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Variable selection enhances the understanding and inter-
pretability of multivariate classification models. A new
chemometric method based on the selection of the most
important variables in discriminant partial least-squares
(VS-DPLS) analysis is described. The suggested method
is a simple extension of DPLS where a small number of
elements in the weight vector w is retained for each factor.
The optimal number of DPLS factors is determined by
cross-validation. The new algorithm is applied to four
different high-dimensional spectral data sets with excel-
lent results. Spectral profiles from Fourier transform
infrared spectroscopy and pyrolysis mass spectrometry
are used. To investigate the uniqueness of the selected
variables an iterative VS-DPLS procedure is performed.
At each iteration, the previously found selected variables
are removed to see if a new VS-DPLS classification model
can be constructed using a different set of variables. In
this manner, it is possible to determine regions rather
than individual variables that are important for a success-
ful classification.

With recent developments in analytical instrumentation, phys-
icochemical spectroscopic methods, often referred to as “whole-
organism fingerprinting” provide a rapid way of obtaining
information about complex samples. The most common such
methods are pyrolysis mass spectrometry (PyMS),? Fourier
transform infrared (FT-IR) spectroscopy,®~8 and Raman spec-
troscopy.®™12 The type of biological material of particular interest
to us is colonies of microorganisms. FT-IR allows the chemically
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based discrimination of intact microbial cells, without their
destruction, and produces complex biochemical fingerprints which
are reproducible and distinct for different bacteria. Naumann and
co-workers*>78 have shown that FT-IR absorbance spectroscopy
(in the mid-IR range, usually defined as 4000—400 cm~1) provides
a powerful tool with sufficient resolving power to distinguish
microbial cells at the strain level. However, FT-IR spectra have
conventionally been interpreted by the application of unsupervised
pattern recognition methods such as correspondence analysis
maps and cluster analysis.® Unfortunately, such analyses are often
influenced by subjective interpretation.? Supervised methods,
however, are not subject to these pitfalls in the same degree. It is
therefore strongly recommended to choose supervised methods
whenever this is practically feasible, and we have published a
number of successful applications of supervised approaches to
the classification of microorganisms.32=17 In recent years several
powerful multivariate methods for classification and regression
have been constructed. Examples of such powerful methods are
partial least squares (PLS), artificial neural networks (ANNSs),
multivariate rule induction (e.g., classification and regression trees
(CART) and fuzzy rule induction building expert system (FURES)?®),
and evolutionary-based techniques (genetic algorithms, genetic
programming, evolutionary programming).t719-21

The prediction accuracy of a classification method is of course
of the utmost importance, but there is also a growing need for
obtaining a better understanding of the final multivariate clas-
sification models. Some methods such as for example ANNs and
k-nearest neighbors (kNN) are very difficult to interpret whereas
other methods such as PLS and CART are much better in this
respect. One way to simplify models is to compress the resulting
models so the number of variables used is small as possible. This
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compression can be achieved by either replacing the original data
domain by a smaller one, e.g., using the wavelet transform,?-24
B-splines,% or a peak parameter representation,?” or selecting
only the most important variables in the original domain.2® In
fact, a combination of both approaches is possible.?

Several approaches to variable selection in supervised clas-
sification models have been suggested.®=3" The type of variable
selection of particular interest to us in this article is performed
on discriminant PLS models. There are several reasons for
choosing PLS as the method for classification. We have previously
shown!® that discriminant PLS is comparable in accuracy and
interpretation to other powerful classification methods such as
uni- and multivariate CART,® artificial neural networks,* k-nearest
neighbors,* and fuzzy rule building expert system.!® In addition,
PLS is suitable for algorithmic optimization to handle large data
sets efficiently.*! The variable selection suggested here is similar
to that demonstrated by Lindgren and co-workers.**® In this
article we extend a similar approach to PLS2 models which forms
the core of the DPLS analysis. The new variable selection (VS)-
DPLS algorithm produces classification models with a small
number of variables, thus enabling the investigation of a small
subset of variables that will maintain or preferably improve on
the prediction error obtained using all variables.** It should be
emphasized that there are in general several different solutions
to the variable selection problem, and hence any set of variables
selected does not necessary constitute the optimal or the only
possible subset of variables with good prediction abilities,*> and
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in which the best optimization approach is likely to depend on
the dataset itself.*® This phenomenon is particularly important
for collinear data sets where the information that correlates well
with the dependent variable (Y) is spread over whole regions
rather than concentrated in unique variables.

DISCRIMINANT PLS
The theory and properties of the partial least-squares algo-

rithms PLS1 (with one dependent (Y) variable) and PLS2 (with
several dependent Y variables) have been extensively studied and
reported in the literature.*” We will therefore give only a short
description of the DPLS method which is the PLS2 algorithm
applied to classification problems. The central point in the PLS
paradigm is to find latent variables in the feature space that have
a maximum covariance with the Y variable(s). Thus, linear
combinations of the feature space variables are found that are
rotated to have maximum prediction ability for the Y variable(s).
In PLS2 one uses linear combinations of the Y space variables
rather than individual Y variables.

The final PLS model can be formulated as a regression
equation:

Y =XB (1)

where the estimated regression coefficients B are

B=X"Y &)

X* is a generalized inverse provided by the PLS2 algorithm. To
obtain a prediction from the PLS2 model it is sufficient to use eq
2. In this article we compute the regression matrix B as
demonstrated by Martens and Naes:*

B=WwW(P'w) Q" ®)

where W is the matrix of weights of the X-space, Q is the loadings
matrix for the Y space, and P is the X space loadings matrix.

The prediction of dependent variables on a new set of objects
is done by

Yiest = XiestB 4)

test

The Y matrix of dependent variables contains information about
class memberships of objects. If K is the number of classes, each
row, YT, in the Y matrix has the following structure:

i ®)

T_ {1 if object belongs to class j
0 otherwise

where yj is the jth columnin Y. jis also the class number, where
we have j = 1, 2, ..., K. The binary Y matrix therefore has a
structure where each row sums to unity. When the final DPLS
model is used in prediction, however, the estimated Y matrix does
not have such a structure. The predicted values are real numbers
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and a conversion to class memberships is needed. Since the class
membership information is contained in the column index
information of Y, we must look for column elements with large
predicted absolute values. If § is a row in the estimated Y we find
the class membership as the column index that satisfies
max(|y]). || indicates the absolute value of each element of the
vector.

The VS-DPLS Algorithm. The extension of DPLS presented
here to include variable selection is simple and straightforward.
The basic idea is to truncate to zero most of the elements in the
PLS weight vectors w and keep only the most important ones,
i.e., the ones with the largest absolute values. The absolute value
is chosen because important variables can be identified by either
large positive or negative values. The PLS2 weight vectors are
the result of finding directions that maximize the covariance
between an X matrix score vector (for factor a), t; = X,—1w,, and
a Y matrix score vector (for factor a), U, = Ya-104(0aTqa) %, Where
w, is the PLS weight vector and q, is the Y loading vector. Our
strategy for variable selection will thus be to keep the k elements
in w, with the largest absolute values and set all remaining
variables to zero; see ref 47 (p 160).

Let Q be a function that returns a vector containing zero
elements everywhere except for elements corresponding to the k
largest elements of |w|. Let ® be the function that makes a vector
v orthogonal to the column vectors in V. The suggested VS-DPLS
algorithm in pseudocode is as follows:

(1) FORa=1toA,,

(2) select a column vector u from matrix F
B t,=u

(4) WHILE not STOP

G) w=uE

6) w'=QWw'k)

(7) IFa>1
(8) w = O(w,W)

(9) END;

(10)  w'=w/w'w)?
(11) t=Ew

(12) IFa>1
(13) t=d(T)

(14) END

(15) q' =t'F/t"t

(16) u=Fa/(q'q)

a7 ot=t—t,

(18) IF (zi(éti)z)/tTt < conv

(19) STOP = TRUE
(20) END
(21) END

(22) p"=t"E/t"t

(23) (Storage of matrices)
(24) E=E-—tp'

(25) F=F—tq"

(26) END

(27 B=wW(P'w)'Q’
(28) bo =Ym — XmB
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Anax is the maximum number of PLS factors, E and F are residual
matrices for the X and Y spaces, respectively. In step 6 of the
algorithm, the selection of the k largest variables is made. The
remaining variables are set equal to zero. Steps 8 and 13 are
included to ensure that the columns in the W matrix are
orthonormal and the columns in the T matrix are orthogonal. All
the other steps in the algorithm are identical with ordinary PLS2.

It should be noted that even though we select the k largest
elements in w,, the final regression coefficient matrix B will in
general contain more than k variables different from zero. This
is due to the step that calculates B from W, P, and Q. LetR =
(P™W)~!QT. In most cases, each element Rj; will be different from
zero. The dimensions of R is [A x K], where A is the total
number of PLS factors and K is the total number of classes. The
dimensions of the weights matrix W is [M x A]. Note that each
column in W is sparse; i.e., it contains a majority of zeros. The
maximum number of elements in each column different from zero
is k. Each element in the resulting B coefficient matrix B = WR
has elements

By =W (6)

where w;T is the ith row vector in W and rj is the jth column in R.
Assume a row in W that contains an element different from zero.
If all the elements in R are nonzero, it is trivial to see that all K
columns in that row will also have values different from zero. Thus,
we have

s, < A,k @

where s, is the number of selected variables different from zero
in B, Agy is the optimal number of PLS factors, and ko is the
optimal number of retained variables different from zero. Both
these values are determined by cross-validation. If R contains
elements equal to or close to zero that coincide with a nonzero
element of W, s, will be less than AgpKopt.

To obtain the final VS-DPLS model, we need to estimate two
parameters: Kop and Agy. The following strategy is used for the
suggested algorithm:

FOR k = 1 to k., DO

max

e use cross-validation to find optimal number
of PLS factors

« store model values and PRESS value

END

e select k., that corresponds to the lowest PRESS value

opt

« apply the selected VS-DPLS model on an
unseen validation (test) set

Measuring Uniqueness of Selected Variables by Pruning.
It is unlikely that the selected variables from VS-DPLS will be
the only variables that give rise to the same prediction error. One
probable cause of this nonuniqueness of the selected variables is
the redundancy of the information contained in the original



variables. For both the FT-IR and PyMS data (as used in this
article) there is a high correlation between variables; for FT-IR
the neighboring variables are highly correlated with one another,
while for PyMS the correlations are separated according to how
a particular compound fragments on pyrolysis. Despite this, it is
to be expected that the underlying features that correlate with
the variation in the dependent variable (Y) are to some extent
localized in the spectrum. For instance, if a Y variable is strongly
correlated with the concentration of a single analyte, it is
reasonable to assume that the compound in question may have a
few localized regions in the spectral domain. We expect in
particular to see this for FT-IR spectra, but not to the same degree
in PyMS spectra. Consequently, the distribution function of the
selected variables would reflect important spectral regions for
classification.

Here we suggest a simple approach to establish the ap-
proximate locations of important variable regions necessary for
maintaining an optimal prediction model. Let Uy be the set of
indexes that contains the selected variables after running VS-DPLS
on the whole data set X,. Let V, be the set of all indexes, {1, 2,
..., m}, where m is the total number of variables. A new data set
is made where the selected variables in the previous VS-DPLS
have been removed (i.e., columns with indexes Uy in data matrix
Xp are set to zero). X; has columns with V; (V1 =V — Up) indexes
different from zero. A VS-DPLS analysis of X; will produce a new
set U; of indexes of selected variables. A series of similar analyses
can be made where several index sets Up, Uy, ..., Uq are obtained
(g is the maximum number of analyses). This procedure will be
referred to as DPLS-pruning. Note that

UinU=2,0i=]

By looking at the distribution of the indexes selected in Ui € {1,
2, ..., g} itis possible to obtain an indication of regions in the spectra
that are necessary for optimal prediction accuracy. Another
interesting point is that we can visualize the difference in index
distribution between optimal and nonoptimal classification models.
This provides an opportunity for detecting differences that are
more robust than just comparing two particular VS-DPLS models.

The natural method for visualizing the distribution would be
the histogram distribution of selected variables. However, we have
chosen to use a somewhat more advanced method based on
kernel density estimates (KDE).*® There are problems with using
histograms since their appearance is dependent on the choice of
origin (the starting position of the first interval to contain data)
and the bin width (the interval defining a region where a frequency
count is performed). KDE avoids several of these problems and
can in the simplest cases be thought of as smoothed histograms.
The KDE is obtained by placing a peak function K(x) (only the
one-dimensional cases will be discussed in the present article) at
each data point location and a summing of all the heights is
performed. The kernel function K(x) integrates to 1 and its spread
is determined by the parameter h, which is analogous to the bin
width used in histograms. The estimated density function f(x) of
the data is written as
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R 12 (X_Xi)
f)=—FK ®

In contrast to the histogram distribution, the shape of f(x) does
not depend on the choice of origin, but it does, however, depend
on the choice of the h parameter. Large h values tend to
oversmooth whereas small h values tend to undersmooth. In the
present article, an h value based on an estimate of the roughness
of the true density function is used.** The density distributions
in this article are calculated using the MATLAB Kernel Density
Estimation Toolbox by Beardah and Baxter.*®

Rule Induction Methods. Rule induction attempts to find
hyperplanes that partition the space of sample objects into regions
of single class memberships. These hyperplanes are interpreted
as rules which are derived from the training set. The most
common strategy employed to find these rules is based on a
recursive splitting of the original data set into smaller subsets
where each subset contains objects belonging to as few different
classes as possible. A stopping criterion for the recursive search
is the “purity” of a subset, i.e., the distribution among the classes
of the objects within the set. It has been found that the concept
of entropy® is very efficient as a measure of “purity”. For each
subset of objects there is a vector of fractions p = [p1, pa, ..., P«
of the objects belonging to the K different classes. The fraction
pi is computed as p; = nj(s)/n where n;(s) is the number of objects
belonging to class i in subset s and n is the total number of objects
in subset s. It is common® to interpret such fractions as the
probability of finding an object belonging to class i in the subset.

Intuitively, a subset consisting of objects from one class only
will have the highest possible “purity” and the vector p of
probabilities will have a structure pmin = [0, 0, ..., 1, ..., 0.0]. The
most impure vector p will correspond to the case where there
are equal fractions of each class; i.e., pj = 1/K. The entropy of p

K

H(p) = —) p; log(p;) ©)]

has properties in accordance with our intuitive understanding of
“impurity”: Hmin(p) = 0 and Hpyax(p) = log2(K) when p; = 1/K.
Thus, ensuring the highest purity in a subset corresponds to
minimizing H(p) by selecting an optimal partitioning.

There are in general two different types of hyperplanes
generated in rule induction: those that are parallel to the original
variables and those that are not. A method generating parallel
hyperplanes is sometimes referred to as univariate rule induction.
Rules that are based on hyperplanes not parallel to the original
variables are generated from multivariate rule induction. In the
univariate case a single variable x; at each recursion step is found
that gives rise to the purest subsets (i.e., those that have minimum
entropy). In univariate rule induction, a partitioning of the input
feature space can be formulated as a question like, “Is x; < ¢?”,
where ¢ is some value chosen from the finite set of values variable

(49) Baxter, M. J.; Beardah, C. C. Department of Mathematics, Statistics and
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xi has among the N calibration objects. All the objects that satisfy
the question are grouped into one subset and those that do not
into another.

In multivariate rule induction a partition of the input feature
space is found that depends on a linear combination of all the
variables instead of just using one variable. It is possible to
interpret the nonparallel hyperplane rule as a question of the form,
“Is Zj”:l wjx; < ¢?”. This type of partitioning of the data space is
particularly useful if there are any collinearities between the
variables. The aim in this case is not to find the single best
variable but to find a vector w (hyperplane) that best separates
the data set into pure subsets. Both the multivariate CART
(referred to in the text as Breiman CART)% and the OC1 method®!
used in this article are based on this principle. In this article, we
use the OC1 program?®! for all the CART methods.

The FURES method!®%? is also a multivariate rule induction
approach, but it uses a fuzzy set> description of object locations
with respect to the decision hyperplane. See also ref 16 for a
comparison of these methods.

It should be noted that none of the rule induction methods
per se perform any variable selection. However, both uni- and
multivariate CART models often produce small models which
resemble the effect of a variable selection. The rules observed
in multivariate CART models are not perfectly sparse as for VS-
DPLS models but are dominated by a small subset of large
coefficients. The remaining coefficients are usually close to zero.
It is therefore possible to perform qualitative analysis of which
variables are important for the classification.

In the FURES implementation available to us, variable selection
is not performed. Unfortunately, the FURES rules generated are
in general not like the multivariate CART rules in that a few
variables dominate. This method is here only included to provide
an independent prediction error for the unseen validation data in
the various data sets.

EXPERIMENTAL SECTION
Sample Preparation. Data sets 1 and 2. Eubacterium

Samples. Four replicates for each sample is used. Four Eubac-
terium timidum (Ta—Te), four Eubacterium infirmum (1a—1d),
four Eubacterium exiguum (2a—2e), five Eubacterium tardum
(Na—Ne), and five eubacterial hospital isolates (Ha—He) were
prepared as described previously.! In total we have 88 spectra
(4 x 22 samples) from FT-IR analysis (data set 1). Data set 2
consists of PyMS spectra of the same type of bacteria but with
fewer samples.!® In total, we have 72 (4 x 18) PyMS spectra. E.
timidum, E. infirmum, E. exiguum, and E. tardum are referred to
in this article as classes 1—4, respectively.

Data Set 3. Urinary Tract Infection Organisms. Twenty-two
Escherichia coli (Ea—Eq), Proteus mirabilis (Pa—Pj), 15 Klebsiella
(Ka—Kj), 15 Pseudomonas aeruginosa (Aa—Aj), and 17 enterococci
(Ca—Cl) were isolated from the urine of patients with urinary tract
infection (UTI) and prepared as described previously.? In total
we have 336 (4 x 84) from the FT-IR analysis. E. coli, P. mirabilis,
Klebsiella, P. aeruginosa, and enterococci are in this article referred
to as classes 1—5, respectively.
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Data Set 4. Samples of Milks. Mixtures of 3 milks from cow,
goat, and ewe (11 from each type of milk) were prepared, which
differed in their fat content as described previously.>* In total,
we have 99 (3 x 33) spectra from the PyMS analysis. Cow, goat
and ewe are in this article referred to as classes 1—3, respectively.

Pyrolysis Mass Spectrometry. Aliquots (5 uL) of the above
milk and Eubacterium spp. samples were evenly applied to clean
iron—nickel foils which had been partially inserted into clean
pyrolysis tubes. Samples were run in triplicate. Prior to pyrolysis,
the samples were oven-dried at 50 °C for 30 min and the foils
were then pushed into the tubes using a stainless steel depth
gauge so as to lie 10 mm from the mouth of the tube. Viton
O-rings were next placed approximately 1 mm from the mouth of
each tube. PyMS was performed on a Horizon Instrument PyMS-
200X (Horizon Instruments Ltd., Heathfield, U.K.). For full
operational procedures, see refs 2, 13, 55, and 56. Conditions used
for each experiment involved heating the sample to 100 °C for 5
s followed by Curie point pyrolysis at 530 °C for 3 s with a
temperature rise time of 0.5 s. Data were normalized as a
percentage of the total ion count to remove the influence of sample
size.

Diffuse Reflectance—Absorbance FT-IR Spectroscopy.
Aliquots (5 uL) of the above Eubacterium spp. and bacterial UTI
samples were evenly applied onto a sand-blasted aluminum plate.
Prior to analysis the samples were oven-dried at 50 °C for 30 min.
Samples were run in triplicate. The FT-IR instrument used was
the Bruker IFS28 FT-IR spectrometer (Bruker Spectrospin Ltd.,
Banner Lane, Coventry, U.K.) equipped with an MCT (mercury—
cadmium—telluride) detector cooled with liquid N,. The alumi-
num plate was then loaded onto the motorized stage of a
reflectance TLC accessory. The IBM-compatible PC used to
control the IFS28 was also programmed (using OPUS version 2.1
software running under IBM 0O/S2 Warp provided by the
manufacturers) to collect spectra over the wavenumber range
4000—600 cm~1. Spectra were acquired at a rate of 20 s™%. The
spectral resolution used was 4 cm~t. To improve the signal-to-
noise ratio, 256 spectra were coadded and averaged. The digital
sampling parameter was set such that each spectrum was
represented by 882 points. Spectra were displayed in terms of
absorbance as calculated from the reflectance—absorbance spectra
using the Opus software.5758

ASCII data were exported from the Opus software used to
control the FT-IR instrument and imported into MATLAB version
5.2 (The MathWorks, Inc., 24 Prime Par Way, Natick, MA), which
runs under Microsoft Windows NT on an IBM-compatible PC.
To minimize problems arising from baseline shifts, the following
procedure was implemented: (i) the spectra were first normalized
so that the smallest absorbance was set to 0 and the highest to
+1 for each spectrum,; (ii) next these normalized spectra were
detrended by subtracting a linearly increasing baseline from 4000
to 600 cm~% Data set 3 was in addition to detrending also

(54) Goodacre, R. Appl. Spectrosc. 1997, 51, 1144—1153.

(55) Goodacre, R.; Neal, M. J,; Kell, D. B. Anal. Chem. 1994, 66, 1070—1085.

(56) Timmins, E. M.; Goodacre, R. J. Appl. Microbiol. 1997, 83, 208—218.

(57) Glauninger, G.; Kovar, K. A.; Hoffmann, V. Fresenius J. Anal. Chem 1990,
338, 710—716.

(58) Winson, M. K.; Goodacre, R.; Woodward, A. M.; Timmins, E. M.; Jones, A,
Alsberg, B. K.; Rowland, J. J.; Kell, D. B. Anal. Chim. Acta 1997, 348, 273—
282.
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Figure 1. Results of DPLS-pruning on data set 1. The results from
DPLS-pruning show clearly four regions which dominate for models
with 0% prediction error. Solid line indicates optimal models. Dashed
line indicates nonoptimal models.

numerically differentiated using a Savitzky—Golay method® with
a five-point smoothing filter.

RESULTS
Data Set 1, Eubacterium/FT-IR. The calibration set

contains 52 spectra and the validation (test) set contains 36. The
VS-DPLS model obtained from the training set when applied to
the unseen validation set produced a 0% prediction error. The
optimal model was selected using Kopt = 1 and Aqye = 7. We also
have 0% prediction error on the calibration set. In total, seven
variables were selected to discriminate between four classes. The
seven wavenumbers are 3383, 2792, 1561, 1206, 1148, 1086, and
1036 cm™1,

To measure the uniqueness of the seven selected variables,
DPLS-pruning as described above was used. Figure 1 shows the
results from the pruning experiment. The distribution function
of variables selected by VS-DPLS models that have 0% prediction
error are drawn with a solid line and those that have not with a
dashed line. For the optimal models, four regions are clearly
visible. The results from nonoptimal models indicate that vari-
ables selected in the region around 2442 cm™! are necessary for
maintaining a perfect prediction. For the VS-DPLS analysis
described above, one of the selected variables is 2792 cm~—1.We
also see that the peak located around 1375 cm~? for nonoptimal
prediction models splits into two peaks for the optimal models.
These two peaks are located in the neighborhood of 1575 and
1118 cm™! (note that two of the selected variables were 1561 and
1148 cm~! for the VS-DPLS analysis above). The univariate CART
produces a model with three variables: 1225, 3440, and 3595
cm~150 All three CART algorithms had a prediction error of 19.4%.
Wavenumber 1225 cm™! from univariate CART modeling is close
to 1206 cm~! found from the VS-DPLS analysis. The 3440 cm!
from CART is in the neighborhood of the VS-DPLS variable 3383
cm=L. One of multivariate rules for the Breiman CART is
dominated by the following variables: 1225, 1696, 1480, 3456, 1152,

(59) Savitzky, A.; Golay, M. J. E. Anal. Chem. 1964, 36, 1627—1633.
(60) Alsberg, B. K.; Wade, G. W.; Goodacre, R. Appl. Spectrosc. 1998, 52, 72—
102.

mass no. 91

mass no. 58

Figure 2. Distribution of objects (PyMS spectra) for data set 2 by
plotting the three mass intensities (58, 61, 91) for the validation set.
Note that the unknown hospital isolates clustered close to class 3.

1214, 1457, 1700, 3529, 1692 cm~18% The OC1 CART method
produced a model similar to the univariate CART and had the
same prediction error. The reference method FURES has a
surprisingly high prediction error of 16.7%. The full DPLS also
performs worse than VS-DPLS with a prediction error of 5.6%.

Data Set 2, Eubacterium/PyMS. The bacteria analyzed
in this data set are the same as those for Eubacterium/FT-IR, but
here pyrolysis mass spectrometry is used instead of Fourier
transform infrared spectroscopy. The VS-DPLS model was
constructed by analysis of the 45 objects in the calibration set.
The performance of the optimal model was tested on the 27 objects
in the unseen validation set. Note that the number of objects is
different from data set 1. The optimal model was found for ko =
1l and Agyy = 3. The prediction error was 0%. Three masses were
selected: 58, 61, and 91. The reason for the VS-DPLS selection
of mass 91 was to enable separation between some class 1 and 2
objects in the training set. These three masses are also confirmed
by earlier studies of the same data set using genetic programming
(GP).Y" Since only three variables were selected to produce
perfect predictions, it was possible to plot the distribution of the
validation set objects in this 3D space; see Figure 2. As can be
seen, we have a perfect class separation where the unknown
hospital isolates, marked “H”, were predicted to belong to the E.
exiguum species (class 3), a result seen previously using the rather
uninterpretable neural network method.’* Note that in Figure 2
mass 91 is not necessary to obtain perfect separation between
the classes in the validation set.

The spectral information in PyMS is not localized in the same
manner as in FT-IR. For this technique, there are (apart from
isotopic information) in general no major correlations between
neighboring data points. The effect on the estimated density
distribution function will be an increased smoothing since we do
not have a strong spatial localization. The result of a DPLS-
pruning process on this data set is shown in Figure 3. In this
case, the optimal models have all 0% prediction error. Nonoptimal
models seem to have an excess of variables selected in the region
150—200 m/z compared to the optimal models.

The univariate CART has a prediction error of 3.7%, which is
surprisingly better than the multivariate Breiman CART (7.4%).
The selected masses are 52, 60, and 58. In fact, all the CART
methods selected these three masses as important. For compari-
son, the VS-DPLS model selected 61 and 58 as important masses.
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Table 1. Summary Table of the VS-DPLS Results

data set data type Aopt Kopt no. sel var pred error, % opt reg nonopt reg
1 FT-IR 7 1 7 0 1118, 1575, 2442, 3358 1375, 3318
2 PyMS 3 1 3 0 86 79
3 FT-IR 11 4 40 2.5 1276, 2927, 3530 1061, 2275, 3265
4 PyMS 4 1 4 0 85 no peaks
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Figure 3. DPLS-pruning of data set 2. Solid line indicates optimal
models. Dashed line indicates nonoptimal models.

Table 2. Selected Variables for the Four Different
Data Sets

data
set units selected variables by VS-DPLS
1 cm~!  3383,2792, 1561, 1206, 1148, 1086, 1036
2 m/z 58, 61, 91
3 cm~! 2850, 2846, 1754, 1750, 1746, 1723, 1719, 1708,
1704, 1700, 1696, 1681, 1669, 1665, 1654, 1638,
1627, 1565, 1561, 1557, 1549, 1519, 1511, 1507,
1430, 1426, 1383, 1202, 1198, 1167, 1164, 1121,
1117, 1005, 1001, 974, 971, 940, 808, 805
4 m/z 55, 60, 97, 126

The FURES rules are more complicated (prediction error 0%), but
it is possible to identify some of the same variable numbers with
high absolute coefficient values. We believe it would be possible
to extend FUuRES to take variable selection into account by
truncating to zero unimportant variables in the decision plane
vectors which are similar to the w vectors in PLS.

Data Set 3, Urinary Tract Infection Organisms/FT-IR.
This data set consists of 100 calibration and 236 validation objects.
To remove baseline effects, a five-point Savitzky—Golay numerical
differentiation® of the spectra was performed. The optimal VS-
DPLS model was found to have 2.5% prediction error. The total
number of selected wavenumber variables is 40 (Kopt = 4, Agpt =
11). The selected variables are listed in Table 2. Since we do
not have 0% prediction error, the threshold for “optimal” DPLS
models was set to 5% percent. The results from this analysis is
shown in Figure 4 where the solid line signifies the distribution
of selected variables in optimal models (prediction errors <5%).
These optimal models have three maximums at 1276, 2927, and
3530 cm~L. The dashed line signifies nonoptimal models (>5%
prediction error). As can be seen from the figure, the nonoptimal
model density distribution function is much flatter. However, it
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Figure 4. DPLS-pruning results for data set 3. Since we do not
have 0% prediction error, the optimal threshold for DPLS models is
set to 5% percent (solid line).

is possible to identify three broad peaks located at approximately
the same positions as for the optimal models: 1061, 2275, and
3265 cm™. Note also that the density distribution for the optimal
models is very smooth compared to the corresponding distribution
in data set 1. This is probably related to the fact that more
variables are needed for data set 3 to establish a good classification
model.

The most important variables selected by univariate CART are
1164, 2862, 3900, 2958, and 2171 cm~. Only 1164 cm~! was also
chosen by VS-DPLS. All the CART models have higher prediction
error than VS-DPLS. FuRES and full DPLS in comparison have
0% prediction error.

Data Set 4, Milk/PyMS. The calibration set consists of 27
objects and the validation set consists of 72 objects. The optimal
VS-DPLS model had 0% prediction error using only four selected
mass variables: 55, 60, 97, and 126 (Kot = 1 and Aoy = 4). A
systematic DPLS-pruning was performed and the estimated
density function is shown in Figure 5. Note that all the optimal
VS-DPLS models for this data set seem to cluster around mass
85. The density distribution function for the nonoptimal VS-DPLS
models (dashed line) is markedly flatter and appears to make use
of a much wider range of variables.

Univariate and OC1 CART selected masses 62 and 97 as
important. The prediction error is 6.9%. The Breiman CART
method has a prediction error of 1.4%. In addition to mass 62 as
important in separating between classes 1 and 3, it also has a
multivariate rule which is dominated by the masses 64, 78, 63,
97, and 90. Again, both FURES and full DPLS have 0% prediction
error.

Please see Table 1 for a summary of all the VS-DPLS results.
The abbreviations and symbols used in this table are as follows:
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Figure 5. DPLS-pruning experiments of data set 4. Solid line
indicates optimal models. Dashed line indicates nonoptimal models.

Agpt is the number of PLS factors for the optimal VS-DPLS model
based on the calibration set; ko is the number of variables retained
from each w vector; no. sel var is the number of selected variables
in the final model, pred error signifies the prediction error of the
unseen validation set, opt reg signifies the most prominent peaks
of the probability density distribution function for optimal models
from a VS-DPLS pruning experiment; nonopt reg signifies the
peaks for nonoptimal models. For data set 4, the density
distribution function was almost flat and thus does not contain
any prominent peak regions. See Table 3 for a comparison of
the prediction errors between the different variable selection
methods used.

DISCUSSION

One important reason for why it is desirable to do variable
selection is to produce parsimonious models. Such models are
usually easier to interpret and often statistically more robust.** In
some cases, there are (“noise”) variables in the data set that
actually cause a reduction in the predictive ability. Good variable
selection algorithms should be able to avoid such variables and
thus improve on the predictive ability compared to the full analysis.

Table 3. Prediction Errors for the Methods Applied to
the Four Data Sets?@

data Breiman 0OC1 full
set CART CART CART FuRES VS-DPLS DPLS
1 19.4 19.4 19.4 16.7 0.0 5.6
2 3.7 7.4 3.7 0.0 0.0 0.0
3 10.6 14.8 10.6 0.0 25 0.0
4 6.9 1.4 6.9 0.0 0.0 0.0

a8 CART is the univariate classification and regression trees method.
FURES is the fuzzy rule building expert system method. Breiman and
OC1 CART signify algorithms that use multivariate rule induction.

Our investigations suggest that the new VS-DPLS algorithm
compared to full DPLS produces more parsimonious classification
models which have better or similar prediction ability. We also
see from Table 3 that VS-DPLS compared to both uni- and
multivariate CART algorithms show significantly lower percentage
prediction errors.

We therefore suggest that the VS-DPLS algorithm is an
efficient method for solving problems in rapid classification using
spectral data from, for example, FT-IR, PyMS, or Raman spec-
troscopy. There are many important application areas, such as
in biotechnology, food science and medicine, where there is an
increasing interest in using spectroscopy for screening. But in
order for efficient screening methods to be widely used, it is
necessary to produce low-cost and accurate instruments. It is here
that parsimonious classification models have an advantage over
full spectral models since a smaller number of wavelengths are
required. It thus opens up the possibly for building simpler
instruments tailored to solve specific screening problems.
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