted. A 
function is created that is shifted by some amount and 
scaled, That structure is then used to approximate the 
signal. This process can be repeated by new shifts and 
scalings of  the previous structures. At  each step a new 
approximation of  the signal can be accomplished. 
This type of  scale analysis is less sensitive to noise 
because it measures the average fluctuations of  the 
signal at different scales. 

In the 1930's several groups (Levy, Litt lewood, 
Paley, Stein and others) made contributions to the 
field of  scale-varying basis functions which became 
fundamental for the theory of  wavelets. 

In 1985 Stephane Mallat  discovered relations be- 
tween fil ter-based signal compression methods and 
orthonormal wavelet  bases. This work inspired Yves 
Meyer  to construct the first nontrivial continuously 
differentiable wavelets. Meyer  later collaborated with 
Grossmann and Ingrid Daubechies to find a discrete 
formulat ion of  the cont inuous wavele t  t ransform 
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which was referred to as wavelet frames [7]. Meyer  
tried to prove that it was not possible to construct real 
orthonormal wavelets and was therefore quite sur- 
prised when he actually found an orthogonal basis 
from a regular wavelet [8,9]. Later Daubechies man- 
aged to construct orthogonal wavelets with compact  
support [10]. 

Wavelet  theory can be divided into the following 
main categories: 

(1) Continuous wavelet transforms 
(2) Discrete wavelet  transforms: (a) orthonormal 

bases of  wavelets and (b) redundant discrete systems 
(frames). 

Introductions to wavelet may be found in Refs. 
[11-20] and more advanced texts include Refs. [21-  
26]. A most helpful recent tutorial on wavelet pack- 
ets appeared in this journal [27]. 

1.2. Classical Fourier transforms 

Wavelets are best understood by first looking at 
some of  the limitations of  Fourier transform meth- 
ods, in particular the short-time Fourier transform 
(STFT) which will be described below. The standard 
Fourier transform is defined as: 

F( to ) = L~°=x(t)e - i ' '  dt  (1)  

A useful way of  understanding the Fourier trans- 
form is to say that the signal f ( t )  has been projected 
onto a set of  basis functions. The basis functions in 
this case are the cosine and sine functions repre- 
sented by complex exponential functions. All the ba- 
sis functions are stored in a so-called transformation 
kernel, K(to,  t) = e - i ~ ° t  where i = v/Z 1. For the 
continuous case the transformation kernel is a two- 
dimensional function. The to variable is directly as- 
sociated with the frequency of  the corresponding ba- 
sis function. For chemometricians it may be easier to 
look at the FT as a matrix equation (this is used in 
the finite implementations of  the algorithm): 

f - -  K x .  (2)  

Each column in K is the function e - i ' t / "  where 
to = {0, 1 . . . . .  n} and t = {0, 1 . . . . .  n}. The matrix 
dimension of  K is [(n + 1) X (n + 1)]. 

To get the main idea: Wavelets produce a differ- 
ent type of  transformation kernel which has some de- 
sirable properties that classical FT does not have. 

Using the standard discrete Fourier transform we 
can interpret the signal in terms of  either the fre- 
quency domain or the time domain. Often we en- 
counter problems where we would like to have infor- 
mation about both domains at the same time. The hu- 
man ear for example uses information from both do- 
mains; we recognize regions in time with localized 
characteristic frequency distributions. By doing an FT 
over the whole time domain we are not able to focus 
on local frequency distribution variations. The FT as- 
sumes that the frequency content of  the signal is con- 
stant throughout the entire signal and thus that it is 
effectively periodic. 

1.3. Short time Fourier transform 

In order to improve the t ime-frequency resolution 
for FT the short time Fourier transform (STFT) or 
Gabor transform was constructed [28-35]. The idea 
is very simple: use a window of  finite length and 
move it along the signal in question. For each sliding 
step an FT on that local region in time is performed 
(see Fig. 1 for an illustration of how STFT is per- 
formed). 

To avoid spurious frequency components due to 
the abrupt start and end of  the window, we multiply 

Time d i rec t ion  
SUdlng window 

/ 

"8 

STFT(time,frequency) 

Fig. 1. Here it is illustrated how the time-frequency domain is tra- 
versed in STb-T. The algorithm can be seen either as a series of 
ordinary Fourier transforms of small segments along the time axis 
(here shown as vertical bars) or as a succession of bandlimited fil- 
ters (horizontal bars). 
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the time signal x(t) in the region with a Gaussian-like 
(apodizing) function g(t): 

y(t)  = g ( t ) x ( t ) .  (3) 

Apodization is a standard technique also used in 
FT. 

The sliding process is seen as several Gaussian- 
like g functions with different positions along the 
time axis. Each position of the g function can be 
controlled by the parameter s (s is the center of g): 

STFT(s, o~) =fx(t)g(t-s)e-i°"dt (4) 

This is effectively a convolution of the signal 
x(t)e -i~°t with the function g(t). The signal is de- 
composed in terms of a new set of basis functions, 
that are windowed versions of the original sine and 
cosine functions. By performing FT on each of these 
overlapping windows we are able to plot a t ime-  
frequency diagram which is a power spectrum for 
each time region. How the different STFT basis 
functions are located in the time frequency domain is 
illustrated in Fig. 2. Basis functions located in the 
bottom part in the figure have low-frequency compo- 
nents and those located in the upper part in the figure 
have high-frequency components. The results from an 
STFT analysis can be understood as a projection onto 
each of these basis functions located in time and fre- 
quency. 

c- 
o 

~5 
>. 
O t- 
O 

STFT basis functions 
r 

Time direction 

Fig. 2. Here we show the relative positions of localized cosine-like 
basis function for the S T F r  in the t ime-frequency domain. 

$1 

< 

Tirol 

$2 

$3 

Time 

$4 

Time Time 

Fig. 3. The time domain representation for the four test signals $1, 
.... S 4 described in the text. S1 is a sine wave (upper left). $2 is 
the delta function (upper righ0. S 3 is a Gaussian apodized sinewave 
(lower left). $4 is the 'chirp' signal which has a linear increase in 
frequency with respect to time (lower right). 

The time-frequency diagrams are sometimes re- 
ferred to as signal spectrograms. The properties of 
STFT are best understood by looking at some simple 
examples. We have chosen the following four test 
signals: (1) standard sine function ($1), (2) delta 
function ($2), (3) windowed sine wave (S 3) and (4) 
windowed sine wave with linear frequency increase 
(a 'chirp') ( S 4 ) .  

These test signals are shown in Fig. 3. Each of 
these signals will be referred to as S 1 . . . . .  S 4. In Fig. 
4 we have computed the total power spectrum of S 1, 
. . . .  S 4. In these figures we cannot see the time evo- 

lution of the signals. Note that for signal S 1 we see a 
slight broadening of the signal compared to the win- 
dowed sine wave S 3 which is due to the periodiza- 
tion. In the upper right part of the figure the Fourier 
transform of S 2 is shown. Since the single peak in the 
delta function contains all frequencies it is not sur- 
prising that the spectrum is a single horizontal line, 
which means that all frequency bins are occupied. 
The lower right part of the figure shows the total 
power spectrum for the chirp. Again we see all the 
frequencies together without any of the time-depen- 
dent information retained. 

Before actually analysing the STFF analyses of 
these four signals, it is worth considering how we 
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$1 

< 

Frequency 

$3 

Frequency 

Fig. 4. The power spectra of the four test functions $1 . . . . .  S 4 de- 
scribed in the text, 

$2 $1 $2 

Frequency 

$4 

Frequency 

Time Time 

$3 $4 

Time Time 

Fig. 5. The STFT results for the four test functions S 1 . . . . .  S 4 de- 
scribed in the text. Light colour means high value and dark colour 
means low value. 

would expect the t ime- f requency  information to be in 
each of  the four cases. For  S 1 we have the same fre- 
quency for all t ime steps and therefore a horizontal 
line in the signal spectrogram is expected. S 2 has zero 
value everywhere except for a single point where the 
ordinate value is one. One should expect contribu- 
tions from all frequencies close to the single peak and 
no contributions in all other regions giving a vertical 
line in the spectrogram. S 3 demonstrates the change 
in amplitude of the sine wave over time, but the fre- 
quency is constant in comparison with S 1. W e  will 
therefore again expect  a horizontal region in t i m e -  
frequency space, which has an intensity in proportion 
to the amplitude of  the signal. In S 4 the frequency of  
the signal is increasing l inearly with time. The region 
in t i m e - f r e q u e n c y  space should therefore be ex- 
pected to be slanted. Since the signal is also win- 
dowed we expect  a corresponding change in the am- 
plitude in the t ime-f requency  spectrum. 

STFT ' s  of  the signals S l . . . . .  S 4 are shown in Fig. 
5. We  observe that the results are in agreement with 
what we would expect the spectrograms would look 
like. In order to obtain such figures we must fix a 
certain length of  the window and select what type of  
apodization function should be used (here it is a 
Gaussian function). Both will be damaging to the 
resolution, either in the time or frequency domain. 

Resolution is intuitively understood as the degree of  
detail we are able to see in each domain. A short 
window length will have a good time resolution i.e. 
we can see detailed changes happening in time. The 
resolution in the frequency domain is not so good, 
however and the number of  discrete frequencies we 
can see is reduced. A large window will  have oppo- 
site properties: poor resolution in the time domain and 
good in the frequency domain. It is useful here to 
imagine the window as a box containing sinusoidal 
waves. Since the box has a finite length, there must 

c- 
O 

-o 

5" t- 
@ 

EF 

Shaded area signifies high frequency resolution 

I I I ........ I 

Time direction Time direction Time direction 

Direction of decreasing ,, > 
size of sliding window 

Fig. 6. Illustration of the dependency of the frequency resolution 
on the size of the sliding window in STFI'. This is a property which 
is signal-independent. Note that the lower limit of the frequency 
resolution increases with decreasing window size. 
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be a lower limit to the frequencies of the waves it can 
contain. If  the wavelength of the wave is too large it 
cannot fit into the box. If  we start out with a large 
window, there will be a lower limit v 1 in the signal 
spectrogram to the resolving power along the fre- 
quency direction. The upper limit to the frequency 
resolution must correspond to the sampling fre- 
quency of the discrete signal at hand. ff a new STFr  
is performed with a shorter window size, there will 
be a new lower limit to the frequency resolution, v 2 
where v 2 > v 1 (see Fig. 6). If  we have a signal con- 
taining spikes in the middle, there will be problems 
with localizing in time those spikes with a large win- 
dow (blurring). The resolution in the frequency do- 
main, however is very good. Decreasing the window 
size will reduce the blurting along the time direction 
but worsen it in the frequency direction. One of the 
purposes with using the wavelet transform is to im- 
prove on the resolution problem. This will, in this 
case, correspond to selecting different sizes of the 
sliding window according to the frequency range we 
wish to investigate. 

1.3.1. The uncertainty principle 
The relationship between the resolution in time 

and frequency domains is referred to as the uncer- 
tainty principle. In Fig. 7 is a simple example which 
demonstrates this effect for discrete Fourier trans- 
form. In this figure the 6 t is the space between the 
points in time and 6 f  is the equivalent spacing in 

N data points 

time 

~ _ _ 8f~- I/NSt 

H I l 
frequency 

Fig. 7. The effect on the frequency resolution by changing the time 
resolution in Fourier transform. 

frequency. This means there will be an ambiguity in 
the representation of the frequency f which will ac- 
tually contain all frequencies within f + 8f. 

Those who are familiar with the Heisenberg un- 
certainty principle between non-commutating opera- 
tors in quantum mechanics will see that this is really 
the same formula: 

1 

( a t ) ( a t o )  > . (5 )  
- 47r 

where to is the angular frequency to = 21rf. This is 
the continuous case. At is the resolution in the time 
domain and A to is the resolution (or the 'bandwidth') 
in the frequency domain. A to can be expressed in 
terms of the window function g(t)  and its Fourier 
transform ~(to): 

fto2] ~( o9)12 dto 

Ato 2 =  fl~(to)12 dto (6) 

Two sinusoids will be discriminated if they are 
more than A to apart. Analogously we can express the 
time resolution: 

f t2 lg(  t)l 2 dt 
At 2 = (7) 

f l g (  to)12 dt 

Two pulses in time can be discriminated if they are 
more than A t apart. 

For a certain selection of window size and apodiz- 
ing function we get a resolution number r w = 
(At)(Ato) .  Since the window size is fixed, the 
time-frequency resolution will be the same for the 
total time-frequency region. Another way of under- 
standing this is to view the time-frequency domain 
as divided into regions of the same size. But this is 
not what we want. It would be better to have a dif- 
ferent value of r w for different positions in the 
time-frequency domain, This can be accomplished 
using several STFT analyses with different window 
sizes as discussed above. We can imagine this as the 
domain divided into a set of regions that become in- 
creasingly narrow in proportion to the frequency. This 
is similar to what the wavelet transform will be seen 
to be doing. In contrast to a constant bandwidth as in 
STFI', WT applies a constant relative bandwidth: 

Ato 
c = - -  ( 8 )  

to 

It is important to remember that the uncertainty 
relation is also valid for the wavelet transform. 
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2.  T h e  w a v e l e t  t r a n s f o r m  

There are several ways to look at the wavelet 
transform. In this tutorial we try to present more than 
one interpretation of the theory and at the same time 
try to show that they indeed converge to the same 
thing. 

2.1. The continuous wavelet transform (CWT) 

To understand the basic philosophy behind 
wavelets we will reinterpret the equations used to 
understand STFT. We stated earlier that a Fourier 
transform of the time-displaced windowed signal 
x ( t ) g ( t  - s) was performed and that the basis was the 
complex functions e -ito'. An alternative formulation 
is to say that our basis functions are time-displaced 
windowed complex functions: g( t  - s)e -j ~' and are 
applied to the full signal x(t) .  Thus we reformulate 
our transformation kernel. We now use a simple in- 
dex system to keep track of all the different func- 
tions. One efficient way to classify these functions is 
in terms of the position, s, of g( t  - s) and the fre- 
quency to in e -i  o,,. So for each pair of indices (s, to) 
(which actually defines the time-frequency domain) 
we have a complex exponential function. 

Let us define a function that uses these two in- 
dices: ks, o,(t) = g ( t  - s ) e  - j  tot which inserted into our 
STFT equation gives: 

S T F r ( s ,  to) = f x(t)ks,o(t ) dt (9) 

The wavelet transform can be described in a simi- 
lar fashion, but uses different functions than those 
described in ks,,o. In the WT the frequency is not used 
directly, but something that closely resembles it. This 
variable is referred to as the scaling variable a and 
the position variable b variable. In general we are 
actually using only one function (the scaling function 
¢ )  to build the different wavelet basis functions. We 
do this by scaling and translating dp: 

~b( ax - b) (10) 

A large a makes ~b more narrow and small a 
makes it more broad. Positive translations b shift ¢ 
to the right. 

The 'mother '  wavelet function O(t) can be ex- 
pressed as a linear combinations of the scaling func- 

tion (see Section 3 for details). In addition, every 
scaled and translated wavelet function t~a,b(t) Can be 
written in terms of the 'mother '  wavelet: 

1(=7) O a , b = ~ a ] ~  , a , b ~ q Z ,  a--/=O (11) 

where ~ '  is the domain of real numbers. The CWT 
is thus expressed as: 

oo 

CWT(a ,  b ) [ f ( t ) ]  = f ~ba:bf(t)dt 
- -  o o  

= (d/a ,b l f ( t ) )  (12) 

where (q/a,blf(t)) is a notation used for inner prod- 
ucts or the projection of function f ( t )  onto the 
wavelet function 0a,b (see Section A.3 for more ex- 
planation). 

We have given no restrictions here to the values 
of the indices (a, b) except that a cannot be zero. In 
the CWT the choice of (a, b) is continuous over the 
whole time-scale ((a, b)) domain. 

Given the continuous wavelet transform of a func- 
tion it is possible to restore the signal perfectly. It has 
been shown [36] that f ( t )  can be restored using the 
following formula: 

1 
f ( t )  - - / ° ° / =  CWT(a ,  b) Oa,b d a d b  (13) =CJo 
where C is 

:o = - -  d o  ( 1 4 )  

The reconstruction can take place only if this con- 
stant is defined. 

The CWT is a continuous convolution of the 
wavelet function with the signal over the entire con- 
tinuum of wavelet scales: 

CWT(t ,  a) = f ( t )  ® W ( a ,  t)  (15) 

It is important to stress this because it is crucial to 
the operation of the wavelet transform in all its forms 
(i.e. continuous, discrete and fast). Historically inves- 
tigators have produced transformations similar to 
rudimentary wavelet transforms by convolving a ba- 
sis function with the signal under investigation. The 
wavelet transform in its most general incarnation does 
exactly this with a series of scaled versions of the 
basis function. The transform coefficients produced 
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by this process are merely the correlation of that scale 6 
of the basis function at that position with the signal 
i.e. it is a measure of how similar that basis at that 

5 

scale and position in time is to the signal. In particu- 
lar instances where the signal is known to contain 

4 

features of a specific form, then there may be advan- 
tages to using this form as the basis. In general where ~ a 
no prior knowledge of the signal is available, an or- 
thogonal basis is usually preferred in order to avoid 
redundancy in the transform. The wavelets are sim- a 
ply particular instances of basis functions which are 
chosen to satisfy certain criteria of benefit in analysis 1 o 
of general signals. One example of such a property is 
that the wavelet should be bandlimited in both time 0 
and frequency domain. 0 

The CWT is a very redundant transform in that it 
maps a 1D function into a 2D function. The normal- 
ization 1/Iv~-I in Eq. (11) is to ensure that the norm 
for any translated or scaled version of the mother 
wavelet is the same as the mother wavelet itself i.e. 
to ensure that all wavelets at all scales have the same 
area and contain the same energy: 

II~a,b( t)ll = II~b(t)ll. (16) 

We have applied the CWT on the four test signals 
S 1 . . . . .  S 4. The results from these analyses are shown 
in Fig. 8. 

$1 $2 

Time Time 

$3 $4 

Time Time 

Fig. 8. The CWT results for the four test functions S] . . . . .  S 4 de- 
scribed in the text. Light colour means high value and dark colour 
means low value. 

Dyadic sampling of the time-scale(frequency) domain 

O O O O 

i i i i i i 
5 10 15 20 25 30 

Time axis position 

Fig. 9. Dyadic sampling of the time-frequency(scale) domain for 
wavelets. The dots indicate the center of the wavelet function 
~j,k(x). 

2.2. The discrete wavelet transform 

For the remainder of this tutorial we will be fo- 
cusing on discrete rather than continuous methods. 
The main difference between the discrete and contin- 
uous methods is the choice of the possible values for 
the (a, b) variables. In CWT we do not put any con- 
straints on the choice of these two coordinates and 
they can in principle map the whole (a, b) plane. In 
the discrete wavelet transform, however, we restrict 
the choice of possible (a, b) values as follows: 

a = aJo, b = kboaJo (17) 

where k, j are members in the set of all possible 
negative and positive integers (the set .7).  We will 
concentrate on orthonormal wavelet bases and choose 
a 0 -- 2 and b 0 = 1. This is called dyadic dilations and 
translations. The dyadic sampling of the t ime -  
frequency (scale) domain is demonstrated in Fig. 9. 
The scaling variable will hereafter be referred to as j 
and the translation variables referred to as k. j can 
be interpreted as frequency, but is not identical to it: 

large j 

short scale ~ ,~ small steps (18) 
high frequency) 

small j 

long scale ~ ~ large steps (19) 
low frequency ) 
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In Eqs. (18) and (19) we follow the scale number- 
ing by Donoho and collaborators in their WaveLab  
Toolbox [37]. 

In Eq. (15) represented the continuous wavelet  
transform as a continuum in both t ime and scale. The 
discrete wavelet  transform is merely the discrete rep- 
resentation of  this in both axes. This discretization 
allows the wavelet  transform to be numerically com- 
puted as a series of  discrete convolutions in time at 
discrete intervals of  scale. However,  this is a compu- 
tationally cumbersome procedure and the popular  al- 
gorithms achieve the same end by using the lower 
bandwidth  of  the longer  scale wavelets  to al low 
downsampling of  the signal. There is no need to con- 
volve a long-scale wavelet  with every sample in the 
signal. The same information is obtained from a 
wavelet  of  size, say four times as long, by convolv- 
ing it with every fourth sample as would be obtained 
by convolving it with every adjacent sample. This 
trick results in much shorter convolution sequences at 
long scales and hence a much faster transform [26]. 

We  now look at the wavelets themselves and the 
motivat ion for how they are derived. In order to 
el iminate ambiguities in interpreting the transform it 
is desirable that each scale of  wavelet  covers a sepa- 
rate band of  frequencies, such that information con- 
tained in any particular wavelet  scale is prevented 
from blurring adjacent scales. Consequently it is nec- 
essary to bandlimit (l imit  the upper and lower fre- 
quencies covered by)  the wavelet. How this is done 
is illustrated in Fig. 10. In the wavelet  transform the 
t ime- f requency  space is divided into proportional 
width bandpass filters, see Fig. 11. In the Fourier 
t r ans fo rm and  the S T F T ,  h o w e v e r ,  the  t i m e -  
frequency space is divided into sequences of  equal 
width bandpass filters (previously illustrated in Fig. 

2). 

F[~g(x)] [ cale Scale 1 Scale 2 Scale 3 

Fig. 10. Demonstration of how the frequency domain is divided in 
the wavelet transform. Each band corresponds to a scale and the 
width of the band doubles for each scale. 

r r r f r  

(~) 

N 

Time direction 

Fig. 1 l. This figure emphasises the resolution of the time and fre- 
quency (or scale) space in wavelet transforms. It is instructive to 
compare this figure with Fig. 6 which shows how the length of the 
sliding window in the time domain (of the STFT method) creates 
different resolutions in the frequency domain. For large windows 
in time, the frequency domain is well resolved to a certain lower 
frequency limit. This limit will increase with decreasing time 
window length. Assume that the window lengths were dyadicaUy 
chosen and that we used the frequency region [fn- 1, fn] for the 
shortest time window (length Ln). fn is the maximum resolved 
frequency and fn_ 1 is the minimum resolved frequency for win- 
dow no. n. The next window will be double the size of the previ- 
ous window and will have a frequency resolved region of [fn-2, 
fn]" We are not using the whole of this region but rather [f~-2, 
fn- 1 ]. This is continued until the largest window is reached. In a 
similar way we can view the time-scale resolution as shown in the 
present figure. In other words: We want to use the best resolution 
from each of the sliding time windows. 

How do we accomplish the octave division of  the 
frequency space? It is convenient if  the shape of  these 
octave filters is symmetric in order to facilitate min- 
imising leakage between them and to minimise phase 
distortion [38]. The standard way of  achieving this 
symmetry is to use what are referred to as quadra- 
ture mirror filters (QMF), see Fig. 12. These are 
matching pairs of  low- and high-pass filters whose 
cut-off  characteristics are similar, such that when they 
are applied simultaneously the resulting bandpass fil- 
ter has a symmetrical  shape on either side of  its pro- 
portional center frequency. In Fig. 13 we see the cor- 
responding high and low-pass filters as they are ap- 
plied in the wavelet  transform. Note that the high-pass 
filter is applied to a signal that has been low-pass fil- 
tered on a shorter scale. 

The bottom part of  the figure shows the effect of  
applying both filters simultaneously on a signal. We  
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Fig. 12. A matching pair of quadrature mirror filters. Here we show 
the filters for the Daubechies 4 wavelet and scaling function [47]. 
The low-pass filter is shown in thick line. The low-pass filter cor- 
responds to the scaling function and the high-pass filter corre- 
sponds to the wavelet function. 

see that a section of  the frequency space has been 
emphasized. Each of  these Q M F ' s  are just  the scal- 
ing and wavelet  function in the Fourier  domain. Thus, 
one way to understand the need for several types of  
wavelet functions is to realize that they correspond to 
different shapes of  the QMF filters in the Fourier do- 
main, i.e. different ways to bandlimit  the signal. In the 

i •  HIGHPASS FtLTER 

I r 

~" COMBINED 

i i 

Frequency 

Fig. 13. The power spectrum of the high and low-pass filters which 
are also known as the quadrature mirror filters (QMF). The high- 
pass filters in each iteration (middle part) give rise to the wavelet 
coefficients. Note that when the high and low pass filters are com- 
bined they form a bandlimited filter. Here 'combination' is not an 
addition, but a multiplication. 

D a u b e c h i e s  4 

. . . . . . . . .  : . . . . . . . . . .  _ _  _ 

D a u b e c h i e s  20 

Symmlet 4 

t . . . . . . . . . . . . . . . . . . . .  ' ' 
Symmlet 8 

Frequency 

Fig. 14. The high and low-pass (dashed lines) filters for different 
types of wavelets (Daubechies and Symmlet). 

Figs. 14 and 15 we have displayed the high and 
low-pass filters for Daubechies, Symmlet ,  Coiflet and 
Beylkin wavelets [39]. Due to strict conditions [10,40] 
about what is al lowed to be defined as a wavelet  there 
are not that many differences, so we note that the 
shifting and shape of  the filters are only slightly dif- 
ferent for the different wavelets. These conditions are 
related to accuracy in the reconstruction of  the origi- 
nal signal, the orthogonality of  the wavelets and the 
conservation of  area of  the scaling function. 

I f  we can create a wavelet  function (and associ- 
ated scaling function) whose spectral content mimics 

Coiflet 1 

Coiflet 5 

i . . . . . . . . .  ' . . . . . . . . . .  ' - - .  

Beylkin 3 

. . . . . . . . .  . . . . . . . . . .  - ' "  

Beylkin 13 

~ . . . . . . . . . . . . . . . . . . . .  ~ .  

t i 

Frequency 

Fig. 15. The high and low-pass (dashed lines) filters for different 
types of wavelets (Coiflet and Beylkin). 
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these quadrature mirror filters and which also satisfy 
the additional requirements for valid wavelet func- 
tions then we can use these functions as a basis set 
for the wavelet transform. The STFr  can also be de- 
scribed in terms of low- and high-pass filters but here 
they divide the frequency axis equally and not pro- 
portionally as for the wavelet quadrature mirror fil- 
ters. 

The effect of applying the two filters simultane- 
ously is to slice out a single section of the frequency 
space. This approach is applied iteratively in the fast 
wavelet transform, which is most often implemented 
as the Mallat algorithm [41 ]. The structure of the al- 
gorithm is shown as a diagram in Fig. 16 and can be 
explained as follows: 

(1) The original signal x ( n )  of length 2" is first 
analysed with a high-pass filter (illustrated by a 'H' 
in Fig. 16). The results of this high-pass filter are the 
wavelet coefficients at the shortest scale n -  1. The 
high-pass filter performs subsampling i.e. the signal 
size is halved in this process and the length of the 
wavelet coefficient vector w(n  - 1) is 2"-  1. 

(2) The original signal x ( n )  is low-pass filtered 
(illustrated by an 'L'  in Fig. 16) to produce the vec- 
tor x ( n  - 1) of size 2" -  1 

(3) Goto item 1 and repeat the process for n - - n  
- - 1 .  

(4) Stop. 

L 

L ~ H \ ~  

Fig. 16. A tree-diagram of Mallat's fast wavelet algorithm. The 
original signal (of length 2 n elements) is denoted x(n) in the fig- 
ure. The symbols H and L stand for high-pass and low-pass fil- 
ters respectively. The first H filter downsamples the original by 2 
and gives the wavelet coefficients w(n - 1) for the shortest scale 
n. The corresponding L filter applied to the original signal x(n) 
subsamples and creates x(n - 1) which has 2 n- 1 elements, w(n 
- 1) also has 2 " -  l elements. The process is continued until only 
one element remains. 

w(n-l) 

\"1 -~ .  w(n-3) 

V 
Fig. 17. The Mallat algorithm as described in the previous figure 
is here displayed in terms of the high (H) and low (L) pass filters 
(power spectra shown) as they appear when applied to a signal 
(here the decaying sine wave). The upper left figure is the x(n)  
signal shown in Fig. 16. The upper middle figure is the shape of 
the high-pass filter (the wavelet function) for this scale. The upper 
right figure is the result of the filtering (here the power spectra of 
the wavelet coefficients). The single figure on the second row from 
the top shows the low-pass filter which converts x(n) into x(n - 1) 
and snbsamples. The remaining subplots are analogous for the 
lower scales. Here the three highest scales are shown. 

We have also shown the algorithm in terms of the 
filters being used in the Fourier domain, see Fig. 17. 
Here the original signal (which is a windowed sinu- 
soidal function, upper left part of figure) is first sub- 
jected to a high-pass filter (upper middle figure). 
Daubechies 4 wavelets are being used in this exam- 
ple. The upper right is the wavelet coefficients for the 
shortest scale n - 1. In the second subfigure from the 
top, we have the low-pass filter (corresponds to the 
scaling function). These steps are continued until the 
number of elements in the subsampled signal is ex- 
hausted. 

2.3. Wavelet  packets  

Once the MaUat algorithm tree has been intro- 
duced it is fairly straightforward to explain wavelet 
packets [27,42-46] (WP) in an intuitive way. Look- 
ing at Fig. 16 we see that the ordinary wavelet trans- 
form has a tree structure where only one path through 
the left branch has been taken. In WP, paths through 
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Fig. 18. The wavelet packet approach is a generalization of the Mallat algorithm. High- and low-pass filters can be used on the detail of 
signals (from high-pass filtering) as well as on the low-pass filtered signals. 

the full tree are possible, which makes the wavelet 
transform a subset of the WP. The general tree struc- 
ture for the WP transform is shown in Fig. 18. The 
number of possible wavelet forms is much larger and 
compared to the Mallat algorithm, WP is much more 
flexible. WP thus allows the user to zoom in on spe- 
cific parts on the time-frequency domain in a more 
detailed way than is possible with the ordinary 
wavelet transform. Thus, wavelet packets can through 
arbitrary band splitting have frequency resolutions 
different from the octave band constant relative 
bandwidth scheme found in the ordinary wavelet 
transform. More importantly for general signal anal- 
ysis is the fact that WP enables data-dependent parti- 
tion of the time-frequency space. 

3. The multiresolution approach to wavelets 

3.1. Nested spaces 

To obtain an intuitive understanding of what is 
meant by multiresolution we start with an example. 
Consider a landscape seen from an airplane high 
above the ground. Only the major features like 
mountains, rivers and large geological structures can 
be seen. We would call this a coarse or low level 
resolution of the landscape. Moving in closer more 
detail will enter the picture. The next we will see is 
houses, cars and roads. The next will be humans, 
chairs and animals. Each stage of resolution can be 
considered as a space which could be imagined to be 
represented as a linear combination of some suitable 

basis. Each resolution space is a subset of the resolu- 
tion space which has a higher resolution. So we could 
say that 'mountain space' is a subset of 'house-car  
space' which is a subspace of 'human-animal-chair  
space' which is a subspace of ' k e y - s p o o n - c o i n  
space'..., which is a subspace of 'atomic space'. 
Calling each subspace Vj we can write this nested 

space as: 

. . .V_ 2 c V _  1 c V  0 c V  1 c V2...  (20) 

For our finite approximations we always set the 
lowest detail space counter to zero. 

For present purposes we will be interested in the 
multiresolution structure of curves or spectra. Intu- 
itively, we view high-frequency noise differently 
from broad, low-frequency components due to e.g. 
baseline effects. By employing the multiresolution 
view, we can build and dismantle curves according to 
resolution level. So, the wavelet functions are con- 
structed to focus on different resolution details in the 
signal at different positions. This is possible because 
of the special structure of the wavelet basis func- 
tions. We have seen that the wavelet transform corre- 
sponds to an octave partitioning of the frequency do- 
main. Each of the filters correspond to the convolu- 
tion of a wavelet function in the time domain. Even 
though we partition different parts of the frequency 
domain, the wavelet function is the same; it is just the 
scaling of the function that differs. This means that 
when we focus on low-frequency components in a 
spectrum, a stretched version of the wavelet function 
is used. For high-frequency components we need to 
use down-scaled wavelet functions. When we pre- 
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Fig. 19. The scaling functions and wavelets functions for 
Daubechies 4 and Symmlet 8 bases. 

sented the Mallat algorithm, we needed two •ters.  
The high-pass filter corresponds to the wavelet func- 
tion whereas the low-pass filter corresponds to the 
scaling function. The nested multiresohition proper- 
ties of  these functions can be derived from their scal- 
ing relations. First, the scaling function in the time 
domain, th(t) can be written in terms of  itself on a 
smaller scale <b(2 t) e.g. 

th( t )  = c0~b(2t ) + c , d ~ ( 2 t -  1) 

+ c2 q~(2t - 2) + c3~b(2t - 3) (21) 

where the c ' s  are numerical constants that define the 
scaling function. Eq. (21) is called the dilation equa- 
tion. For the Daubechies 4 scaling function (see Fig. 
19 upper left comer)  the coefficients are 

(1 + V~-) 
Co = 4 

(3+ ¢g) 
C l  ~ -  4 

c2 = 4 

- ( V ~ - -  1) 
(22) c3 = 4 

Second, the corresponding wavelet function has a 
recursive relation to the scaling function also i.e. 

O ( t )  = - c 3 ~ b ( 2 t  ) + c 2 d ~ ( 2 t -  1) 

-- Cl~b(2t - 2) 4- c 0 ~ b ( Z t -  3) (23) 

Please note the reversed order of  the coefficients. 
These coefficients are the quadrature mirror filter co- 
efficients discussed earlier. See Fig. 19 upper right 
comer  for the Daubechies 4 wavelet function. The 
figure also contains the scaling and wavelet  function 
for the Symmlet  8 wavelet  which we have found to 
be useful for analysing vibrational spectra. Because of  
the recursive relations be tween  the scaling and 
wavelet function, we can start the description of a 
function at a long scale and add subsequently more 
detail. This coarse-to-fine-structure approach is eas- 
ily demonstrated by using the simplest wavelet, the 
Haar wavelet: 

0 < x < ~  

~b(x) = 1 ' (24) ~ < x < l  

otherwise 

whose scaling function is: 

q~(t) = otherwise 

The Haar wavelet 's  relation to the scaling func- 
tion is: 

qJ(t)  = ~b(Et) - q ~ ( 2 t -  1). (26) 

For the Haar  basis an actual formula  for the 
wavelet basis can be given, which unfortunately is not 
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Fig. 20. Demonstration of multiresolution analysis (MRA) recon- 
struction of the smooth signal given in the dash-dotted line. We 
start with the coarsest level and add more detail by including new 
coefficients for new scales. Here the Haar basis is used. 
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the case in general for most wavelet function. Usu- 
ally only a relation as in Eq. (23) can be given. 

The aim of a wavelet transform is to decompose 
any signal f into a summation of all the possible 
wavelet bases at the different scales. This means we 
can use the following formula for reconstructing f 
given the wavelet coefficients Cm, = ( f l  I/Sm,,) and the 
wavelet functions ~O,,~ used: 

f (  t) = E E (flqJm.)qJm." (27) 
m n 

Since the orthogonal wavelet and scaling func- 
tions discussed here follow a ladder-like structure, it 
is possible to reconstruct f gradually i.e. go from a 
coarse reconstruction and subsequently add more de- 
tail from shorter scales. In Fig. 20 we have done just 
this. Here the Haar wavelet is used to represent a very 
smooth function. By adding more detail, we will 
eventually approach the true form of the curve. How- 
ever, the Haar wavelet is not suitable for description 
of smooth functions and the number of detail func- 
tions that we must add is high (slow convergence). By 
using a wavelet that is more similar to the function 
one tries to approximate, fewer scales are needed to 
get a satisfactory description. This is demonstrated in 
Fig. 21 where the same function has been approxi- 
mated by the Symmlet 8 wavelet. In this case, we 
have an almost perfect representation after just three 
scales. 

Scales 1 to 1 
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0 0.5 

Time 

Scales 1 to 2 
2,5 

1.51 
i 

0.5 
Time 

Scales I to 4 
2.5 

"1.5 

1 
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Fig. 21. Demonstration of MRA reconstruction. Same as previous 
figure, but here the Symmlet 8 basis is used. Note that this wavelet 
is better since it converges faster than Haar. 

3.2. Frames 

We showed in Section 3.1 that the discrete trans- 
form corresponds to wavelet functions with restric- 
tions on the scaling and translations of the wavelet 
functions. So far, orthonormal wavelets have been 
discussed. Frames are a type of wavelet that are not 
orthonormal. Frames may be viewed as something 
between the nonredundant orthonormal wavelet  
transform and the very redundant continuous wavelet 
transform. 

One important criterion that must be satisfied for 
selecting bases that represent functions is whether we 
can reconstruct the original function from the de- 
rived transform coefficients [47]. Assume we have 
wavelets that are defined by the following shifts and 
translations: a = a~ and b = nboa ~ where n, m are 
positive and negative integers. The space of available 
wavelet bases is therefore: 

~bm,n(t) = a o m/2~b ( ao m t -- nb o ) (28) 

It is important to note here that the functions ~b,,,, 
are not orthonormal as for the functions described 
above. 

In order to ensure that a wavelet transform using 
such functions is useful to us we must require that the 
set of inner products/projections (f(t)l~bm, ~) must 
be able to reconstruct f ( t ) .  In fact, we will require 
that the 'building blocks' ~bm, ~ can characterize any 
continuous function. We know from working with 
non-orthogonal or oblique vectors that a reconstruc- 
tion of a vector v requires the introduction of recip- 
rocal or dual vectors. We therefore assume that each 
of the functions (vectors in Hilbert space) ~bm, ~ have 
reciprocal functions ~m,~" The formula for the recon- 
struction is now: 

f ( t )  = E E (~Om,nlf(t))(bm,, (29) 
n m 

Refer to Section A.4 for information about recip- 
rocal/dual bases. To ensure stable reconstruction we 
must have a correspondence between the space of 
wavelet coefficients and the original function. If  we 
have, say, two different functions f l  and f2 that are 
'close '  together then we should expect that this 
'closeness' is also observed in the space of wavelet 
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coefficients. Mathematicians express this as the two 
spaces having the same topology. The effect of  this 
is that we can set upper and lower bounds on the sum 
of all inner products between the function and the 
wavelet frame functions. It is possible to show [47] 
that these bounds are: 

a l l f l l -  ~ ~ l ( / IqJm, ,>]  2 < BIIfl[ (30) 
m n 

We have a frame when A > 0 and B < oo. The 
parameters A and B are referred to as frame bounds. 
When they are equal (A = B) it is called a tight 
frame. It is important to realize that not all choices 
for ~b, a 0, b 0 lead to frames of  wavelets. First of  all 
the mother wavelet  must be admissible i.e if  the 
wavelet ~bm,,(x) = ao m/2~b(ao m x - nb o) constitutes 
a frame with frame bounds A and B then we must 
have: 

b°lna°a < ~o " ~ - 1  1 ¢ ' ~ ) I  s d~ < b°lna°B 
2r - - 2r (31) 

and 

b°lna°A < f°oo I w l- l t ~l"~w ) l: dw < bolnao B 
2~r - 2~r (32) 

In other words, it is related to the integral over the 
whole Fourier t ransformed region of  the wavelet  
(¢(w) represents the Fourier transform of ~( t)) .  This 
is a necessary, but not sufficient criterion. To obtain 
sufficient conditions for the functions to constitute a 
frame, assumptions about the decay of  the wavelet 
must be fulfilled. Decay means here that the wavelet  
goes sufficiently fast towards zero in both the time 
and frequency domain. 

3.2.1. Examples of  frames 
The second derivative of  a Gaussian, also referred 

to as the Mexican hat: 

~b(t) = (1 - tE)exp( - t 2 / 2 )  (33) 

is a frame. 
Another example of  a wavelet  frame is the STFT 

basis mentioned early in the paper. The basis func- 
tions are: 

gm,, = g (  t - nso)e im't (34) 

I f  this is to be a frame we know that there must 
exist frame bounds A > 0, B < oo such that 

a f l f (  t)l z <_ ~_, E l ( f (  t ) lgm, , ) l  z 
m n 

<_ B f lf( t)l 2 (35) 

In addition we must have that toot 0 < 2¢r for this 
basis to be a wavelet frame. 

4. Applications 

We will briefly discuss some of the areas where 
the wavelet transform has been found effective and 
which have relevance to problems discussed in the 
field of  chemometrics. We focus here on the follow- 
ing applications: (1) noise removal (denoising), (2) 
baseline removal,  (3) zero crossing (finding second 
derivatives), (4) signal compression and (5) wavelet 
regression. 

4.1. Denoising 

Noise is a phenomenon that affects all frequen- 
cies. Since the signal will tend to dominate the low- 
frequency components it is expected that the major- 
ity of  high-frequency components above a certain 
level are due to noise. This is the underlying philoso- 
phy for traditional Fourier filtering where low-pass 
filters cut off the high-frequency components. Simi- 
larly, we can expect small wavelet  coefficients at 
short scales to be mainly due to noise components. 
The procedure for wavelet denoising will therefore 
be: 
• Apply WT to a noisy signal and obtain the vector 

w wavelet coefficients. 
• Reduce or remove those elements in w that are 

thought to be attributed to noise. 
• Apply the inverse W T  on w to obtain a denoised 

function. 
Wavelet  denoising methods in general use two 

different approaches: 
• Hard thresholding. 
• Soft thresholding. 

The hard thresholding philosophy is simply to cut 
all the wavelet coefficients below a certain threshold 
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Fig. 22. Illustration of the wavelet denoising procedure applied to 
a diffuse reflectance infrared spectrum of sodium succinate (256 
co-adds using a Bruker IFS28 b-T-IR spectrometer). The perfor- 
mance of the wavelet denoising method 'HYBRID' is compared 
with Fourier denoising based on a smooth low-pass filter. The cut- 
off point for the Fourier denoising is partially based on manually 
determining the Fourier domain part dominated by noise (see the 
text for more details). 

to zero. Soft thresholding on the other hand, reduces 
the value (referred to as 'shrinking') of  wavelet coef- 
ficients towards zero if they are below a certain value. 
For a certain wavelet coefficient k at scale j we have: 

Wk: = signl(IWkl- A)I (36) 

where sign returns the sign of  the wavelet coefficient 
w k and A is the threshold value. 

In Fig. 22 we have applied a wavelet denoising 
method referred to as 'HYBRID '  [48] to an infrared 
spectrum (see Section A.5 for a description of  the 
method). 

The noise-free infrared spectrum is shown in the 
upper left comer of  the figure. The noisy infrared 
spectrum is shown in the upper right comer and the 
wavelet denoised infrared spectrum is in the lower 
right comer of  the figure. The method has been com- 
pared with the performance of  the Fourier method by 
applying a low-pass f'llter to the spectrum (lower left 
comer). A region in the power spectrum of  the signal 
is specified which most likely contains noise; this is 
usually located in the upper region of  the power 
spectrum. The maximum amplitude value in this re- 

gion is used as a cut-off level. At the located cut-off 
frequency a sigmoid function is used to implement a 
soft threshold. From visual inspection of  the results it 
is obvious that the wavelet denoising method has 
performed better than the Fourier method. 

4.2. Baseline removal  

Whereas noise is mostly located in higher scales, 
unwanted baseline offsets are usually very- low- 
frequency components that can be found in the lower 
scales. Therefore, it is possible to obtain both denois- 
ing and 'debasing' by selecting the best middle scales 
that are dominated by the signal only. We decided to 
test removal of  baselines and denoising on a Raman 
spectrum of  a D-glucose crystal placed on a quartz 
cover slide. The spectrum was recorded by a Ren- 
ishaw Raman Microscope with a 633 nm H e - N e  laser 
in a 1 s collect ( ×  50 magnification). In Figs. 23 and 
24 we show how the wavelet transform can be used 
to remove baselines. First we removed the noise (here 
using a technique referred to as 'VISU' ,  see Section 
A.6 for explanation of  this method). The noisy Ra- 
man spectrum is shown in the upper part of  Fig. 23 
and the denoised spectrum is shown in the lower part 
of  the figure. The signal in this example had n = 4096 

500 . . . . . . .  

0 ~ 
0 500 1000 1500 2000 2500 3000 3500 4000 
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Fig. 23. The original (noisy) sample Raman spectrum of a D-glu- 
COSe crystal on a quartz slide is shown in the upper part of this fig- 
ure. The experiment originated from a 1 s collection experiment at 
X 50 magnification on a Renishaw Raman Microscope. The 
wavelet denoising technique 'VISU' (see Section A.6 for more de- 
tails) on the signal produced the result shown in the lower part of 
the figure. 
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Fig. 24. The wavelet coefficient vector from the denoising process 
of the Raman signal in the previous figure is further used in the 
baseline removal step. In order to remove features that originate 
from baseline effects only, we inserted zero elements in the first 
four scales (i.e. the scales dominated by low-frequency informa- 
tion). This figure shows the result after inverse wavelet transform 
of that coefficient vector. 

data points (where 1128 of  these points are added as 
zeros to make the signal length a power of  2) and 
therefore 12 scales were constructed, [0 . . . . .  11]. The 
baseline information was found to be located in the 
four lower scales and these ([0 . . . . .  3]) were thus re- 

moved i.e. set to zero values. In this case the pres- 
ence of  baseline information was determined by vi- 
sually inspecting the different scales using back-  
ground information about Raman spectra for the sys- 
tem studied. W e  know that very broad spectral fea- 
tures were not to be expected to originate from the 
molecular  structure and could therefore safely be as- 
cribed to unwanted baseline and background fluores- 
cence effects. The new wavelet  coefficient vector was 
inverse transformed and we observe that the recon- 
structed signal (see Fig. 24) has significantly less 
baseline problems compared to the original signal. 

4.3. Zero crossing 

One important area of  signal analysis is the find- 
ing of  zero crossings of  higher  derivatives.  This 
would be a trivial matter if  the signals were noise- 
free. Unfortunately, this is not the case and some 
smoothing mechanism must be employed.  Savitsky- 
Golay techniques are the most famous for these kinds 
of  problems. The critical points of  interest often exist 
at different scales and linear smoothing will  have 
difficulties with finding the correct points and their 
locations. Witkin  [49] demonstrated a scale-space 
method which can be used to estimate stable critical 
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Fig. 25. The effect of convolving a Gaussian wavelet with increasing width to a signal (an FI'-IR spectrum). When the width of the Gauss- 
ian is small most of the details of the original signal is still present. When the width of the Gaussian is increased, features are lost. The 
Ganssian function has one important property: The features at long Gaussian widths are not lost when we go to smaller widths. 
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points. The method is a continuous wavelet trans- 
form where the wavelet used is the Gaussian func- 
tion. Thus, given a function f ( t )  we convert this to a 
2D function G(t, or) where o- is the scale parameter 
in the Gaussian i.e. width of the function: 

G(t ,  or) = f ( t )  ® g ( t ,  or) 

f ~ ] ( u )  g(  u, or ) du (37) 

where 

1 ( - ( t - u ) 2 )  (38) 
g ( u, or) = ~ exp ~or--2 

The Gaussian is centered at u and has a standard 
deviation (width) of or. The Fourier transform of a 
Gaussian is also a Gaussian. When we use various 
convolutions, we effectively remove more of the 
high-frequency components in proportion of the value 
of the or parameter. In this way we will obtain a hi- 
erarchy of abstractions of this signal at different 
scales. In Fig. 25 we have plotted all the convolu- 
tions (within the region of selected widths) for a cer- 
tain signal. Note that as we increase the width of the 
Gaussian wavelet, the convolved curve gets increas- 
ingly smooth. At any value of or, the extrema of the 
nth derivative are given by the zero-crossings in the 
(n + 1)th derivative. We can compute these deriva- 
tive by: 

OnG O~g 
Ot------g-=f® Ot----- T (39) 

The derivatives of the Gaussian function can be 
obtained analytically. The method can be applied to 
any higher order derivative, but for most chemical 
problems, the second derivative, or the extrema of 
slope (inflection points), is the most important. The 
nth order zero-crossings in a signal f ( t )  are thus the 
points that satisfy: 

O~G O( n + 1) G 
Ot n = O, Or(n+ 1-------'~ ::fi: 0 .  (40) 

In Fig. 26 we see the zero-crossings for the sec- 
ond derivative of an FT-1R spectrum. In order to ex- 
tract qualitative information from such plots we make 
two assumptions: 

(1) The extrema which are located on a common 
contour over several scales arise from a single under- 
lying event (this is the identity assumption). 

![ '~ii ' ~iili 

E 
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f i 
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Fig. 26. The zero crossings of the set of convolved spectra shown 
in the previous figure. Note that the zero-crossing across scales 
form connected loops. The position within the loop before it is 
further split into subloops defines the stable region for that critical 
region. In a stable region the sign of the second derivative is con- 
stant. 

(2) The true location of the event is where the 
zero-crossing contour approach or ~ 0 (the localiza- 
tion assumption). 

It is thus possible to identify features that most 
likely correspond to true underlying processes by 
looking at the stability of an interval over scales. 

Instead of using the Gaussian wavelet in a contin- 
uous manner, dyadic scale sampling in zero-crossing 
identification is also possible, as shown by Mallat [50] 
and Bakshi [51]. The major advantage is a significant 
reduction in the floating point operations (FLOPS) 
needed compared to the Gaussian wavelet approach. 
In addition, the Ganssian is not compactly supported 
in either domains and a large number of coefficients 
are required for the corresponding filters. 

4.4. Signal compression 

In a way, wavelet signal compression is very sim- 
ilar to the process of denoising. Since we want to 
represent the original signal with as few bits as pos- 
sible, it is always assumed that high-frequency com- 
ponents are due to noise and can therefore be re- 
moved. There is a strict relationship between the 
number of bytes needed in storage of a function and 
its smoothness. By storing just the denoised wavelet 
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coefficients instead of the original variables, a signif- 
icant compression ration can be achieved. It should be 
noted that we restrict the number of possible wavelet 
coefficients by letting them vary over a finite (pre- 
ferably small) set of possible values; this process is 
referred to as quantization. 

One particular basis which has been found to be 
promising in this connection is the B-spline [52,53]. 
The B-spline is well suited for the development of 
wavelet bases [54-57]. It is necessary to perform an 
orthogonalization procedure to make the B-spline 
bases orthogonal. The B-spline bases are translates of 
each other, but they are not orthogonal. When the 
compression is for storage purposes only, the wavelet 
coefficients are further compressed using lossless 
methods such as that of Huffman [58]. An additional 
benefit from a linear compression, is that it is possi- 
ble to apply the analysis (e.g. a principal components 
analysis or a partial least squares regression) on the 
compressed representation only [59-61]. This means 
one can get an approximate solution to the problem 
using fewer FLOPS. Since the representation is lin- 
ear it has been demonstrated [60,61] that it is possi- 
ble to use the results of the compressed representa- 
tion and by simple multiplications of wavelet basis 
matrices be able to extract the results on the uncom- 
pressed representation. This is a general result and is 
valid for any type of linear transform matrices used 
on the data. 

4.5. Wavelet regression 

In Fourier regression [62] a regression model is 
formed between the frequency components deter- 
mined in a Fourier analysis and a dependent variable 
y. Let X be the original data matrix with N spectra 
(as rows) and M wavelengths. If y is the concentra- 
tion vector for some chemical component, we need to 
estimate the regression coefficients b in the follow- 
ing equation: 

y = X b  (41) 

In Fourier regression we replace the original data 
matrix X with the projections of each spectrum onto 
the Fourier basis matrix i.e. we are using the Fourier 
transform of each spectrum instead of the original 
spectrum. Assuming smoothness we cut off the high- 
est frequency components. We usually use the power 

spectrum and not the full complex representation. If 
the matrix of power spectra is P we get: 

y = Pb (42) 

which is solved in general by 

= P+y (43) 

where the generalized inverse P+ can come from 
some regression method (e.g. partial least squares). 
Similarly, we can use the wavelet transform as a pre- 
processing step before doing a regression. There are 
other approaches to using wavelet in connection with 
regression [63-67]. It is important to realize that we 
are performing a scale-dependent regression. The 
advantage with this approach is that we form a re- 
gression model where specific scale features can be 
recognized as important for the prediction. The 
wavelet transform of a 1D signal is usually coded as 
a vector w where each scale is stored sequentially. 
The structure of w is Scale 0 with 1 element, fol- 
lowed by Scale I with 2 elements, followed by Scale 2 
with 4 elements . . . . .  followed by Scalej with 2 j ele- 
ments. Thus, the total vector w of wavelet coeffi- 
cients contains M elements i.e. as many as the origi- 
nal signal. As for Fourier regression we obtain the 
wavelet regression coefficients in general as: 

= W+y. (44) 

There is one very interesting ~roperty of the esti- 
mated wavelet regression vector b: it can itself be in- 
terpreted as a wavelet transform of a signal. This 
means we can split up the regression vector into dif- 
ferent scales as we do for wavelet coefficient vectors 
and observe the regression coefficients at different 
scales. It should be emphasized here that the b re- 
gression vector from the PLS analysis is one of sev- 
eral possible vectors that can be subjected to such an 
interpretation. For instance, each PLS loading vector 
can also be given the scale-space interpretation. 

The process for giving PLS variable vectors a 
scale-space interpretation, is depicted in Fig. 27. To 
demonstrate the applicability of the approach we have 
performed wavelet regression to a set of Fourier 
Transform infrared spectra recorded in our lab (un- 
published results). Each spectrum is associated with 
a different concentration of the antibiotic ampicillin 
added to a suspension of the bacterium Staphylococ- 
cus aureus. The wavelet coefficient vector for each 
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spec t rum was c o m p u t e d  by us ing the S y m m l e t  8 

wavele t .  A PLS  analysis o f  the wave le t  t ransformed 

data set p roduced  a seven-fac tor  mode l  wi th  94.6% 

predict ion abil i ty on a separate val idat ion set. The  

corresponding  b-regress ion vec tor  was separated into 

different  scales and interpreted as a wave le t  coeff i -  

c ient  vector .  The  results f rom this analysis are shown 

in Fig. 28. Scales  4 to 7 around 1 2 5 0 - 1 8 0 0  cm -1 on 

the abscissa seem to conta in  the largest  regress ion 

coeff icients .  W e  also have  cluite large coeff ic ients  in 

a reg ion  around 2300 c m - 1  which  is due to interfer-  

ence  f r o m  C O  2. This  indicates  that a loca l ized  reg ion  

ove r  several  scales in the spec t rum is ve ry  impor tant  

for  the predic t ion  o f  the ampic i l l in  concentrat ion.  

Occur rences  o f  a few spikes in the lowes t  scales sug- 

gest  that we  have  some  rather low-f requency  compo-  

nents  that p lay an impor tant  role  in the predict ion.  

This  could  be  due to very  broad peak  features in the 

Use PLS on matt= of ~ . ~  
wavelet coefficients 

Fig. 27. A schematic overview of the wavelet regression approach. 
The process is started by converting all the spectra into wavelet 
coefficients. The new matrix of coefficients vector for each spec- 
trurn is then analysed by PLS (or another suitable regression 
method). Regression methods produce a b-regression vector which 
is used in the actual prediction from the wavelet coefficient space 
and into the dependent variable y space. This vector is interpreted 
as a wavelet coefficient vector which is separated into scale re- 
gions. It is now possible to interpret the regression coefficients at 
different scale levels. It is also possible to give loading vectors 
from PLS the same scale-space interpretation. 
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Fig. 28. This figure shows a wavelet regression coefficient vector 
from a PLS analysis. See a diagrammatical explanation of how this 
was constructed in previous figure. The upper part of this figure 
shows a representative infrared spectrum of the data set. The data 
set is a collection of infrared spectra of the bacterium Staphylo- 
coccus aureus in a culture to which are added different concentra- 
tion levels of ampicillin. The lower part of the figure shows the 
PLS regression coefficients interpreted as a set of wavelet coeffi- 
cients in a wavenumber-scale space. Using this diagram it is pos- 
sible to see which of the wavelet basis functions at different scales 
and wavenumbers are the most important in the PLS regression 
vector. Different parts of the regression vector correspond to dif- 
ferent scales. Note that scales 4 to 7 contain the largest coeffi- 
cients and are located in the region 1250-1800 cm -1 on the ab- 
scissa. This region contains a peak which is known to have high 
selectivity for the ampicillin molecule (at 1767 cm-1). We also 
have a few low-frequency scales with high regression coefficients 
in the same region. 

spectra or  more  l ikely  to the overa l l  absorbance due 

to the ampici l l in .  

It  should also be  ment ioned  that this type o f  anal- 

ysis s trongly suggests  that the use o f  all  the wave le t  

coeff ic ients  for the PLS analysis is not  necessary;  in 

o ther  words  we  can per form var iable  select ion in this 

wave le t  regress ion coeff ic ient  space and still be  able 

to retain a stable model .  

5 .  D i s c u s s i o n  

It is c o m m o n  pract ice to compare  the fast wave le t  

t ransform to the fast  Four ie r  t ransform ( F F r ) .  S ince  

F F T  managed  to revolu t ion ize  the analysis o f  data in 
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several areas of science it is probable that wavelets 
will do the same, but it remains to be seen to what 
degree. So far the majority of papers on wavelets have 
been focused on the theory and the development of 
efficient algorithms. The full implication of this the- 
ory for analytical chemistry and biochemistry will be 
evident when more interesting applications can be 
found. In spite, or perhaps because, of its promised 
power, the theory and particularly the use of wavelets 
is not particularly easy to understand for a newcomer 
to the field. So far the field has been dominated by 
mathematicians and computer scientists who have had 
very little interest in making the theory accessible to 
people in other fields who wish to use the wavelet 
transform simply as an analysis tool in the same way 
as they would use the FFT. This scenario is starting 
to change since we have observed that the number of 
papers using wavelets is increasing. Unfortunately, 
these papers are often written by the aforementioned 
mathematicians in the field and they often tend to see 
wavelets from the same point of view. This point of 
view is usually much too abstract to provide the 
newcomer with a feel for what wavelets do. We be- 
lieve it is very important to give different interpreta- 
tions and above all visual aids in the understanding 
of the results wavelet transforms generate. Even to- 
day, many people in chemistry and biology find the 
theory of Fourier series and Fourier transforms diffi- 
cult to grasp, although they are beneficial in all areas 
of analysis [68]. Without intuitive understanding of 
the real-world effects of the complex mathematics 
and algorithms, it is in our opinion very difficult to 
apply any mathematical theory to real-world prob- 
lems, and this application will be fraught with pit- 
falls due to ignorance of what the algorithm is actu- 
ally doing in terms of concepts rather than equations. 
The correct use of the FFT is littered with these pit- 
falls such that the FFT cannot be used (as it often is 
in practice) as a black box without risk of serious er- 
rors and /or  ambiguities in the analysis. The extra 
degrees of freedom in the wavelet transform allow 
extra flexibility but also extra freedom to make mis- 
takes. Mistakes can only really be avoided by a com- 
prehensive intuitive understanding of the basic con- 
cepts of the wavelet transform, in the same way that, 
in applying the FFF to real problems, it is far more 
important to know what it should look like than how 
to program the kernel. 
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Appendix A 

A.1. Compact support 

A function f ( t )  is said to be compactly supported 
if it is non-zero over a finite interval and zero else- 
where. For instance, a box function as in the Haar 
basis described in the text is compactly supported 
whereas the Gaussian function is not. 

A.2. Bandlimited 

A function f ( t )  is bandlimited if its Fourier trans- 
form F( f ( t ) )=)~to)  has compact support i.e. f ( to )  
= 0 for ]tol > Q, where Q is some real number. 

A.3. The bracket notation for inner products 

The bracket notation used in the text between two 
functions e.g. f and g is defined as: 

( f i g )  = f f (  t)* g( t) dt (A.1) 

and denotes the inner product between f and g. f ( t )  * 
indicates complex conjugation in case f and g are 
complex functions. It is customary to think of these 
functions as vectors in a infinite dimensional space, a 
so-called Hilbert space. The space of square inte- 
grable functions, L2(,9~) is an example of a proper 
Hilbert space. 

A.4. Reciprocal = dual = biorthogonal bases 

Reciprocal /dual /bior thogonal  bases are much 
used in tensor algebra. It is simply another basis de- 
rived from the original non-orthogonal basis which 
simplifies expressions. Above we mention dual or re- 
ciprocal functions and we make use of the deep 
mathematical analogies between functions and vec- 
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tors. It is often convenient to represent continuous 
functions as vectors in an infinite dimensional space 
(Hilbert space). To simplify the discussion and con- 
vey the basic ideas we will here consider ordinary 
vectors in 2 dimensional space only. Let gl  and g2 
be two basis vectors. Two vectors u and v are de- 
scribed in relation to gl and g2: 

U ~- Ulgl q- u2g2,  t~ = vlgl  -J- v2g2 (A.2) 

The inner product ( u l v )  is: 

2 2 
E E uivJ(uil•i > (A .3 )  
i=1 j = l  

which quickly becomes complicated for bigger ex- 
pressions. A more elegant method is by representing 
the second vector in another basis gJ (which is de- 
rived from the original one). Note that we use sub- 
script for the original basis and superscript for the re- 
ciprocal basis. The two bases satisfy the following 
relations: 

( g i l g  j )  = 8ij (A.4) 

where 6ij is the Kronecker delta. The new basis is 
referred to as the reciprocal or the dual basis and is 
orthonormal with respect to the old basis. We now use 
this to produce the components of a vector v to the 
basis g r  Each of these components are the inner 
products ( v l g i )  (where i is running over all possible 
dimensions which is here just 2). The vector v can 
be represented in the reciprocal basis: 

v = r i g  1 + v2g 2 (A.5) 

Inserting this into the inner product formula above 
we get (in this example we investigate the inner 
product ( vlgl  >): 

(r ig1> = ( v l g  1 + v2g2lgl> = vl<gllgl> 

+ vE(gElg l )  -- v 1 (A.6) 

Reconstructing v corresponds to v = v lg  1 + v2g 2 
and when we insert for v i we get 

2 
v = ~,, ( v J g i ) g  i. (A.7) 

i=1 

This formula is analogous to the reconstruction 
formula described for frames in Eq. (29). 

A.5. The 'HYBRID' method 

This is a soft thresholding method that depending 
on the value 

IIw(J)ll 2 - n 
e = (A.8) 

n 

will choose one of two values for the soft threshold 
~'. Let us introduce t A = 2 ~  n,  where n the num- 
ber of data points at scale j and t B = S(w (j)) where 
S is a thresholding based on Stein's unbiased risk es- 
timate (referred to as the 'SURE' method). The de- 
tails of this method will not be discussed here. Fur- 
ther, let us define the soft thresholding function 
'SOFT'  which is here written as applied to a single 
wavelet coefficient w~ j) at scale j: 

SOFT(w~j ), z)  = signl(lw~Y)l- ~')[ (A.9) 

where ~" is the chosen threshold. When we indicate a 
soft thresholding of a whole wavelet coefficient vec- 
tor at scale j we write SOFT(w (j), ~'). The 'HY- 
BRID' method uses one of two different soft thresh- 
olds depending on the value of the e parameter: 

SOFT(W (j), tA) if e < j 3 / 2 / n  

SOFT(w (j), min( t  A, tB) ) otherwise 

(A.10) 

nj is the number of elements in the wavelet coef- 
ficient vector at scale j. 

A.6. The ' VISU' method 

Here the soft thresholding is applied only to the 
wavelet coefficient vectors in the index interval [2 L 
+ 1, J ]  where L is a long scale level which always 
must be smaller than J (the shortest scale). The 
threshold value is t = ~ n .  

A. 7. Wavelet program packages available 

There are several program packages available that 
contain the most popular wavelet methods. In partic- 
ular, we have emphasized packages that run under 
MATLAB. 

(1) MEGAWAVE: A program package of C-func- 
tions written by Stephane Mallat et al. Available for 
free. 
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URL: ftp://ftp.cs.nyu.edu/pub/ 

wave / software/. 
(2) W a v e L a b . 7 0 h  A M A T L A B  toolbox created by  

Jonathan Buck_heit, Shaobing  Chert, Dav id  Donoho  
and  l a in  Johnstone.  Avai lab le  for free. 

URL: http://playfair.stanford.edu 

/ ~avelab / 

(3) Rice Wave le t  Toolbox  for Matlab:  A M A T -  

LAB toolbox created by  Jan Er ik  0 d e g ~ d ,  Haitao 
Guo,  Ramesh  A. Gopinath,  Markus  Lang  and Dong  

Wei.  Avai lab le  for free. 
URL : http : / / www- dsp. rice. edu / edu / 

wavelets / 

(4) WavBox :  A M A T L A B  toolbox created by  Carl  

Taswell .  Avai lab le  for free. 
URL : ftp : / / simplicity, stanford, edu 

/pub/taswell / 

(5) MathWorks  Wave le t  Toolbox:  A M A T L A B  
toolbox created by  MathWorks .  Commercia l .  Con-  

tact a d d r e s s / e - m a i l  etc.: 
The MathWorks, Inc. 

24 Prime Park Way 

Natick, MA 01760- 1500 

e-mail: info@mathworks.com 

URL : http : / / www. mathworks, com / 

products /wavelettbx. shtml 

(6)  W a v e L i b :  C p r o g r a m  p a c k a g e  b y  M.  
Bourges-Svenier .  Avai lab le  for free. 

URL : http : / / www- sim. int- evry. FR / 

bourges / i ibwave, html 

(7) Wave le t  Explorer:  Program package in  Mathe-  
matica.  Created by  Wo l f r a m Research Inc. Commer -  

cial. 
URL : http : / / www. wolfram, com 
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