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Abstract

Variable selection and compression are often used to produce more parsimonious regression models. But when they are

applied directly to the original spectrum domain, it is not easy to determine the type of feature the selected variables represent.

By performing variable selection in the wavelet domain we show that it is possible to identify important variables as being part

of short- or large-scale features. Therefore, the suggested method is to extract information about the selected variables that

otherwise would have been inaccessible. We are also able to obtain information about the location of these features in the

original domain. In this article we demonstrate three types of variable selection methods applied to the wavelet domain:

selection of optimal combination of scales, thresholding based on mutual information and truncation of weight vectors in the

partial least squares (PLS) regression algorithm. We found that truncation of weight vectors in PLS was the most effective

method for selecting variables. For the two experimental data sets tested we obtained approximately the same prediction error

using less than 1% (for Data set 1) and 10% (for Data set 2) of the original variables. We also discovered that the selected

variables were restricted to a limited number of wavelet scales. This information can be used to suggest whether the

underlying features may be dominated by narrow (selective) peaks (indicated by variables in short wavelet scale regions) or by

broader regions (indicated by variables in long wavelet scale regions). Thus, wavelet regression is here used as an extension of

the more traditional Fourier regression (where the modelling is performed in the frequency domain without taking into

consideration any of the information in the time domain). # 1998 Elsevier Science B.V. All rights reserved.

Keywords: Wavelet regression; Multivariate calibration; Partial least squares; Infrared spectra; Feature selection; Variable selection; Mutual

information; Scalogram; Feature extraction

1. Introduction

The rapid, quantitative and qualitative information

obtained from applying multivariate methods to spec-

tra (e.g. infrared, Raman, UV) is an effective alter-

native to using slow wet chemical analyses in

screening experiments [1±11]. In particular, we are

interested in the determination of the concentrations

of important compounds produced by industrially

interesting bacteria and yeasts. The methods usually

employed for solving such calibration problems are

partial least squares (PLS) regression [12±17] or

arti®cial neural networks (ANNs) [18±25]. We

will, in this paper, concentrate on the application of

PLS regression methods since these methods give

rise to models that are easier to interpret than neural
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networks and they are signi®cantly less computer-

demanding.

To improve understanding and prediction of regres-

sion models, the application of various transforms on

the original variables is often necessary. In particular,

the use of Fourier transform pre-processing enables

the user to represent a regression model in terms of

frequency domain variables rather than time domain.

This is referred to as Fourier regression. In a similar

fashion we present the application of the wavelet

transform [26±44] as a pre-processing step prior to

any type of regression, an approach we have chosen to

call wavelet regression.

The basis for our approach is the concept of multi-

resolution, i.e., the fact that phenomena can exist at

different scales or levels of detail. An infrared spec-

trum, for instance, can be described in terms of

features at different scales: the ®ngerprint region

around 800±200 cmÿ1 is a good example of a region

which requires a high resolution and much detail. In

contrast, at the other end of the spectrum, around

4000±3000 cmÿ1, we often observe broad features

due to various types of hydrogen bonding that form

a continuum of vibrational frequencies. Important

features in this region will require less resolution

and detail. When we apply regression methods to

raw spectra in general, the ®nal regression model is

based on the highest resolution level only. This means

that it is sometimes dif®cult to detect dependencies

between the spectrum space and, e.g., the concentra-

tion space of a compound which originate at different

scales. By using wavelet regression it is possible to

analyse the regression model at the different scales

separately and to investigate the contribution of each

scale to the ®nal regression model. We suggest here

that this approach can increase the interpretability of

parsimonious regression models.

2. Wavelet theory

2.1. Introduction to wavelets

Wavelets are becoming an increasingly important

tool in image and signal processing. Wavelets are

effective in extracting both time and frequency-like

information from a time-varying signal. The Short-

Time Fourier Transform (STFT) performs a constant

bandwidth splitting of the signal whereas the wavelet

transform (WT) has a proportional (octave) bandwidth

splitting of the frequency domain. Consequently, there

is a high time resolution for high frequency compo-

nents and low time resolution for low frequency

components. Unlike the Fourier transform, the

wavelet transform can use a variety of different

basis functions with different properties. One impor-

tant property of wavelet basis functions is their

localisation in both time and frequency domains

simultaneously.

Non-orthogonal, redundant and discrete wavelet

bases are referred to as frames [27,45,46] but will

not be discussed here.

The more popular orthogonal wavelet bases have

several interesting properties that make them suitable

as tools in signal analysis and compression. In parti-

cular it has been possible to construct fast and ef®cient

algorithms that enable wavelet transforms to be prac-

tical tools in signal processing.

A continuous wavelet decomposition can be written

as

w�s; b� �
Z
jsjÿ1=2 �s;b��t� f �t� dt; (1)

where  �s;b��t� �  ��t ÿ b�=s� is the wavelet function

at a particular scale s, i.e. the same wavelet function is

dilated or contracted according to the scale and f(t) is

the function to be analysed. b signi®es the translation

of the wavelet at scale s. Eq. (1) can also be interpreted

as a convolution of the signal with the wavelet func-

tion in the time domain. This interpretation is empha-

sised in Eq. (2) below by using the convolution

operator symbol 
 and the symbol F for the Fourier

transform operator. Thus, using the convolution opera-

tor symbol we rewrite Eq. (1) for the time domain as

w�s; b� � jsjÿ1=2 �s;b��t� 
 f �t�: (2)

In the frequency domain (after Fourier transform)

Eq. (2) is written as

F�w�s; b�� � F� �s;b��t��F�f �t��: (3)

These equations are straightforward applications of

the convolution theorem [47].

In the present paper only the discrete orthogonal

wavelet transform will be used, where the choice

of scales s and translations b is restricted; in general
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we set

s � a
j
0; (4)

b � ib0a
j
0; (5)

where a0�2 and b0�1 is the most common choice. i

and j are indices that can be any natural number Z.

Shifts that are multiples of 2 are selected since two-

channel ®lter banks that are downsampled by 2 are

only shift-invariant with respect to even shifts. In

addition, the discrete wavelet transform used here is

both linear and complete (which follows from perfect

reconstruction). The discrete wavelet transform also

satis®es the conservation of energy (referred to as

Bessel's or Parseval's equality [48]).

The scale can be interpreted as a measure of

frequency. A short scale contains high-frequency

components whereas a long scale contains low-fre-

quency components. An intuitive way of looking at the

wavelet transform is to interpret it as a successive

sequence of combinations of bandpass ®lters. The

wavelet function  (t) (also referred to as the `̀ mother

wavelet'') can be interpreted as a high-pass ®lter

acting on the original signal and the scaling function

�(t) (also referred to as the `̀ father wavelet'') behaves

as a low-pass ®lter.

The wavelet function  (t) can be written as a linear

combination of the scaling function. The scaling

function has the property that it can be written in

terms of scaled versions of itself:

��t� �
���
2
p X

k

ck��2t ÿ k�: (6)

The ck are the interscale basis coef®cients which are

related to the low-pass ®ltering in the wavelet trans-

form algorithm. Similarly the wavelet function can be

expressed as a linear combination of translates of the

scaling function �(2t):

 �t� �
���
2
p X

k

dk��2t ÿ k�: (7)

This is the fundamental wavelet equation. The

coef®cients dk are related to the high-pass ®lter used

in the wavelet transform.

A common algorithm for calculating discrete wave-

let coef®cients is the so-called Mallat algorithm

[39,40,49]. At each scale high (H) and low (L) pass

®lters are applied to the input signal. The actual shapes

of these ®lters are determined by the kind of wavelet

function used. The output from the high-pass ®lter at

each scale is recorded as the wavelet coef®cients. The

low-pass ®lter extracts the low frequency components

for the next scale where another set of high and low-

pass ®lters is employed. At each successive scale the

length of the vector upon which the ®lters operate is

halved; this is referred to as decimation. Thus, the total

number of available scales is log2(N); where N is the

length of the input data vector.

The positions of the wavelet coef®cients at indivi-

dual scales over the original domain can be visualised

if a `̀ stretching'' of the coef®cients is performed.

Since each wavelet scale in the Mallat algorithm is

a subsampling of the previous scale, it is possible to

decide over which region in the original domain the

wavelet coef®cient has its in¯uence. The plot where

the different wavelet coef®cients for each scale are

shown over the original domain is referred to as a

scalogram (see Fig. 1). This is analogous to the

spectrogram used in STFT which shows the tiling

of the time-frequency domain. Each tile represents

the area covered by a basis function at a certain

position in time and scale (frequency for STFT). In

this article we will use the shading of a tile to represent

the magnitude of the associated wavelet coef®cient. In

all scalograms presented in this paper, the absolute

value of the wavelet coef®cients are shown using a

grey-scale coding. Black signi®es the largest absolute

value and white signi®es zero coef®cient value. All

other absolute values in between are represented by

shades of grey.

2.2. The total wavelet basis matrix

The fast wavelet transform (FWT) can be formu-

lated in terms of matrix algebra by storing each of the

wavelet functions in the time domain in a matrix B.

This is the total wavelet basis matrix which includes

the basis functions from all the scales at all time shifts.

One sensible way of organising this matrix is to sort

the sets of shifted basis functions according to their

scale. This means that we present all the basis func-

tions that are shifted but have the same scale followed

by the next higher (or lower) scale's shifted basis

functions. The special organisation presented here is

not chosen arbitrarily but is closely related to how

Mallat's algorithm for calculating the wavelet coef®-
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cients operates. The number of shifts along the x-axis

depends on the value of the scale j. Assuming that the

total number of elements in our data vector is N�2J�1

the different scales are the integers from 0 to J. The

shifting coef®cient k has the integer values 0 to 2jÿ1

for each j value. Since each basis vector is stored in a

matrix row it is necessary to make a mapping between

(j,k) indices into r index of a single row vector where

r�2j�k�1. Note that this formula cannot be used to

®nd which function is located in vector element

r�1. This is a special case and corresponds to the

coef®cient from convolving the observed data pro®le

with the scaling function (0,1) of the wavelet in

question.

The basis matrix B is ordered according to scale as

follows:

B �

B0

B1

..

.

BJÿ1

BJ

2666664

3777775: (8)

Each submatrix Bj has a diagonal dominant structure

for scale j. The largest submatrices correspond to the

shortest scales (dominated by high-frequency compo-

nents). Note that B is orthonormal and therefore can be

used in the wavelet transform as follows:

z � BTx; (9)

where z is the vector of wavelet coef®cients and x is

the vector containing the input signal. The reconstruc-

tion is trivial:

x � Bz: (10)

2.3. Using wavelets in regression

In Fourier regression a regression model is formed

between the frequency components determined in a

Fourier analysis and a dependent variable. Let X be the

original data matrix with M spectra (as rows) and N

wavelengths (as columns). If y is, e.g., the concentra-

tion vector for some chemical component, we estimate

the regression coef®cients b as follows:

b � X�y; (11)

where X� is a generalised inverse that originates from

some regression method (e.g. PLS regression).

In Fourier regression we replace the original data

matrix X with the projections of each spectrum onto

the Fourier basis matrix, i.e., we are using the Fourier

transform of each spectrum instead of the original

spectrum. Assuming smoothness we usually cut off

the highest-frequency components. This constitutes a

de-noising step in Fourier regression. In addition,

usually the magnitude spectrum and not the full

complex representation is used.

Fig. 1. Illustration of how the wavelet coefficient vector is

interpreted at various scales over the original domain. Note the

`̀ stretching'' process which is necessary since each scale is

subsampled by two compared to the previous scale. Each tile

represents the area covered by a wavelet basis function in the time-

frequency domain (or rather the time-scale domain). Please note

that the colour coding used here is as follows: Black is the highest

absolute value of the coefficient for the tile and white represents the

zero value. Absolute values in between are shown using grey

shading.
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The main advantage of using the magnitude spec-

trum representation in regression rather than the time

domain representation is that the ®nal regression

model is formulated in terms of individual frequen-

cies. For certain data sets, the frequency domain is

more suitable for modelling than the time domain, and

often we discover that the resulting regression models

in the frequency domain have higher predictive ability

and are more parsimonious. There is, however, a

serious problem with the Fourier representation:

changes in frequencies over time are not captured.

A magnitude spectrum simply contains all the

frequency components over the whole time domain

range. Various methods have been constructed to

extend the capabilities of the FT, such as the STFT

where standard Fourier transforms are performed

along windowed time regions. Another approach

to obtain localisation in time and frequency

domains is to use wavelet transforms. Analogous

to Fourier regression we therefore suggest that

wavelet transforms can be used as a pre-processing

step before doing a regression, hereafter referred to

as wavelet regression [26].

The wavelet transform of an 1D signal is usually

coded as a vector z where each scale is stored sequen-

tially. The structure of z as found in Eq. (9) is Scale0

with 1 element, followed by Scale1 with 2 elements,

followed by Scale2 with 4 elements, etc., followed by

Scalej with 2j elements. The matrix Z of wavelet

coef®cients for each spectrum has dimensions

[M�N] elements, where M is the number of spectra

and N is the number of variables in each spectrum

(N�2J�1 where J is the shortest scale). Analogous to

Fourier regression we obtain the wavelet regression

coef®cients in general as

bw � Z�y: (12)

There is one very interesting property of the esti-

mated wavelet regression vector bw: it can itself be

interpreted as a wavelet transform of a signal. This

means we can present bw in a scalogram as we do for

`̀ ordinary'' wavelet coef®cient vectors and observe

the regression coef®cients at different scales. It is

important to keep in mind that each of the scales is

valid over the whole time domain (in this article

we apply the wavelet transform on the infrared wave-

number domain rather than on a true time domain).

Any type of vectors related to the relationship between

the original variables in a regression can be analysed

in this fashion; for instance we could have investigated

the scalograms of PLS loading vectors for each

component. There are two types of loading matrices

in PLS [50] which are usually referred to as P and

W. The loading weights in W are orthogonal, whereas

the estimated loadings in P are in general non-ortho-

gonal.

It is therefore possible to produce scalograms for

each type of loading vector. But is it really necessary

to perform a wavelet transform of each spectrum

before a regression? For a special case, it is not.

Let the wavelet transform of the original data matrix

X be called Z. The wavelet transform is now written as

Z � XB (13)

such that when we are looking at a generalised inverse

Z� we have:

Z� � �XB�� � B�X� � BTX�: (14)

Here we make use of the fact that the total basis

matrix has its transpose equal to its inverse:

BTB � I: (15)

Substituting Eq. (14) into Eq. (12) now gives

bw � BTX�y � BTb; (16)

which means that we can perform a fast wavelet

transform of the b vector from the PLS analysis

directly of the raw data, without the need to transform

all the spectra beforehand. Unfortunately, this result

cannot be used when truncating or manipulating

the individual wavelet coef®cient vectors for the

different spectra. In such cases we are forced to

perform a wavelet transform for each spectrum before

regression.

2.4. Interpretation of scalograms

The thrust of this paper is to make use of the fact

that a scalogram contains time and scale (frequency)

domain information. The magnitude of the wavelet

coef®cients gives an indication of what type of wave-

let (whether it is long or short scale) and where in the

signal it is important. To get an intuitive feeling for

scalograms it is useful to see their analogy to time-

frequency diagrams as produced by the STFT. In such

a transform we take an FFT of a small part of the signal
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and produce the local frequency spectrum. A local

apodizing function such as a Gaussian is usually

applied in order to remove ringing effects (Gibbs

effect). The process is repeated by moving a window

of a certain size over the signal. The size of the

window is important. A short window will produce

an excellent time resolution, but a poor frequency

resolution. A long window will produce the opposite

[51]. The wavelet transform can be interpreted as a

STFT where we have used a short window length for

the higher frequencies and a long window for low

frequencies. So what happens when we analyse a

single peak? In order to illustrate this we have made

several scalograms of a single Lorentzian peak with

different widths. The Lorentzian peak is used here

since this type of peak function is commonly used [52]

to model peaks in infrared spectra which are currently

of interest to us. The basic idea here is that a very

broad peak will have very few high-frequency com-

ponents whereas a very sharp peak will have contribu-

tions from long to very high frequencies. This fact can

easily be seen in Fig. 2. Here, as the width of the

Lorentzian peak becomes smaller, more of the short-

scale coef®cients become larger. Stated in another

way: sharp peaks show coef®cients over several scales

whereas broad peaks do not. This kind of interpreta-

tion will be of use when we analyse scalograms of

regression models. In this case we are faced with

scalograms that are important for prediction. There-

fore, it is reasonable to argue that when certain

coef®cients are important over several scales, this

may correspond to sharp peaks or features being

important for the prediction. When variable selection

is used we are effectively pruning away those coef®-

cients describing the various peak patterns that do

not contribute to the predictive ability. The variable

selection thus provides parsimonious models that

indicates which time-scale tiles in the scalograms

are important for maintaining regression models with

high predictive ability.

3. Variable selection schemes

3.1. Optimal scale combination

Given a PLS model in terms of wavelet coef®cients,

it is interesting to ask which scales are the most

Fig. 2. Illustration of how the scalogram of a single Lorentzian peak changes according to the width of the peak. Note how the sharper peaks

tend to occupy more scales (Symmlet 8 wavelet is used).
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important for forming a PLS model with the highest

prediction ability. By ®nding such prediction-selective

scales, we are focusing on certain band-limited fre-

quency regions that are important for the prediction of

the dependent variable. These important scales will

therefore, to some extent, represent the underlying

features responsible for a successful prediction. One

way to ®nd important scales is to test the total number

of all possible scale combinations for their predictive

ability. The binomial
K

i

� �
describes the number of

combinations that exist for selecting i different scales

from the total number of K scales. Let the variable i go

from 1 to K which produces K binomials. The total

number of scale combinations will thus be the sum of

the K binomials:

2K ÿ 1 �
XK

i�1

K

i

� �
: (17)

Thus, in total there are 2Kÿ1 different scale com-

binations for K scales. If we have, say, three scales [1 2

3] we can make a representation of the original data set

using the following scale combinations: [1], [2], [3],

[1 2], [1 3], [2 3] and [1 2 3]. Let us index each of such

combinations as c1,c2,...,cN where N�2Kÿ1. Asso-

ciated with each cj we have an RMS value, rj, from

applying the PLS model on the validation set using the

representation dictated by the scale combination in cj.

It is now possible to sort the duplets (cj,rj) with respect

to rj ; we are only interested in the PLS models with

low values of rj.

The major weakness of this approach is that we are

combining whole scales and disregarding the variation

in the time direction.

3.2. PLS variable selection

The PLS variable selection approach as adopted in

this paper is very similar to that of Lindgren and co-

workers [53,54]. The basic idea behind the method is

as follows: truncate to zero elements in the weight

vector w in the PLS algorithm below a certain thresh-

old. This weight vector contains information about the

relevance of x-space in predicting y-space. Once a w-

vector has been truncated, it is necessary to make it

orthogonal to the w-vectors calculated for the previous

PLS factors (PLS score vectors are also re-orthogo-

nalized in this procedure). The ®nal truncated PLS

model can subsequently be represented as a b-coef®-

cient regression vector where a majority of the coef®-

cients are set to zero.

3.3. Mutual information

Most methods of variable selection use linear trans-

formations to decide which variables (x) are most

strongly related to the output data (y) being modelled.

However, these methods can only pick up predomi-

nantly linear relationships and will tend to miss vari-

ables which have a strong but non-linear relationship

with the output. If a linear modelling method is being

used, this is advantageous because the modelling

method works best with linear relationships. But

ANNs are also capable of modelling non-linear rela-

tionships. Consequently it is limiting to select vari-

ables using a method which prefers (or forces)

linearity. Clearly, a method which does not impose

the criterion of linearity would be advantageous. This

is where mutual information comes into play. Mutual

information [55] can be regarded as a generalised

version of correlation. Where correlation assumes

linear relationships and Gaussian-distributed data,

mutual information makes no assumptions about the

two data series being compared. The mutual informa-

tion between a class c and an input feature f (with Nf

components) is the amount to which the knowledge

provided to the feature vector decreases the uncer-

tainty about the class.

Mutual information is derived by calculating the

probability distributions of the two series, p(x),

p(y) and p(x,y). It then compares the joint probability

p(x,y) with p(x)p(y). For statistically independent

data,

p�x�p�y� � p�x; y� (18)

[56]. Hence if these quantities are not the same, there

is a dependence between the two data series and this

dependence is free from all prior assumptions about

its form.

Since the standard way of producing probability

distributions by making histograms only works well

for dense data, we used a method based on kernel

density estimation [57]. These probability distribu-

tions are then used to form the mutual information,
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I(x,y) [56]:

I�x; y� �
X

x

X
y

P�x; y� log2

P�x; y�
P�x�P�y�
� �� �

: (19)

The mutual information is high if one data series

provides much information about the other and low if

it provides little. Input variables can thus be selected in

a multivariate problem by deriving I(x,y) for each of

them and picking those for which this value is largest.

In a purely linear Gaussian situation, I(x,y) reduces to

correlation and provides identical results.

3.4. Wavelet analysis

The wavelet chosen for these experiments is Symm-

let 8 using an FWT. The main reason for this is that the

Symmlet 8 wavelet has a shape which is suitable for

describing infrared peaks. Of course, other types of

wavelets could have been used. In the cases where an

unsuitable wavelet has been used one ®nds that more

scales are needed to provide a satisfactory reconstruc-

tion. Of course, the reconstruction becomes perfect

when all scales are used. For the type of qualitative

information of interest to us here, we have found that

related wavelets often produce similar results.

4. Experimental

4.1. Data sets

In this article we use two data sets. Data set 1

consists of 40 diffuse re¯ectance FT-IR spectra of

mixtures of the bacterium Staphylococcus aureus with

the antibiotic ampicillin added at different concentra-

tions (0.5±20 mM with a step of 0.5 mM). Infra-red

spectra (256 coadds) for each of these samples were

recorded in the wavenumber interval 4000±600 cmÿ1

using a Bruker IFS28 FT-IR spectrometer (Bruker

Spectrospin, Coventry CV4 9GH) equipped with a

liquid N2-cooled MCT (mercury±cadmium±telluride)

detector and a diffuse-re¯ectance absorbance TLC

accessory. We used 4.0 cmÿ1 wavenumber resolution,

and spectra were collected at 20 sÿ1. The digitisation

interval of the IR instrument was set to produce 882

data points. One consequence of this is that we had to

add zeros to produce 1024 data point vectors satisfy-

ing the `̀ power of 2'' data length requirement of the

Mallat wavelet algorithm.

The background spectrum was recorded from an

empty well. This approach was also used for Data set

2. The samples were applied to 20�20 array of wells

on a sandblasted aluminium plate. Full details about

the preparation and collection of this data set can be

found in [58].

ASCII data were exported from the Opus software

used to control the FT-IR instrument and imported into

MATLAB 5.1 (MathWorks, MA). The samples were

separated into calibration and validation sets, each

containing 20 objects, using the DUPLEX method

[59]. A separate PLS cross validation was used for

®nding the optimal model for the calibration data.

Data set 2 consists of 160 FT-IR spectra of the three

compounds histidine, glycine and sucrose at different

concentrations. The span of 27 different concentration

distributions of each compound is shown in Table 1.

Table 1

Concentrations (in %) for each of the three compounds used in

Data set 2

Histidine Glycine Sucrose

100 0 0

90 10 0

90 0 10

80 10 10

70 20 10

70 10 20

60 30 10

60 20 20

60 10 30

0 100 0

10 90 0

0 90 10

10 80 10

20 70 10

10 70 20

30 60 10

20 60 20

10 60 30

0 0 100

10 0 90

0 10 90

10 10 80

20 10 70

10 20 70

30 10 60

20 20 60

10 30 60
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Six replicate 5ml aliquots of 27 samples consisting of

different combinations of histidine (100 mM), glycine

(300 mM) and sucrose (100 mM) solutions were dried

into wells in a sandblasted aluminium plate. Infrared

spectra were collected and data processed as described

for Data set 1 above, but using 16 coadds. Initially we

had 6 replicates of each concentration distribution, but

found that 12 of the glycine replicates were outliers

and were therefore removed from the data set. In Data

set 2 of this paper we are modelling the histidine

concentration.

4.2. Software and hardware

All calculations were performed using MATLAB

5.1 (MathWorks, MA). To calculate the discrete wave-

let transform the WaveLab toolbox [60] was used. The

mutual information program was based on both soft-

ware written by author AMW and the Kernel Density

Estimation Toolbox [61]. The PLS variable selection

program using truncation of w-vectors was written by

author BKA. All analyses were performed on a Pen-

tium Pro 200 MHz computer running the Windows

NT 4.0 operating system.

5. Results

5.1. Data set 1

The prediction ability of the PLS model using all

available wavelet coef®cients of the raw data is quite

good: the RMS error of prediction on the unseen test

set is 5.43% using seven PLS factors. The b-coef®-

cient vector of the PLS analysis is depicted in Fig. 3.

Note that we have a spectrum-like pro®le which is

Fig. 3. The b-coefficient vector from a PLS analysis of raw Data set 1 without any wavelet analysis.
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rather noisy. We should then expect that the selected

variables in the regions represent sharp and localised

features. Surprisingly, this is not so. As will be

demonstrated, the most important features for the

prediction in this data set are long-scale in nature.

The ®rst approach we chose to determine important

scales in PLS prediction was to perform an optimal

scale combination analysis as described in the method

section above. The length of the data vectors is 1024

which corresponds to 10 scales: 0,1,...,9. In the present

optimal scale combination analysis we did not include

the zero'th scale which is basically a scalar offset to

the whole spectral region. The total number of com-

binations for nine scales (1...9) is 511. Thus, we

produced 511 PLS models on the calibration data

set and recorded the RMS values between the pre-

dicted and measured concentrations of the infrared

spectra. The performance of each PLS model was

determined by cross validation. The scale combination

which produced the best results for the calibration set

was selected and applied to an unseen test set. Among

all the various combinations we found that using the

scales [1 2 4 9] produces an RMS�5.5%, using seven

PLS factors (A�7). This means that only a few scales

are necessary for providing the same level of predic-

tive ability as in the raw data representation. One

striking feature is that so many of the longer scales

are important for the prediction. The importance of

scale 9 can almost certainly be attributed to noise and

the uncertainties of the optimal scale combination

approach.

Another way to re®ne the wavelet regression model

is to perform a PLS variable selection procedure as

described above. Different numbers of variables were

selected as the most important (interval 1±25). For

each of these numbers a PLS cross validation was

performed to determine the optimal number of PLS

factors in the calibration set. The model with the

lowest PRESS value was selected and applied to the

unseen validation set.

By truncating to only nine wavelet coef®cients we

obtain an RMS prediction error of 6.30% (A�9 PLS

factors). This is a drastic reduction (from 882 vari-

ables) in the data size necessary for keeping a satis-

factory model prediction error. We could have

performed the variable selection directly on the raw

data, but then we would not have been able to inves-

tigate on which scales these variables contribute. In

this case we note that these nine variables are present

only at scales 1, 2 and 3. This suggests that scales 4

and 9 from the optimal scale combination analysis

may not be signi®cant. The reason for this discrepancy

can be traced back to the fact that the optimal scale

combination analysis does not take into account the

wavelet coef®cients that are important for the predic-

tion in localised wavenumber regions. In the optimal

scale combination analysis all the coef®cients in all

the scales were investigated. The nine important

wavenumbers found with PLS variable selection

represents regions in the IR spectrum. The ®rst three

variables selected belong to all the possible wavelet

coef®cients in scale 0 (wavelet coef®cient no. 2) and 1

(wavelet coef®cient no. 2 and 3) and thus covers the

whole wavenumber region. The next three variables

(wavelet coef®cient no. 6, 7 and 8) belong to almost all

available wavelet coef®cients of scale 2 (four wavelet

coef®cients possible: no. 5, 6, 7 and 8). The wave-

number region covered by the scale-2-selected wave-

let coef®cients is 3008±600 cmÿ1 (see Fig. 4). The

remaining three variables (wavelet coef®cient no. 9,

10 and 13) belong to wavelet coef®cients at scale 3

(wavelet coef®cient no. 9±16). Wavelet coef®cient no.

9±10 covers the region 4000±3012 cmÿ1 and no. 13

covers the region 2017±1521 cmÿ1 (see Fig. 4). Note

that wavelet coef®cient no. 13 incorporates a region

which contains the so-called `̀ ampicillin peak''

(1767 cmÿ1, see Fig. 4) due to the carbonyl group

in the b-lactam ring of the molecule. The results are

also presented as a scalogram in Fig. 5(B).

It is encouraging that both the optimal scale com-

bination analysis and the PLS variable selection pro-

cedure gave similar results.

The mutual information (MI) between each wavelet

coef®cient variable in the calibration set and the

concentration vector was computed. This produced

a vector of MI values of each variable in the range [0,

0.53]. Based on this vector the variables with highest

MI values were selected according to a threshold

scheme. Thirty thresholds in the [0, 0.53] range were

chosen. For each threshold, only those variables with

higher MI values than the threshold value were

selected. All other variables were set to zero. For each

selected set of variables a PLS cross validation on the

calibration set was performed and the optimum num-

ber of factors was determined. The RMS error of

prediction of the optimal PLS model applied to the

38 B.K. Alsberg et al. / Analytica Chimica Acta 368 (1998) 29±44



unseen validation set is 6.4% using 448 variables

(A�5 PLS factors). The corresponding scalogram is

shown in Fig. 5(C). We see that a region around the

ampicillin peak has been selected. In addition, several

of the longer scale coef®cients in this region have also

been selected. This is in agreement with the results

from the previous PLS variable selection scheme.

If we select only the nine largest MI values (to

compare it with the results from the truncation of the

PLS weight vector method), we obtain a PLS model

with 10% RMS error of prediction. The scalogram of

the selected variables are shown in Fig. 5(D). One

variable is located close to the ampicillin peak

(1780 cmÿ1) at the shortest scale (no. 9). In addition,

we also see variables in the region 1900±2020 cmÿ1 at

scales 5 and 6. The fact that none of the longer scales

were selected may explain some of the high prediction

errors for this approach.

5.2. Data set 2

Cross validation was used on the calibration part of

this data set to obtain the optimal number of PLS

factors using all available wavelet coef®cients. The

RMS prediction error on the unseen test set is 7.7%

with A�10 PLS factors. A systematic test of all the

different scale combinations was made for this data set

also. The prediction error increases to 9.3% using only

the wavelet coef®cients from the scales [1 3 5 6 7]

(with 10 PLS factors). In this case the optimal scale

combination analysis increases the RMS prediction

error on the unseen validation set by more than 2%

Fig. 4. Variable selection on wavelet coefficients will indicate important regions where the size of a region depends on which scale the

variable has been selected. In this figure the results from the PLS variable selection in Data set 1 is shown (nine wavelet coefficients selected).

Included in the figure is also a typical IR spectrum from this data set. Please note the characteristic `̀ ampicillin peak'' at 1767 cmÿ1 which is

among the selected variables (at scale 3).
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Fig. 5. (A) The b-coefficient vector from the PLS model with the optimal scale combination [1 2 4 9] for Data set 1 is shown. Note that all the

scales [0, 3, 5, 6, 7, 8] do not have any coefficients because they are removed; (B) the result after performing PLS variable selection by

truncating w-vector coefficients on Data set 1. Prediction RMS here is 6.30% with nine variables only. Note that these nine variables are only

present at scales 0, 1, 2 and 3; (C) mutual information variable selection on Data set 1 where the MI model is chosen on the basis on the best

model in the calibration set; (D) mutual information variable selection on Data set 1 where the MI model is forced to use only the first nine

variables (to make it comparable with results in (B)).
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Fig. 6. (A) The b-coefficient vector from the PLS model with the best scale combination using the scales [1 3 5 6 7] for Data set 2 is shown.

The RMS prediction is 9.3%; (B) the result after performing PLS variable selection by truncating w-vector coefficients on Data set 2.

Prediction RMS here is 7.9% with 44 variables; (C) mutual information variable selection on Data set 2 where the MI model is chosen on the

basis on the best model in the calibration set; (D) mutual information variable selection on Data set 2 where the MI model is forced to use only

the first 44 variables (to make it comparable with results in (B)).
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(see Fig. 6(A) for a scalogram of the selected scales).

A PLS variable selection was performed which pre-

sented a much better result: the RMS error prediction

on the unseen validation set was 7.9% using 10 PLS

factors and only 44 variables (see Fig. 6(B) for a

scalogram of the selected variables).

Fig. 6(B) indicates that we may have a narrow well-

de®ned peak around 1420 cmÿ1 that is important for

the prediction. In addition, very broad features

(located at long scales) in the 4000±1800 cmÿ1 region

have also been selected.

Variable selection using mutual information was

also applied to this data set. The RMS error of pre-

diction on the unseen validation set was 7.9% using

eight PLS factors and 736 selected variables (the

scalogram of the selected variables is shown in

Fig. 6(C)). In other words, the compression performed

by MI was much worse than the PLS variable selec-

tion. If we select only the 44 largest MI values (to

compare it with the result from the truncation of the

PLS weight vector method) and A�6 PLS factors, we

obtain a PLS model with approximately 13% RMS

error of prediction (see Fig. 6(D)). Very few of the

very long scales (0, 1 and 2) were selected in this

approach, which may explain the high prediction error

observed.

For both data sets we observe that the mutual

information procedure selects somewhat different

variables than those from the PLS variable selection

method. The major difference between the two vari-

able selection methods is that MI does not operate on a

latent variable structure but directly on each wavelet

coef®cient variable separately. With the spectroscopic

data set used here, signi®cant correlations between the

variables reduce the effect of the single variable

approach in MI. Please see Table 2 for summary of

results for Data sets 1 and 2.

6. Discussion

When variable selection is applied to collinear data

such as spectral pro®les of complex mixtures we often

®nd that regression models with different sets of

selected variables have almost identical predictive

ability. This means that the variables selected are

not unique. When we are predicting the concentration

of a compound in the mixture, all the absorbing

wavenumbers speci®c for the molecule will have a

high correlation with the concentration variable.

Therefore, in most cases we cannot expect to ®nd a

very limited number of unique variables, but rather

regions of interest where good representative wave-

number candidates are found. This suggests that

instead of performing the variable selection in the

original domain, a compressed domain representation

may be more fruitful. Searching for suitable wave-

number regions rather than individual wavenumbers

has been successfully demonstrated in [62±64] which

is comparable to working in a compressed represent-

ation.

In this article we have chosen wavelets as the basis

for compression but other compression bases could

also have been used, e.g. B-splines [65,66]. The

resulting coef®cients from a successful compression

are less correlated than the original variables. For a

`̀ perfect'' compression, we would observe no correla-

tion between the coef®cients, but it is of course very

Table 2

Summary of results for Data sets 1 and 2 of the PLS calibration, using different variable selection methods

RMS (DS1) (%) Opt. A (DS1) Vars. (DS1) RMS (DS2) (%) Opt. A (DS2) Vars. (DS2)

All variables 5.4 7 882 7.7 10 882

Comb. 5.5 7 534 9.3 10 234

Mut. inf. 6.4 5 448 7.9 8 736

Mut. inf. f. 10.0 5 9 13.0 6 44

PLS sel. 6.3 9 9 7.9 10 44

Abbreviations: RMS is Root Mean Square error of prediction in percent; Opt. A is the optimal number of PLS factors used in the model and

Vars. is the number of variables used in the model (the remaining variables are set to zero); Comb. means the combination of scales; Mut. inf.

signifies that the variables were selected by the mutual information approach and Mut. inf. f. is the forced mutual information where the

number of selected variables is forced to be comparable with the results from the PLS variables selection (PLS sel.); DS1 signifies Data set 1

and DS2 signifies Data set 2.
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dif®cult to ®nd this optimal compression. The problem

is related to ®nding the smallest possible program to

perform a certain task. Performing a compression

before regression alone can be regarded as a method

of variable selection. However, since we know the

compression is not perfect, it is possible to go further

and ®nd an even smaller number of coef®cients that

can be used in the regression model. In addition to

excellent compression abilities, wavelets are also very

powerful in time-scale/frequency analyses of signals

which enables us to introduce the concept of scales

into the variable selection/compression procedure

directly. This means that it is possible to determine

whether a selected coef®cient is associated with a

long- or short-scale feature necessary for prediction.

If, for instance, we obtain several selected variables

on the longest scales, this would indicate that the

important information for the prediction model is in

features that are very broad. However, when there are

several selected variables in a localised wavenumber

region over both long and short scales, there may be a

narrow feature in this region that is important for

prediction.
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