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Abstract 

The fuzzy multivariate rule building export system (FuRES) is applied to solve classification problems using two pyrolysis 
mass spectral data sets. The first data set contains three types of milk (from cow, goat and ewe) and the second data set 
contains two types of olive oils (adulterated and extra virgin). The performance of FuRES is compared with a selection of 
well-known classification algorithms: backpropagation artificial neural networks (ANNs), canonical variates analysis (CVA), 
classification and regression trees (CART), the K-nearest neighbour method (KNN) and discriminant partial least squares 
(DPLS). In terms of percent correct classification the DPLS and ANNs were best since all test set objects in both data sets 
were correctly classified. FuRES was second best with 100% correct classification for the milk data set and 91% correct 
classification for the olive oil data set, while the KNN method showed 100% and 61% for the two data sets. CVA had a 100% 
correct classification for the milk data set, but failed to form a model for the olive oil data set. The percent correct 
classifications for the CART method were 92% and 74%, respectively. When both model interpretation and predictive ability 
are taken into consideration, we consider that the ranking of these methods on the basis of these two data sets is in order of 
decreasing utility: DPLS, FuRJZS, ANNs, CART, CVA and KNN. 

Keywonis: Rule induction; Canonical variate analysis; Discriminant partial least squares; PLSZ; K-nearest neighbour method, Fuzzy rule 
building expert system (F&ES); Artificial neural networks; Classification and regression trees (CART); Pyrolysis mass spectrometry (PyMS) 

1. Introduction 

The application of pattern recognition methodology 
within chemistry and biology is becoming more 

important [l-lo]. Spectroscopic and chromatographic 
profiles as feature vectors have been used to solve a 

*Corresponding author: Tel.: +44 1970 622353; fax: +44 1970 
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multitude of classification problems. We are here 
interested in the performance of a variety of classifi- 

cation methods as applied to pyrolysis mass spectro- 

metry (PyMS) profiles. PyMS is a rapid method that 
has been shown to be effective in producing high- 
resolution feature vector profiles in important biolo- 
gical and chemical classification problems [ll-171. 

Classification is important both in applied and 
fundamental research. From an industrial perspective, 
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accurate classification of spectroscopic profiles is 
central to e.g. quality monitoring and diagnosis. Clas- 
sification is in general interpreted as partitioning of the 
feature space according to the individual sample 
memberships to the different classes. The classifica- 
tion methods differ in how they partition the feature 
space. Even though the various supervised classifica- 
tion methods appear to be very different they all try to 
find a consensus or correspondence between the inher- 
ent structures in the distribution of objects in feature 
space and the space of membership values assigned to 
each object. In this context, the membership informa- 
tion in a training set provides a set of constraints that 
are used to form decision surfaces of various complex- 
ity. In addition to the empirical information given in 
the feature and membership space, assumptions about 
model parsimony are used to form the final decision 
surface(s). 

Linear methods such as the linear discriminant 
analysis (LDA) [ 18,191 attempt to find lines or hyper- 
planes such that the different classes occupy different 
positions relative to the decision planes. Non-linear 
methods like artificial neural networks [2,8,20,21] can 
create non-linear hypersurfaces with various degree of 
smoothness and curvature. Decision hyperplanes may 
also be interpreted as rules which for these purposes 
means a statement that can be written in the form 
IF..THEN...ELSE. In this article we are interested in 
methods that construct such rules directly from data by 
the use of induction. The language of set theory [22] is 
well suited to discuss the induction of rules and space 
partitions. The membership of an object in a set is 
defined in terms of its feature space properties. We 
want to create sets that contain as few different types 
of classes as possible, preferably just one. Assume we 
have two sets labelled A and B where the points in the 
sets can be members of two classes 1 and 2. If both sets 
between them contain all members of class 1 and no 
other members, then class 1 is the union of A and B, 
i.e. A U B. All set relationships can be translated into 
logical operators within a rule; for the above example: 
IF an object is in set A or in set B, THEN it belongs to 
class 1. If on the other hand all class 2 objects are 
found in the intersection between A and B, i.e. A n B, 
the rule would be: IF an object is in set A and in set B, 
THEN it belongs to class 2. 

In general, the rule induction process can be divided 
into two major parts: 

1. Building sets that contain objects based on feature 
space characteristics. 

2. Creating logical rules on the basis of class member- 
ship and set interactions. 

In the simplest case we have univariate rules 
that depend on one original variable axis only. 
Multivariate statistical classification methods are 
often more effective because they utilise linear 
combinations of all variables rather than just 
individual variables. Unfortunately, these methods 
in general lack the IF..THEN..ELSE level of repre- 
sentation of the final decision model as seen in 
rule induction. These types of decision models are 
very desirable because they make interpretation 
of the decision models much easier. To accomplish 
this in situations where a multivariate approach is 
unavoidable, multivariate rule induction has been 
developed [23-251. This is an attempt to in- 
corporate the best from univariate rule induction 
and multivariate statistics: each rule which is respon- 
sible for the partition of the feature space is multi- 
variate and the different multivariate rules are 
arranged into a tree hierarchy which represents the 
IF..THEN..ELSE structure. In this article we compare 
one such multivariate rule induction method; the fuzzy 
rule-building expert system (FuRES) [42], with a 
selected set of more traditional classification methods. 
We investigate whether FuRES has better classifica- 
tion ability and whether the final FuRES classification 
model is easier to interpret compared with other 
models. 

2. Experimental 

Two different experimental data sets, referred to as 
Data set 1 and 2, are used to compare the different 
classification methods. Both data sets use PyMS as 
feature profiles. 

2.1. Preparation of data set I 

Mixtures of the three milks from cow, goat and ewe 
were prepared which differed in their fat content as 
described previously [26]. The samples were then split 
into training (calibration) and test sets as detailed in 
Table 1. 
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Table 1 Table 2 

Training and test sets for calibrations based on milk type Training and tests sets for calibrations based on virginity or 
adulteration of olive oils 

Percentage fat in milk mixtures 

Training set 

Test set 

cow Goat Ewe 

0 0 0 

1.9 2.15 2.7 

3.8 4.3 5.4 

0.38 0.43 0.54 

0.76 0.86 1.08 

1.14 1.29 1.62 

1.52 1.72 2.16 

2.28 2.58 3.24 

2.66 3.01 3.78 

3.04 3.44 4.32 

3.42 3.87 4.86 

2.2. Preparation of data set 2 

Two sets of samples of virgin and adulterated olive 
oils were prepared in Italy by Prof. Giorgio Bianchi 

(Istituto Sperimentale per la Elaiotecnica, Contrada 
‘Fonte Umano’ no. 37, 65013 Cittl S. Angelo, Pes- 

cara, Italy), each consisting of 12 samples of various 
extra virgin olive oils plus 12 samples variously 

adulterated with 5-50% of Soya, sunflower, peanut, 
corn or rectified olive oils. Full details of oil collection 

have been given previously [27,28]. Details of the 
training and test sets are shown in Table 2. 

Training set 1 Lucia 

2 Alfomosa 

3 Mario 

4 Leonardo 

5 Mara 

6 Gabriella 

7 Ugo 
8 Giorgio 

9 Walter 

10 Ezilde 

11 Vanda 

12 Catia 

13 Pietro 

14 Rosa 

15 Sandra 

16 Giuseppe 

17 Mira 

18 Anna 

19 August0 

20 Luca 

21 Giulia 

22 Paola 

23 Claudia 

24 Patrizia 

2.3. Pyrolysis mass spectrometry (PyMS) 

2.5 ~1 of the milks (data set 1) and the oils (data set 
2) were evenly applied onto iron-nickel foils to give a 

thin uniform surface coating. Prior to pyrolysis the 

samples were oven-dried at 50°C for 30 min. Each 
sample was analysed in triplicate. The pyrolysis mass 
spectrometer used was the Horizon Instruments 
PYMS-200X (Horizon Instruments); for full opera- 
tional procedures see [13,14,29]. For analysis of the 

milks the sample tube carrying the foil was heated, 

prior to pyrolysis, at 100°C for 5 s; for the olive oil 
experiment the tube heater was left off so as to 

minimise volatilisation of lower molecular weight 
oil. Curie-point pyrolysis was at 530°C for 3 s, with 
a temperature rise time of 0.5 s. The data from PyMS 

were collected over the m/z_ range 5 l-200 and may be 
displayed as quantitative pyrolysis mass spectra (e.g. 

Test set 

Number Code name Satus 

25 Perugia 

26 Lecce 

27 Urbino 

28 Rimini 

29 Taormina 

30 Napoli 

31 Milan0 

32 Trieste 

33 Torino 

34 Cagliari 

35 Bolzamo 

36 Venezia 

37 Roma 

38 Genova 

39 Bari 

40 Pescara 

41 Padova 

42 Palermo 

43 Firenze 

44 Ancona 

45 Siena 

46 Messina 

47 Bologna 

virgin 

virgin 

virgin 

virgin 

virgin 

virgin 

virgin 

virgin 

virgin 

virgin 

virgin 

virgin 

adulterated 

adulterated 

adulterated 

adulterated 

adulterated 

adulterated 

adulterated 

adulterated 

adulterated 

adulterated 

adulterated 

adulterated 

virgin 

virgin 

virgin 

adulterated 

adulterated 

virgin 

virgin 

virgin 

adulterated 

virgin 

virgin 

adulterated 

adulterated 

virgin 

virgin 

adulterated 

adulterated 

adulterated 

virgin 

virgin 

adulterated 

adulterated 
adulterated 
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as in Figs. l-3). The abscissa represents the mlz ratio 
whilst the ordinate contains information on the ion 
count for any particular m/z value ranging from 51 to 
200. Data were normalised as a percentage of total ion 
count to remove the influence of sample size per se. 
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2.3.1. Chmacteristicity 
Characteristicity is closely related to the Fisher (F) 

ratio [15] and has been used to select relevant masses 
in F’yMS spectra for multivariate analysis [30]: 

F=z, (1) 60 80 100 120 140 160 180 200 

Mass (m/z) 

1 
I”“““““’ r Fig. 3. Pyrolysis mass spectrum of pure ewes’ milk. 

where M1=Bl(k- 1) and M2=WI(n-k) and B=T- W. n 
is the total number of objects and k is the number of 
classes. Ml and M2 are related to the between and 
within class variance, respectively. The general 
expressions for T and Ware presented in Eq. (15). 

Characteristicity is calculated as described by 
Eshius et al. [31]. The first stage is the calculation 
of the following expressions: 

(1) inner variance or reproducibility (Q) [32]: 160 180 200 60 80 100 120 140 

Mass (m/z) (2) 
Fig. 1. Pyrolysis mass spectrum of pure cows’ milk. 

where n is the number of classes and V(ij) the variance 
of peak i in class i I”“““““” I 

1 (2) outer variance or specificity (Si) [33]: 

_1 Si =l [$(m,rjJ -W)2]. (3) 

where k is the number of classes, m(ij) the mean of 
peak i in classj and mi is the mean of “(id) (i.e. mean 
for all classes of peak i).The ‘characteristicity’ (ci) is 
then calculated by the following [31]: 

ci=si, 
ri 

(4) 
60 80 100 120 140 160 180 200 

Mass (m/z) 

Fig. 2. Pyrolysis mass spectrum of pure goats’ milk. 

The mass intensities cart then be ranked in order of 
their characterisities; large values are more important, 
smaller ones less so. 
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3. Description of classikation methods 

The two data sets have been analysed using the 
following six classification methods: 

Classification and regression trees (CART) 

Fuzzy multivariate rule building expert system 

(FuRES) 
Canonical variates analysis (CVA) 
Artificial neural networks with backpropagation 

(Ams) 
K-nearest neighbour method (KNN) 

Discriminant partial least squares (DPLS) 

Unless otherwise specified, all program implemen- 
tations of the methods described run under the Micro- 
soft Windows NT operating system on IBM 

compatible personal computers. 

Below we give a brief introduction to the different 

methods; since rule induction is a central part of the 
FuRES algorithm, a more general introduction to the 

subject is presented. 

3.1. Rule induction (CART and FuRES) 

Rule induction is a way of partitioning the space of 
sample objects into regions of single class member- 

ships [23]. Let each of the N objects be members of the 
set X and let the set C=( 1,2,. . .,J) contain the identi- 

fication indices to each of the J different classes in the 
data set. A classification problem can in general be 

regarded as finding a mapping M from the input space 

into the space of classes: 

M: x-+c. 

This mapping is also referred to as a rule which is 
derived from the training set. In rule induction the data 

set is recursively split into smaller subsets where each 
subset contains objects belonging to as few different 
classes as possible. The ‘purity’ of a subset, i.e. the 
distribution among the classes of the objects within the 

set, can be measured by using the concept of entropy 
[34]. For each subset there is a set of fractions P= 

[PI, p2,. . ., pJ], of the objects belonging to the J 
different classes. The fraction pi is computed as 
p; = nf)/n wh ere nf’ is the number of objects belong- 

ing to class i in subset s and n is the total number of 
objects in subsets. We can also interpret such fractions 

as the probability of finding an object belonging to 

class i in the subset. 
Intuitively, a subset consisting of objects from one 

class only will have the highest possible ‘purity’ and 

the vector P of probabilities will have a structure 

Pmin=[O, 0,. . .,l,. . .,O]. The most impure vector P will 

correspond to the case where there are equal fractions 

of each class, i.e. 

P 

The entropy of P 

H(P) = - k Pi log(&) 
i=l 

(6) 

(7) 

has properties in accordance with our intuitive under- 

standing of ‘impurity’: Hmir,( P)=O and 

H,,,(P)=log#) when pi=l/J. Thus, ensuring the 
highest purity in a subset corresponds to minimising 
H(P) by selecting an optimal partitioning. To see the 

various strategies for finding the best split we shall 
distinguish between univariate and multivariate rule 

induction. In the univariate case we want to find the 
single variable xi at each recursion step that gives rise 

to the purest subsets (i.e. those that have minimum 
entropy). In this article we will look only at numerical 

variables, but categorical variables can also be used 
[25]. In univariate rule induction a split or a partition- 

ing of the input feature space can be formulated as a 
question like ‘Is xi < c?’ where c is some value chosen 

from the$nite set of values variable Xi has among the N 
calibration objects. All the objects that satisfy the 

question are grouped into one subset and those that 

do not into another. Let ak be the different outcomes of 
a test on variable Xi. For the numerical tests discussed 

here we have only two outcomes (a,=‘yes’ and 

a2=‘no’). The entropy in a given subset of objects 
will thus be: 

H(+k) = - ~P(Slak)lOg@(Cilak)), 
i=l 

where P(cilak) is the probability or fraction of the 
objects satisfying the outcome ak and belonging to 
class i. H(Clak) is read as the entropy of all the 
classes in C given the outcome ak for variable Xi. 
Often p(cilak) is computed as the number of objects 
belonging to class i that has outcome ak divided by the 
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total number of objects satisfying uk in the subset. 
Assuming that the number of outcomes is two, we get 
two entropies calculated for each variable tested: 
H(CI‘yes’) and H(C] ‘no’). A measurement of the 
total impurity (entropy) for the variable xi selected 
in the split will be related to the sum of the two 
individual entropies H( C] ‘yes’) and H( C] ‘no’). We 
cannot, however, use a simple addition of entropies 
because the two subsets usually contain different 
number of objects and are therefore not directly 
comparable. To incorporate this, we multiply each 
entropy with the fraction of objects @(ai)) that is 
present in the current subset, relative to the previous 
subset. If we started out with 100 objects that are split 
into one subset containing 30 objects (which answered 
‘yes’ to the split question) and a second containing 70 
(which answered ‘no’ to the split question), we multi- 
ply the corresponding entropies with p(al= ‘yes’)= 
30/100 and p(a2=‘no’)=70/100, respectively. In gen- 
eral we have: 

where we have m=2 for analyses discussed in this 
article. The symbol A means the set of possible out- 
comes to a decision question. The general algorithmic 
structure for univariate rule induction programs is thus: 

Do the following recursively for 
each subset until you have reached 
terminal subset (i.e. a subset 
either containing one object or 
one classonly): 

begin 

For each variable do: 
begin 

Find the split question 
split the data into m groups 
compute the weighted entropies 
for the m groups and generate 
H( CIA) 

end 
Selectthevariablewiththelow- 
estentropyandgeneratetwo sub- 
sets. 

end; 

In realistic situations the number of rules in the a tree 
can get very large unless some kind of pruning of the 
tree is performed [25]. This means that the splitting of 
the feature space to generate higher purity of the 
subsets is stopped when a less than optimal purity 
is reached. 

CART (classification and regression trees) [23] is an 
example of a univariate rule induction method which 
we have chosen to apply to our two data sets. We use 
here the SCAN program [35] implementation of the 
CART algorithm. 

In multivariate rule induction we find a partition of 
the input feature space that depends on a linear 

combination of all the variables instead of just using 
one variable. We can formulate this as a question like: 
‘IS cjY1 WjXj 5 C ?‘. This type of partitioning of the 
data space is particularly useful if there are any 
collinearities between the variables. Our aim now is 
not to find the single best variable, but to find a vector 

w which best separates the data set into pure subsets. 
Given such a vector we project the object vectors 
stored as rows in the matrix X onto it: 

t = Xw/(wTw) -b, (10) 

where b is a bias (scalar) and t is a score vector 
where the sign of each score determines whether 
that object is to be classified as class 1 (‘yes’) or 2 
(‘no’). This is similar to the paradigm used in the 
multivariate rule building expert system (MuRES) 
approach by Harrington [24], the oblique rule induc- 
tion by Murthy et al. [36] and the linear machine 
decision trees by Utgoff and coworkers [37-391. The 
FuRES approach is a modification of the MuRES 
algorithm where the central change is in how the 
p(cj]ak) probability is calculated. As can be seen from 
the projections onto w, it may be difficult to say on 
which side of the hyperplane an object really is. When 
an object can be on one side (membership value= 1) or 
the other (membership value=O) of the hyperplane 
only, we refer to this as crisp clussijcution. To 
describe intermediate positions relative to the hyper- 
plane we usefuzzy set theory [40] where the degree of 
position is described by a continuous value between 0 
and 1. This means that an object may exist on both 
sides of the hyperplane because the plane itself is 
fuzzy. To obtain a ‘fuzzyness’ in the object position 
relative to w, a logistic function on the score value ti 
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can be used [41,42]: 

h= 
1 

1 + exp(-tJT) ’ 
(11) 

(12) 

where Tis defined to be a temperature which is similar 
to that used in simulated annealing [43] and certain 
neural networks. When T+O the logistic function will 
approach crisp classification and when T-too we 
approach the maximum entropy result, i.e. no parti- 
tion 

When we take into consideration several rules, this 
will correspond to decision hyperplanes that intersect 
and increasingly isolate the region in feature space 
containing a homogenous class distribution of objects. 
This means that when we test for the position of an 
object in relation to K rules, the result is not deter- 
mined just in terms of which side of a single decision 
plane the object is located, but in terms of the object 
position relative to all hyperplanes taken together. 
Therefore, instead of referring to a particular side 

with respect to decision plane w, it is better to talk 
about the interior and exterior that describe the posi- 
tion of an object with respect to all the decision planes. 
Assume we have a matrix H where each row i corre- 

sponds to an object and each columnj corresponds to 
the logistic function applied to the score of Rule j. Let 
Hk be the kth row vector in H. All the Hk row vectors 
that correspond to objects belonging to class u are 
collected in the matrix Hf). We can now use this 
matrix in the definition of the probabilities p(cjjak) 

which have to be defined in terms of the ratio of the 
total fuzzy membership of objects belonging to a 
certain class inside the region of interest to the total 
fuzzy membership of objects in the region. In CART 
we saw that only the number of objects in the subset 
belonging to class i divided by the total number of 
objects in the subset was used to calculate p(cj]ak). 
Here, the ak now refers to either ‘inside’ or ‘outside’ 
of a region and we thus calculate these conditional 
probabilities as: 

p(cil’inside’) = C;=l min(H~)) 
Cf=‘=, min(Hk) ’ 

(13) 

where ni is the number of objects in class i and N is the 
total number of objects. 

For the outside of the region we have: 

p(q) ‘outside’) = 
C;!t max(Hf)) 

c;==, max(Hk) 
(14) 

To retain consistency with fuzzy set theory, the 
interior of a region is defined to be the minimum 
logistic values and the outside as the maximum 
value. 

The use of the logistic function makes FuRES 
share some similarities with the feedforward multi- 
layer perceptron architecture commonly associated 
with artificial neural networks. In fact, the F&ES 
classifier has been referred to as a minimal neural 
network (MNN) [41]. It should be noted, however, that 
the current version of the F&ES algorithm produces 
linear decision planes only whereas ANNs can give 
rise to non-linear decision surfaces which can solve 
more difficult classification problems. It is, however, 
possible to approximate non-linear decision surfaces 
with FuRES by applying the linear planes in a sequen- 
tial manner. 

For multivariate rule induction we used the FuRES 
program provided by Prof. Peter de B. Harrington. 
This program runs under MS DOS 6.2. 

3.2. Canonical variates analysis 

Canonical variates analysis (CVA) (also referred to 
as Discriminant function analysis (DFA)) is a multi- 
variate statistical technique that separates objects 
(samples) into groups or classes by minimising the 
within-class variance and maximising the between- 
class variance [16,30&l]. 

The general principle of CVA is similar to that 
of principal components analysis (PCA), but the 
objective of CVA is to find latent variables that 
maximise the ratio of the between-class to within- 
class variance, rather than maximising the between- 
object variance. To find the canonical variates (CV) 
direction we first compute the within-sample matrix of 
sums of squares and cross products, W, and the total 
sample matrix of sums of squares and cross products, 
T. The between-class matrix is computed as: 
B=T-W and the eigenvectors of W-‘B correspond 
to the CVs onto which we project our data objects. The 
matrices Wand T can be expressed in matrix algebra 
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as follows: 

T = c(Xj - M)T(Xj -M), 

W = C(Xj - M)T(Xj - Mj), (15) 

where M = ET (1 is a vector of ones and XT is the 
transposed total mean vector). Mj = 1%: (2: is the 
transposed mean vector for each class j). 

In the CVA reported here, PCA is first used to 
reduce the dimensionality of the data where only those 
principal components (PCs) whose eigenvalues 
accounted for more than 0.1% of the total variance 
are used. After the first few PCs, the axes generated 
will usually be due to random ‘noise’ in the data; these 
PCs can be ignored without significantly reducing the 
amount of useful information representing the data, 
since each PC is now independent of (uncorrelated 
with) any other PC. 

CVA was here carried out using the program GEN- 
STAT [45] running under MS DOS 6.2. 

3.3. Art$cial neural networks (ANNs) 

For excellent introductory texts to ANNs see 
[2,8,20,21,46-48]. 

All ANN analyses were carried out with a user- 
friendly neural network simulation program, NeuDesk 
version 2.1 (Neural Computer Sciences, Totton, 
Southampton, Hams), which runs under Microsoft 
Windows NT on an IBM-compatible PC. 

In-depth descriptions of the modus operandi of this 
type of ANN analysis are given elsewhere [13,14,29]. 

The algorithm used was standard backpropagation 
in a fully-interconnected multilayer perceptron archi- 
tecture [46]. This employs processing nodes (neurones 
or units) linked by abstract interconnections (connec- 
tions or synapses). Connections each have an asso- 
ciated real value, termed the weight, that scaled 
signals passing through them. Nodes summed the 
signals feeding to them and output this sum to each 
driven connection scaled by a logistic function. 

For training ANNs for the analysis of the two data 
sets, each of the inputs was the normalised triplicate 
pyrolysis mass spectrum derived from the training set 
and was paired with each of the desired outputs. In 
data set 1 these were binary encoded such that cows’ 
milk was coded as [l,O,O], goats’ milk as [O,l,O], and 
ewes’ milk as [O,O,l]; details of training and test set are 

given in Table 1. These 27 training pairs collectively 
made up the training set. In data set 2 a single output 
node was used and coded such that a virgin olive oil 
was referred to as 1 and an adulterated olive oil was 
referred to as 0. The input was applied to the network, 
which was allowed to run until an output was pro- 
duced at each output node. The differences between 
the actual and the desired output, taken over the entire 
training set, were fed back through the network in the 
reverse direction to signal flow (hence backpropaga- 
tion) modifying the weights as they want. This process 
was repeated until an acceptable level of error was 
achieved. 

3.4. K-nearest neighbour method 

KNN [49-511 is a non-parametric classification 
method that does not explicitly form a separate model 
from the calibration data set. In KNN the ‘classifica- 
tion model’ is the whole of the calibration set. The 
classification is performed as follows: a test set object 
is placed in the same multidimensional hyperspace as 
the calibration set. The K nearest neighbours from the 
new test set object to the calibration objects are 
computed. By ‘nearest’ we mean the minimum dis- 
tance using a chosen norm. In all the applications 
discussed here we use the standard Euclidean norm. In 
the general case, other norms like the Mahalanobis or 
the Manhattan distances may be more suitable [30]. 

In the simplest KNN method, which will be used 
here, the fractions of the different classes among the K 
neighbours are recorded. The class prediction for the 
new object is the class that has the largest number of 
objects among the K neighbours. Note that K is always 
an odd number to ensure that a majority vote is 
obtained locally. 

The next problem is how to determine the optimal 
number of nearest neighbours. In this article we have 
solved this problem by performing a cross validation 
on the calibration set [52]. The cross validation is 
started by assuming K=l. Each object in the calibra- 
tion set is then taken out and interpreted as a test set 
object and a classification is based on the scheme 
described above for the that single object. The classi- 
fication for all the objects in the calibration set with K 
nearest neighbours is recorded and the percentage 
misclassification is calculated. This procedure is per- 
formed for all possible values of K={ 1,2,. . Jr-l} 
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where N is the number of objects in the calibration set. where W is the matrix of weights of the X space, Q is 
The K is selected that has the lowest percentage the weights matrix for the Y space and P is the X space 
misclassification. loadings matrix. 

A MATLAB 4.2 (The MathWorks, USA) program 
was written to implement the KNN algorithm with 
cross validation. 

3.5. Discriminant PLS (DPLS) 

The theory and properties of the partial least squares 
algorithms PLS 1 (with one dependent (Y) variable) 
and PLS2 (with several dependent Y-variables) have 
been extensively studied and reported in the literature 
[53-67]. We will therefore give only a short descrip- 
tion of the DPLS method which is the PLS2 algorithm 
applied to classification problems. The central point in 
the PLS paradigm is to find latent variables in the 
feature space which have a maximum covariance with 
the Y-variable(s). Thus, linear combinations of the 
feature space variables are found that are tilted to 
have maximum prediction ability for the Y-variable(s). 
In PLS2 one also uses linear combinations of the Y- 
space variables. PLS2 therefore has an iterative stage 
in each of the PLS2 factor calculations. One common 
way to use PLS2 in classification problems is to 
introduce a coding where each column in the Y matrix 
(which contains all the dependent variables) corre- 
sponds to a class. If e.g. three classes need to be coded, 
each sample is associated with one of the three 
following vectors: [l,O,O] (class no. l), [O,l,O] (class 
no. 2) and [O,O,l] (class no. 3). This is similar to the 
crisp coding described above. A fuzzy coding scheme 
can of course be applied if necessary because PLS is 
inherently quantitative. 

The prediction of dependent variables on a new set 
of objects is now done by: 

Ye,, = X,,,B. (19) 

Since each of the predicted rows in Y,,, usually will 
not have the form [O,O,. . .,l,. . .,O,O], a re-coding is 
performed by finding the index of the maximum 
column in Y,,,. This index is used as the identity 
of the predicted class. 

4. Results and discussion 

4.1. Data set 1 - Classification of three milk types 

4.1.1. CVA 
PCA was first applied to the data set and the first two 

score vectors are shown in Fig. 4. No clear separation 
of the three milk types is apparent in this plot. 

A dimension reduction using PCA was employed 
where nine PCs were extracted and the resulting score 
vectors were subsequently used as inputs to the CVA 
algorithm. CVA was very effective in discriminating 
the objects for this data set. The results for the 
calibration objects together with the test set is shown 

The final PLS can be formulated as a regression 
equation: 

Y =XB, (16) 

where the estimated regression coefficients B are: 

B = X+Y, (17) 

Xf is a generalised inverse provided by the PLS 
algorithm. In order to obtain a prediction from the 
PLS model it is sufficient to use I@. (17). In this 
article we compute the regression matrix B as demon- 
strated by Martens and Naes [68]: 

B = W(PTW)-‘QT, (18) 

2 1 , I I , I , - 

A 
A 

-2 

-4 -2 0 2 4 

Principal component 1 

0 Cow milk Cl Goat milk A Sheep milk 

Fig. 4. PCA biplot based on PyMS data analysed by GENSTAT 

showing the relationship between the three types of milk with 

varying fat content. The first and second PCs accounted for 76.7% 

and 10.8% (87.5% total) of the total variance, respectively. 
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0 Goat milk - calibration data 

A Sheep milk - calibration data 

l Cow milk - test set 

n Goat milk - test set 

A Sheep milk - test set 

Fig. 5. CVA biplot based on PyMS data analysed by GENSTAT 
showing the relationship between the three types of milk. CVA was 
given the a ptioti information (training set; open large symbols) 
according to the milk type in Table 1 and trained with the fmt nine 
PCs (accounting for 99.73% variance); the replicates are shown. 
The test set (closed small symbols) are projected into the CV space; 
the CV means for the replicates are shown. 

in Fig. 5. The test set objects were first projected onto 
the nine principal components of the calibration set to 
obtain comparable score vectors and further projected 
onto the final CVA model. The projection of calibra- 
tion and test set objects together is shown in Fig. 5 
where it can be seen that all samples are well separated 
and correctly identified. The mass loading biplot 
shown in Fig. 6 presents the original variables 
(masses) together with the three milk type classes. 
From this we can see, for instance, that mass 97 is 
important for the GOAT milks, mass 84 is important 
for the EWE milks and mass 98 is important for the 
COW milks. 

4.1.2. KNN 
Autoscaling on both calibration and test set was 

performed. The cross validation analysis of the cali- 
bration set showed that an autoscaling would improve 

the classification. The optimal number of nearest 
neighbours (K) was estimated on the calibration set 
only using the full cross validation approach described 
above. Here the optimal value is K= 1. The predictions 
of the class memberships of the objects in the valida- 
tion set were perfect. When it comes to interpretation 
of the model, KNN unfortunately gives no information 
about which variables would be important for predic- 
tion of a certain class. 

4.1.3. CART 

CART produced a rule set which is shown in Fig. 7 
as a classification tree. Written out the rule is: IF mass 
81 is less than 1.70 THEN the sample object is EWE 
milk ELSE IF mass 97 is less than 3.93 THEN the 
sample object is COW milk, ELSE the sample object 
is GOAT milk. This result is in agreement with the 
ranking based on the characteristicities shown in 
Table 4 where EWE vs. COW and GOAT has m/z 
value 8 1 as rank 1, and GOAT vs. COW and EWE has 
m/z 97 as rank 1. Using this rule on the test set we 
found that six objects (objects 10,13,14,45,46 and 47) 
out of 72 (8.3%) were misclassified. The most impor- 
tant variable in the CART rule is in agreement with 
CVA where mass 97 was found to be important for the 
discrimination between GOAT and (COW and EWE) 
milks. 

4.1.4. ANN 

The structure of the ANN used in this study to 
analyse pyrolysis mass spectra was as follows: 150 
input nodes, 3 output nodes (one for each milk type), 
and one ‘hidden’ layer containing 8 nodes (i.e., a 150- 
8-3 architecture). Before training commenced, the 
values applied to the input and output nodes were 
normalised between 0 and 1 for each mass, and the 
connection weights were set to small random values 
[47]. Each epoch represented 1235 connection weight 
updatings and a recalculation of the root mean squared 
(RMS) error between the true and desired outputs over 
the entire training set. A plot of the RMS error vs. the 
number of epochs represents the ‘learning curve’, and 
was used to estimate the extent of training (not 
shown). Finally, after training to an RMS error of 
0.001, all 72 test set pyrolysis mass spectra were used 
to test that the ANN had learnt the three difference 
classes of milk; the network then calculated its esti- 
mate and for each test set sample and the winning node 
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Fig. 6. CVA scores and mass loadings biplot based on PyMS data analysed by GENSTAT. The relationship between the three types of milk are 

as those presented in Fig. 3. The 50 most significant masses as judged by their characteristicities are shown. 

Population: cow: 24, goat: 24, ewe: 24 

ELSE 

cow: O(O%) 

goat: 1 (4.5%) 

ewe :21(95.5%) 

cow : 24 (85.7%) cow : 0 (0%) 

goat: 2 (7.1%) goat: 21 (95.5%) 

ewe : 2 (7.1%) ewe : 1 (4.5%) 

Fig. 7. CART analysis of Data set 1. This is the resulting 

classification tree which has a percent misclassification on the test 

set of 8.3% (6 out of 72). 

in the output layer was taken as its identity. All 72 
were correctly identified (and see Goodacre et al., in 
preparation). 

In an attempt to observe which masses were impor- 
tant in discriminating the three milk types the next 

stage was to ‘turn-on’ each input node in turn; this was 

achieved by interrogating the trained ANN with the 

150 by 150 identity matrix, the influence of each mass 
could be ascertained in terms of which of the three 

nodes in the output layer ‘won’, see Fig. 8. One should 
be careful when interpreting plots like these. The ten 
highest peaks for the cow milk were 61,70,62,81,74, 

66,103,75,196 and 63. For the goat milk the ten most 

significant peaks are 97,64, 109,69, 125,51,96, 127, 
123 and 52. For the ewe milk the following masses 

were found to be important: 84, 60, 112, 54, 142,71, 
111,55,106 and 56. Similar to the other methods, the 
ANNs have found masses 81,84 and 97 to be impor- 

tant. The results are also in agreement with the results 
from the FuRES analysis (see below) where the 
following masses were found to be important: 55, 

61, 69, 84, 103 and 112. 

4.1.5. DPLS 
The percent misclassification for each PLS2 factor 

for the calibration and test set has a minimum of zero 
for 3 factors. Note that the misclassification error is 
computed by finding the number of correct classifica- 
tions relative to the total number of objects. The 
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Fig. 8. Results of the estimates of trained 150-8-3 ANNs for the identity matrix. Three ANN were interrogated after the RMS error was 

0.001, this took between 400-800 epochs. The results shown are the averages of the three ANNs. 

predictions were calculated by multiplying each sam- 
ple vector with the regression matrix B. Each of the 
three column vectors in B are shown in Fig. 9. A 100% 
correct classification of the test set was achieved. The 
ten most significant masses in the first regression 

0.2 
s. 

81 
0 

% &I 50 100 150 200 

0 

50 100 150 200 
0.2 1 

2 0 

&I $0.2 50 100 150 200 
m/z 

Fig. 9. The three regression coefficient vectors (in the B matrix) 

used in the PLS2 prediction for data set 1. 

vector are (sorted in descending order of importance): 
126, 97, 61, 85, 81, 144, 73, 96, 98, 95. The second 
regression vector has the following ten most important 
masses: 97, 126,69,61,51,53,96,95,55,60 and the 
third has: 55,69,97, 84,81, 126,53, 85, 112,51. We 
note in particular the masses 97, 126,84 and 61 which 
were also found to be important using CVA, FuRES 
(see below) and ANNs. 

4.1.6. FuRES 

The FuRES algorithm produced two rules for this 
data set, see the decision tree in Fig. 11. The two 
vectors corresponding to the two rules are shown in 
Fig. 10. FuRES accomplished 100% correct predic- 
tions on the test data set. The first multivariate rule is 
illustrated by its w vector (as in Eq. (10)) which 
defines the decision hyperplane, see the upper part 
of Fig. 10. This rule is responsible for separating 
COW’s milk from GOAT and EWE’s milks. This fact 
can be read from the decision tree in Fig. 11. Simi- 
larly, the second rule is responsible for discriminating 
between GOAT and EWE milk. The following ten 
most important masses in Rule 1 are (sorted with 
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Rule 1 Table 3 
m/z values ranked in order based on subtraction spectra 

50 100 
Rule 2 I50 

200 
I 1 

0.2 
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-0.2 
-0.4 

50 100 150 200 
m/z 

Fig. 10. Each of the two FuRES rules for data set 1 are shown. 
Note that these two rules can be interpreted as a kind of F’yMS 
spectra. High amplitude means that a certain m/z is important. 

Population: cow: 24, goat: 24, ewe: 24 

THEN ELSE 

mw : 24 (100%) 

goat: 0 (0%) 

ewe: 0 (0%) 

cow: O(O%) cow: O(O%) 

goat: 24 (100%) goat: O(o%) 
ewe: O(o?q ewe : 24 (100%) 

Fig. 11. The FuRES rule induction tree for data set 1. Bach rule 
here is a vector onto which each sample is projected. The positions 
of the object relative to such a vector (on the positive or negative 
side) determine which class it belongs. 

respect to absolute height of peak, in descending 
order): 60, 84, 69, 112, 85, 126, 97, 55, 81, and 
103. The ten most dominating masses for Rule 2 
are 126, 97, 58, 61, 68, 54, 57, 69, 81, and 96. It is 
of interest to compare these important masses with the 
mass-ranking shown in Table 3 (based on single spec- 
tra subtractions) and Table 4 (based on the calcula- 
tions of characteristicities). The ten largest FuRES 

Rank Cow’ Goa? Ewe3 Rank Cow Goat Ewe 

1 61 97 55 26 128 104 199 
2 98 69 60 27 124 88 195 
3 81 126 57 28 131 168 183 
4 103 51 84 29 107 77 186 
5 85 96 54 30 137 155 193 
6 86 53 126 31 115 134 187 
I 87 95 56 32 88 176 181 
8 70 125 68 33 93 172 200 
9 99 109 112 34 102 192 196 

10 110 81 73 35 138 188 155 
11 74 52 58 36 123 156 173 
12 82 98 144 37 63 182 189 
13 94 127 101 38 121 190 188 
14 62 103 111 39 78 198 191 
15 80 64 71 40 90 178 184 
16 67 123 59 41 100 170 159 
17 71 87 72 42 116 200 160 
18 83 115 142 43 140 197 180 
19 104 70 119 44 122 164 174 
20 91 79 83 45 92 187 172 
21 79 86 114 46 129 189 169 
22 89 110 145 47 136 184 143 
23 108 124 146 48 139 173 179 
24 75 116 197 49 152 191 158 
25 65 131 198 50 151 199 194 

t Calculated on training set; (average of cow spectra) - (average of 
goat and ewe spectra). 
* Calculated on training set; (average of goat spectra) - (average of 
cow and ewe spectra). 
3 Calculated on training set; (average of ewe spectra) - (average of 
cow and goat spectra). 
Bold indicates important masses given by the FuRES method. 

masses are indicated in the tables as boldface. We see 
that in Table 3 almost all of the top five ranked masses 
are among the ten important masses found by the 
FuRES method. In contrast, several of the important 
FuRES masses have low ranking in Table 4, which 
suggests that the ranking based on calculation of 
characteristicities is here less effective than the simple 
straightforward subtraction of spectra. 

4.2. Data set 2 - Adulteration of olive oils 

4.2.1. CVA 
Even though the CVA analysis indicated the pre- 

sence of groups they did not correspond to adulterated 
and virgin olive oils and thus the CVA method failed to 
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Table 4 

m/z values ranked in order based on their charactetisticities. 
Characteristicities calculated as given in the text 

Rank All against Cow vs. Goat Goat vs. Cow Ewe vs. Cow 

one another and Ewe and Ewe and Goat 

1 

2 

3 

4 

5 

6 

I 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 
24 

25 

26 
21 

28 

29 

30 

31 

32 

33 

34 

35 

36 

31 

38 

39 

40 
41 

42 
43 
44 

45 
46 

41 
48 

49 
50 

62 126 

81 62 

I34 61 
97 63 

98 65 

70 200 

126 70 

61 196 

63 92 

65 78 

200 184 

64 15 

71 190 

103 98 

190 81 

17 67 

184 186 

104 71 

78 91 

196 170 

19 150 

170 105 

15 16 

92 153 

86 195 
54 107 

58 104 

164 174 

109 164 

178 82 

61 147 

91 151 

56 178 

131 74 

147 103 

188 163 

150 86 

82 138 

186 136 

134 137 

76 169 

99 175 
105 148 
153 188 

182 191 
156 58 

174 152 
163 194 

K78 ;; 

97 81 

64 84 

84 98 

109 62 

51 70 

78 71 

95 103 

96 54 

67 63 

69 56 

71 19 

126 77 

125 104 

142 65 

112 64 

94 190 

80 200 

106 109 

52 58 

186 131 

59 86 

93 170 

56 164 

146 61 

54 178 

111 168 

127 188 

160 123 

74 134 

81 55 

118 99 

61 184 

159 182 

195 156 

120 147 

196 176 

83 75 

92 112 

66 91 

107 121 

68 192 

117 88 
167 82 
181 172 

98 97 

60 87 

175 73 
117 126 

179 124 
180 140 

Bold indicates important masses given by the FuRES method. 

separate the classes in this data set. This was also 
confirmed by the group CV means which were sepa- 
rated by less than the x2 95% confidence limits [28]. It 
was seen that the clustering observed mainly corre- 
sponded to the oil’s cultivars [28]; the results from this 
experiment are detailed elsewhere [27,28]. 

4.2.2. KNN 
In this case it was found that autoscaling reduced 

the predictive ability of the method and it was there- 
fore not used here. The cross validation results for the 
calibration set indicated that K=3 is optimal. When 
applied to the test set, 9 out of 23 (39.1%) objects were 
misclassified. 

4.2.3. CART 

The decision tree produced by CARTon data set 2 is 
shown in Fig. 12. The rules written out are: IF mass 
17720.02 THEN adulterated ELSE IF mass 
14920.14 THEN virgin ELSE IF mass 5321.77 
THEN adulterated ELSE virgin. Using this rule on 
the validation set it was found that six out of 23 objects 
(26.1%) were misclassified. The misclassified objects 
were 3,4,7,8,10 and 22 where four of the virgin oils 
were wrongly predicted to be adulterated. CART 
appears to be better than both the CVA and KNN 
for this data set. 

4.2.4. ANN 

The detailed experimental set-up for the ANNs 
analyses has been presented elsewhere [27,28]. Simi- 
larly to the ANN analysis of Data set 1 we have a three 
layered network with 150 input nodes, eight nodes in 
the ‘hidden’ layer and one output node in the third 
‘output’ layer. The training was performed using the 
standard backpropagation algorithm. ANNs were 
trained to 0.001 RMS error and the network was able 
to predict all the test set samples correctly in an 
average of five trainings using randomised starting 
connection weights [28]. There was a minor uncer- 
tainty compared to the other predictions for sample no. 
10 (codename Cagliari) of virgin quality in that one of 
the five ANNs classified that object as adulterated. 
ANNs without any hidden layers, i.e. perceptrons 
which can only make linear classification hyperplanes, 
failed for this (no. 10) and other samples, for details 
see [28]. 
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Population. adulterated 11. virgin: 12 

IF nlaos 17 

a 

< 0.02 

THEN ELSE 

0’ 
h/--W, 

adun.’ 0 (0%) 
wgin: 3 (100%) 

THEN 

adult.: 0 (0%) adult. 9 (90%) 

kirgm 2 (100%) nrgm 1(10%) 

Fig. 12. The CART decision tree for data set 2. 

4.2.5. DPLS 
Since we have only two possible classes PLSl 

instead of PLS2 can be used. The reason for this is 
that the degree of freedom is one since the probability 
of membership sums to one. The class membership of 
an object is determined by whether the predicted Y- 
variable (i.e. class variable) minus the Y calibration 
mean is above or below zero. This is similar to the 
class assignment procedure described above for multi- 
variate rule induction without the use of fuzzy set 
theory. 

The percent misclassification for each PLSl 
factor for the calibration and test sets is shown in 
Fig. 13. The upper part of the figure shows the 
calibration model predicting the whole of the 
calibration set and the lower figure shows the predic- 
tion of the test set. As can be seen from the lower part 
of this figure, the predictions of the test set are 
sensitive to the selection of the number of PLS factors. 
Using traditional cross validation techniques with 
various splitting criteria (not shown) on the calibration 
set does not produce the optimal number of PLS 
factors. From the figure we see that the use of only 
three PLS factors produces a perfect prediction: 3,5, 
and 7. Analysis of the calibration set alone suggested 7 
PLS factors as optimal, which was used in the final 
PLS model. The PLS score plot of the two first factors 
in the calibration set are shown in Fig. 14. It seems 
that PLS factor no. 2 is better than factor no. 1 in 
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Fig. 13. The percentage misclassification versus the different 
number of PLSl factors is shown for the calibration (upper part) 
and test set (bottom part) for data set 2. 

discriminating between adulterated and virgin olive 
oils. 

The predictions of the Y-values were calculated by 
multiplying each sample vector with the regression 
vector B. This vector is shown in Fig. 15. A 100% 
correct classification for the test set was achieved. 

The ten most important masses in B are (sorted in 
descending order of importance): 83, 88, 85, 69, 73, 
60,91,74, 104, 101. Of these masses, 60, 69,73, 85, 
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Fig. 14. PLS score plot for data set 2. 

Population: adulterated: 11, virgin: 12 

ELSE 

adult.: 11 (83.3%) adult.: 0 (0%) 
virgin: 2 (16.7%) virgin: 10 (100%) 

Fig. 16. The FuRES rule induction tree for data set 2. Note that 
Rule 2 is not significant since it is being used to explain one object 
only (and is therefore omitted from this decision tree diagram). By 
using the test set it is possible to show that Rule 2 does not 
general& to any other object. 

-1.5 5; I 

100 150 200 

Fig. 15. The regression coefficient vector B used in the PLSl 
prediction for data set 2. 

88 and 91 were also found to be important using 
FuRES (see below). None of these masses were found 
by the CART method. 

4.2.6. FuRES 

The FuRES program generated two rules for data 
set 2, see the decision tree in Fig. 16. The first rule 
separates the majority of the adulterated oils from the 
virgin oils and is plotted as a PyMS like spectrum in 
Fig. 17. The ten most important variables for this rule 
(sorted in descending order) are 57,72,60,73,85,91, 
88, 69, 78, and 97. 

The second rule, however, is needed to separate 
only one adulterated oil from the rest of the virgin oils. 

50 100 150 200 
m/z 

Fig. 17. Here the only significant F&ES rule for data set 2 is 
shown. 

This object was assumed to be an outlier in this 
analysis, see Fig. 18 lower part. This was further 
verified when the two rules were used on the valida- 
tion set, see Fig. 19 lower part. Rule 2 did not general- 
ise and could therefore not improve the prediction for 
any of the objects in the validation set. %o out of 23 
oils (8.7%) were misclassified using Rule 1 only. It is 
interesting to see that the FuRFS misclassified object 
no. 10 which was also indicated as a problematic 
sample in the ANN analyses. In particular, the 
ANN without a hidden layer (the 150-l net) was 
not able to classify this sample correctly either. Both 
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Fig. 18. The FuRES rules 1 and 2 have been applied to the 
calibration set of data set 2. The upper part of the figure shows the 
use of Rule 1 only, and the lower part shows the use of both rules. 
Note that Rule 2 is only used to classify a single object. 
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Fig. 19. The F&ES rules 1 and 2 have been applied to the 
validation set of dam set 2. The upper part of the figure shows the 
use of Rule 1 only, and the lower part shows the use of both rules. 
Note that Rule 2 does not improve the classification of the test set 
objects and has therefore been excluded from the final model. 

FuRES and the 150-l network in addition misclassi- 
fied the virgin oil Ancona (no. 20) as being adulter- 
ated. It should be noted that the 150-0-l network was 
worse than FuRES since it misclassified the virgin oils 
Urbino (no. 3) and Triesre (no. 8) also, whereas 
FuRES classified these test set objects correctly. 
One possible explanation for the difference in predic- 
tion between Ft.&ES and the ANN with a hidden node 

Table 5 
A summary of the results: The two data sets have been analysed by 
six different classification methods and am here compared in 
relation to percentage misclassification of the test set objects and 
whether it is easy to interpret the results from the classification 
model 

Method Data set 1 Data set 2 Ease of 
Misclassification Misclassification interpretation 

FuRES 0% 8.7% Easy 
CVA 0% Faileda Easy 
DPLS 0% 0% Easy 
ANN (150-l) 0% 17.4% Diffkult 
ANN (150-8-l) 0% 0% Difficult 
CART 8.3% 26.1% Easy 
KNN 0% 39.1% Very diffkult 

‘Failed to make a model on the training set. CV means were < x2 
95% distances (see text and [28]). 

layer is that in order to obtain a perfect classification 
for this data set, the classification hypersurface should 
be curved and not linear. This version of FuRES 
produces linear hyperplanes only. 

A summary of the performances of the different 
classification method on these two data sets is pre- 
sented in Table 5. 

5. Conclusion 

Based on these two data sets only, it seems that the 
DPLS method is the best of those considered here. In 
data set 2, however, we saw that it was difficult to 
obtain the correct number of PLS factors. Using any 
other than 35 or 7 factors, we would have obtained at 
best 10% misclassification (with four or six PLS 
factors). In spite of this the DPLS method is both fast 
and easy to interpret and therefore should be one of the 
first classification methods applied to a data set. 

FuRES is also a powerful classification algorithm 
both in terms of the number of correct classifications 
and the fact that it is possible to extract meaningful 
information from the classification rules. The tree 
structure of the different multivariate rules provides 
an effective tool for the investigator to interpret his or 
her model using a priori information. In order to 
improve the classification ability of FuRES it may 
be possible to extend the method to include polyno- 
mial or non-linear decision hypersurfaces. 
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It should be noted that the DPLS method can, in 
theory, also be extended to include polynomials or 
spline decision hypersurfaces. 

ANNs with hidden layers are better as classifiers for 
problems involving non-linear decision hypersurfaces, 
but are much harder to interpret. There are, however, 
techniques that try to improve the interpretation of 
trained ANNs by e.g. extracting IF..THEN..ELSE 
rules [69-791. Such techniques may in future become 
standard tools in ANN analyses. 
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