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Abstract 

This paper demonstrates that the interpretation of multivariate calibration and rule induction classification models can be 
significantly improved by adopting a new representation of data profiles (e.g., spectra and chromatograms) containing identi- 
fiable peaks. The new representation is based on estimating Gaussian or Lorentzian curve parameters of data profiles by 
non-linear curve fitting. All modelling is performed on these peak parameters rather than using the traditional approach where 
each variable is assigned a sampling point in the data profile. Loading weight plots from the multivariate methods and deci- 
sion trees obtained from rule induction algorithms become more parsimonious and easier to interpret in terms of the new 
representation. 
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1. Introduction 

A one-dimensional spectrum or a curve is typi- 
cally represented as a vector set of  ordinate values 
using a certain abscissa sampling frequency. How- 
ever, a more efficient description of  a spectrum can 
be accomplished if it is represented with sufficient 
accuracy by a mathematical model rather than by the 
individual data points. The use of  such representa- 
tions for the purpose of  compressing digital images, 
speech or data files in general is indeed well known 
[1-12]. Using compressed representations to enhance 
interpretation and algorithmic efficiency of  multi- 
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variate methods is less common, but has been re- 
ported in the statistics and chemometrics literature 
[13-20]. One way to employ a mathematical model 
representation of  curves is to use only the function 
parameters when describing the data profile. The 
most obvious advantage of  using such parameters in- 
stead of  the original data points is the reduction in the 
number of  bytes needed in storage. Significant reduc- 
tions in computation time can also be achieved. There 
is another and even more important advantage with 
the function parameter representation: a classifica- 
tion or regression model using the compressed func- 
tion parameters is often easier to understand and in- 
terpret for humans. The reason for this is that a data 
profile is not interpreted by humans in terms of  indi- 
vidual sampling points but usually as a combination 
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of certain patterns. In particular, we will focus on the 
type of pattern we refer to as a peak. In other words, 
the brain has performed a pattern recognition opera- 
tion on the data profile and extracted information 
about it at a higher abstraction level than the origi- 
nal sampling points representation (SPR). It should be 
emphasised, however, that there are many examples 
of data profiles where a peak description is not appli- 
cable. In such situations the SPR may be the best 
choice or alternatively, other functional descriptions 
can be used. 

In this article we will describe each peak object or 
shape by the properties height, position and width 
since this is the required set of input parameters for 
e.g. Gaussian and Lorentzian functions. By using 
such parameters in the modelling we have ab- 
stracted away the details about the individual points 
making up the peaks in the data profile. The impor- 
tant consequence of working with peak parameters is 
that the future classification and regression models 
will also be in terms of that higher abstraction level. 

A variety of mathematical methods are now in 
common use for analysing data sets consisting of data 
profiles; examples are principal components analysis 
(PCA) [21-25], principal components regression 
(PCR) [26-28], partial least squares regression (PLS) 
[29-34] and artificial neural networks [35-45]. In 
addition to the traditional chemometric methods we 
also focus on the rule induction methodology be- 
cause it gives classification models that are often 
easier to interpret than classical statistical classifica- 
tion models. 

2. The peak parameter representation (PPR) 

The traditional use of the original sampled points 
from scientific instruments to represent curves or 
spectra is very intuitive. There are, however, several 
serious drawbacks with this representation. Since 
each sampled point along the curve is assigned a 
variable to be analyzed by a multivariate algorithm, 
the ordering of the points will have no meaning. This 
means that if we randomly permutated all the vari- 
able columns in our data matrix containing the data 
profile information, it would not make any difference 
to the results generated by the multivariate algo- 
rithm. Why should we be concerned about ordering 

of the sampled points? The answer to the question is 
related to the fact that all information about the 
smoothness, continuity, type of critical points etc. are 
curve properties that are dependent on the ordering of 
infinitesimally separated points along the curve. 

By assuming that the curves we want to analyze 
satisfy some functional relation, we abstract away 
from the actual individual sample points [14]. In most 
cases the sampling points used to represent the curves 
or spectra are redundant to the problem we wish to 
study. This is easy to show by gradually increasing 
the sampling frequency we use for collecting points 
along smooth curves. When approaching an infinite 
sampling frequency the information content in each 
variable goes to zero! 

When we are using a functional representation M 
of a curve f ,  we assume that the function has a set P 
of parameters Pl that can be adjusted to fit close as 
possible to the original sampling points: 

f ( x )  = m ( x ,  {Pl,  P2 . . . . .  Pn}) (1) 

where the functional representation M satisfy 

[ I f -  MII < e (2) 

The brackets indicate a suitable distance measure be- 
tween f and M. ~ is the lower threshold for what is 
an acceptable fit. 

In all future modelling we let the curve be repre- 
sented by the parameter set P rather than the origi- 
nal set of sampled points. The ordering of the peak 
parameters in a multivariate modelling is as before of 
no importance for the results. Contrary to the sam- 
piing point representation, however, the assumptions 
about smoothness, continuity and other mathematical 
curve properties are implicitly contained in the func- 
tional representation and will thus not be affected by 
any random permutation of the parameters. The in- 
formation about continuity, smoothness and other 
properties of the function are not contained in the or- 
dering of the parameters as they are for the sampled 
points. 

There is one way to view the SPR from a func- 
tional perspective. We can interpret each sampled 
point j as a convolution of the true underlying func- 
tion f ( x )  with the Dirac delta function: 

SPRj=  £ ~ f (  x)6( x - x , ) d x  (3) 
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where xj are all the centre positions of the points we 
sampled and the Dirac function 6(x)  is defined from 
the limit 

6 ( x )  = lim 6~(x) (4) 
~---~ 0 

and 

( 1 / ~  O < x < e  
6~(x) = 0 otherwise (5) 

The number of parameters (or really the number of 
bytes) in therepresenting function must of course be 
much less than the number of original sampled points 
(number of bytes required to store the sampled 
points). In other words: The functional representation 
must effectively be a compression of the curve. Each 
function parameter will therefore have significantly 
more information content than a single sampling 
point. 

The choice of function type reflects the available 
hypotheses or the level of understanding an investi- 
gator has of the curves that are to be analyzed. By 
choosing a particular functional representation, a fo- 
cus on a limited set of possible function properties is 
made. It is at this level the investigator can insert a 
priori information about the problem so that it is ac- 
cessible to the multivariate algorithm. A very simple 
example will illustrate this: Assume the area under the 
curves to be studied is the real interesting variable. If 
this variable is not explicitly available it will be dif- 
ficult to recognise from the sampling point represen- 
tation alone. 

In this work we will concentrate on a particular 
functional relation which is related to the pattern we 
refer to as a 'peak' .  Our hypothesis here is that each 
data profile in a data set can be represented as a sum 
of n peaks: 

t t  

spectrum k = ~ peak j ( x )  (6) 
J 

'peakj (x) '  can in principle be any function we would 
associate with the concept of a peak. In this article, 
however, we have restricted the choice of peak func- 
tions to two types; the first one is the Gaussian func- 
tion: 

) 

and the second one is the Lorentzian function: 
a 

l (x )  = 4 ( ( x -  b) / c )  2 + 1 (8) 

where a refers to the height, b the position and c the 
width of the peak. By choosing this representation, 
we are ignoring other important features such as 
baselines and asymmetrical peak shapes. Such details 
can of course be added as extensions to our peak 
representation. For example, baseline effects are of- 
ten well modelled by simple polynomials and extra 
parameters would be necessary for this. 

Thus, each spectrum k with n peaks is described 
by a parameter vector Pk. These parameter vectors 
will have the following structure: 

pk = [ ( alblCl) ( a2b2c2) . . . (  anbncn)]. (9) 

The new data matrix now consists of rows of param- 
eter vectors instead of the original SPR vectors. All 
the operations in the multivariate modelling, how- 
ever, will be exactly the same as for the analysis of a 
matrix with spectra in the SPR. 

It may sometimes not be necessary to use the full 
pk vector. If e.g., the position parameter has no rele- 
vance to the problem studied, it can be ignored. Ac- 
tually, as a 'spin-off  effect of the peak parameter 
representation, we can remove undesirable peak shifts 
by simply leaving out the position parameters in the 
multivariate modelling. On the other hand, if there are 
systematic shifts that convey information important in 
our modelling it should of course be included. 

What are the consequences for the multivariate 
models generated by algorithms such as the PLS and 
CART (classification and regression trees) when us- 
ing the peak parameter representation? In the case of 
PLS, it is now possible to observe directly the rela- 
tions between height, position and width of peaks in 
e.g., loading weight and regression coefficient plots. 
For spectra containing few peaks, the number of 
variables to interpret will be much less and more in- 
tuitive than for SPR. 

For CART the final decision tree has a structure 
such as IF aj < aj AND c~ < a k THEN class i. This 
means we can write the final rules in English like ' i f  
the height of peak j is less than aj and the width of 
peak k is less than a~ then this data profile belongs 
to class i'. Such rules would be very similar to how a 
human expert would explain a classification model 
based on peak pattems in spectra. 
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Fig. 1. Schematic presentation of the how the PPR is used in this 
article. 

For the suggested representation to work it is nec- 
essary to formulate a set of assumptions: 

• All peaks in the data set must be present in each 
data profile. This is to ensure comparability between 
different peak parameter vectors describing a data 
profile. If  a peak is known not to be present in a data 
profile it will be assigned zero height and width val- 
ues. 

• The non-linear peak fitting procedure must be 
sufficiently accurate, i.e. the reconstructed data pro- 
file on the basis of the non-linear parameters only, 
must be very similar to the original data profile. 

The second assumption may be difficult to ac- 
complish. It is not always possible to obtain an accu- 
rate peak parameter description of a data profile. Of- 
ten, the lack of accuracy can be traced to the noise 
level present in the spectra. It is therefore likely that 
a denoising pre-processing stage may be of benefit. 
Typical denoising method today are either based on 
Fourier domain or wavelet transforms [46-48]. It 
should be noted that curve fitting itself can be re- 
garded as a denoising process. Another question, 
however, is to what degree of accuracy is needed to 
solve the problem at hand. Unless minor changes in 
the peak shapes are crucial for the classification, some 
deviation from the observed and predicted spectrum 
can be allowed. 

The suggested method as applied in this article is 
shown in Fig. 1. 

3. Methods  and a lgor i thms 

3.1. Partial least squares regression (PLS) 

The theory and properties of the partial least 
squares algorithms PLS1 (with one dependent (Y) 
variable) and PLS2 (with several dependent Y-varia- 
bles) have been extensively studied and reported in 
the literature [21,22,26,28,33,34,49-57]. We will 
therefore give only a short description of the PLS 
method. The central point in the PLS paradigm is to 
find latent variables in the feature space which have 
a maximum covariance with the Y-variable(s). Thus, 
linear combinations of the feature space variables are 
found that are tilted to have maximum prediction 
ability for the Y-variable(s). In PLS2 one also uses 
linear combinations of the Y-space variables. PLS2 
therefore has an iterative stage in each of the PLS2 
factor calculations. The final PLS can be formulated 
as a regression equation: 

Y = X B  + E  (10) 

where E is the matrix of errors and the estimated re- 
gression coefficients B are: 

B = X + Y .  (11 )  

X + is a generalised inverse provided by the PLS al- 
gorithm. In order to obtain a prediction from the PLS 
model it is sufficient to use Eq. (11). In this article 
we compute the regression matrix B as demonstrated 
by Martens and Naes [58]: 

B = w ( p T w ) - I Q  T (12) 

where W is the matrix of weights of the X-space, Q 
is the weights matrix for the Y space and P is the X 
space loading matrix. 

The prediction of dependent variables on a new set 
of objects is done by: 

Ytest = XtestB. (13) 

3.2. Rule induction 

Rule induction partitions the space of sample ob- 
jects into regions of single class memberships [59]. 
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The data set is recursively split into smaller subsets 
where each subset contains objects belonging to as 
few different classes as possible. The 'purity' of a 
subset, i.e. the distribution among the classes of the 
objects within the set, is often measured by using the 
concept of entropy [60]. For each subset there is a set 
of fractions P = [ P l ,  P2 . . . . .  p j ] ,  of the objects be- 
longing to the J different classes, p~ is computed as 
Pi = n i (s ) /n  where ni(s) is the number of objects 
belonging to class i in subset s and n is the total 
number of objects in subset s. Such fractions are also 
referred to as the probability of finding an object be- 
longing to class i in the subset. 

A subset with objects from one class only will 
have the highest possible 'purity' and the vector P of 
probabilities will have a structure Pmi, = [0, 0 . . . . .  
1 . . . .  0]. The most impure vector P will correspond 
to equal fractions of each class: 

1 1 
/'max= 7 . . . . .  (14) 

The entropy of P 

J 

H ( P )  = - ~, Pi log(Pi)  (15) 
i = 1  

has properties in accordance with our intuitive un- 
derstanding of'impurity': Hmin(P) = 0 and Hmax(P) 
= log2(J )  when Pi = 1 /J .  Thus, achieving the 
highest purity in a subset corresponds to minimising 
H(P)  by selecting an optimal partitioning. There are 
two major strategies for finding the best split/parti- 
tioning: univariate and multivariate rule induction. 
In the univariate rule induction a single variable x i at 
each recursion step is found that gives rise to the 
purest subsets (i.e. those that have minimum en- 
tropy). In this article we will look only at numerical 
variables, but categorical variables can also be used 
[61]. In univariate rule induction a split of the input 
feature space corresponds to a question like 'Is x~ < 
c?' where c is some value chosen from the finite set 
of values variable x~ has among the N calibration 
objects. All the objects that satisfy the question are 
grouped into one subset and those that do not into 
another. Let a k be the different outcomes of a test on 
variable x i. For the numerical tests discussed here we 

have only two o u t c o m e s  ( a  1 - - ' y e s '  and a 2 = 'no').  
The entropy in a given subset of objects will thus be: 

J 

H ( C l a k ) = -  Y'~P(cilak)log(p(cila~)) (16) 
i = 1  

where p(cila k) is the probability or fraction of the 
objects satisfying the outcome a k and belonging to 
class i. H(Cla k) is read as the entropy of all the 
classes in C given the outcome a~ for variable x i. 
Often p(cila k) is computed as the number of objects 
belonging to class i that has outcome a k divided by 
the total number of objects satisfying a~ in the sub- 
set. Assuming that the number of outcomes is two, we 
get two entropies calculated for each variable tested: 
H(Cl'yes') and H(Cl 'no') .  A measurement of the to- 
tal impurity (entropy) for the variable x i selected in 
the split will be related to the sum of the two indi- 
vidual entropies H ( C l ' y e s ' )  and H(Cl'no'). We 
multiply each entropy with the fraction of objects 
(p(ai)) that is present in the current subset, relative 
to the previous subset: 

H(CIA)  = ~ p(a j )H(Clay)  (17) 
j = l  

where we have m = 2 for analyses discussed in this 
article. The symbol A means the set of possible out- 
comes to a decision question. CART (classification 
and regression trees) [59] is an example of a univari- 
ate rule induction method which will be used in this 
paper. In CART the split criteria can be changed by 
using a different objective function to be minimised 
than the one described in Eq. (16). Two very popular 
objective functions are referred to as Gini and Two- 
ing. The Gini objective function is: 

J 

H(Clak)=  EP(c i [a t ) (p ( c j l ak ) )  (18) 
i~j  

which has been used in the analyses in this paper. 
In standard multivariate rule induction we find a 

partition of the input feature space that depends on a 
linear combination of all the variables instead of just 
using one variable. We can formulate this as a ques- 
tion like: 'Is ET= lwjxj < c?'. This type of partition- 
ing of the data space isparticularly useful if there are 
any collinearities between the variables. 
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In this article we use the rule induction program 
OC I [62] which implements both uni- and multivari- 
ate rule induction. Cross validation is used for esti- 
mating the size of the pruned decision tree. This 
means that the rule induction first creates a tree with 
too many branches and subsequently applies pruning 
based on cross validation criteria afterwards. 

3.3. Non-l inear curve f i t t ing 

A non-linear curve fitting program was written in 
the MATLAB version 4.2c.1 (The MathWorks, Nat- 
ick, MA) language based on the optimisation toolbox 
[63] which has been used in the experiments. The 
MATLAB program is based on the original algo- 
rithm of non-linear curve fitting by Levenberg and 
Marquardt [64,65]. For the method to produce useful 
results it must be provided with 

• accurate determination of the number of peaks, 
• type of peak shape (e.g., Gaussian, Lorentzian), 
• approximate estimate of the peak parameters 

(e.g. height, position and width). 
The non-linear algorithm uses these estimates as a 

start and improves the parameters by finding the 
'best '  fit of the sum of the calculated peaks to that of 
the measured peaks. The optimising function used by 
the program is: 

~7=0(x i _~ i )2  
X 2 =  

(n  - - f )  

where x i is the measured data and xi is the esti- 
mated data profile, n is the number of points in the 
fitted region and f is the total number of variables 
from all the peak and baseline functions, n - f  is 
therefore the degrees of freedom of the system. The 
Levenberg-Marquardt algorithm tries to minimise the 
X 2. There are a number of problems associated with 
non-linear curve fitting. For instance, it can some- 
times be difficult to obtain the solution. Further, it is 
risky to use non-linear curve fitting to estimate the 
optimal number of peaks. In this article we have used 
a locally made MATLAB program for peak identifi- 
cation which is based on assigning peak positions to 
the centres of gravity of the negative second deriva- 
tive regions see [66], page 250-252. This identifica- 
tion was performed on the mean spectrum in each 
data set only. All other spectra in the data set used 

the peak assignment found from analysis of the mean 
spectrum. After optimising the peak parameters for 
the mean spectrum, we used these parameters as ini- 
tial estimate for all the other spectra in the data set. 

If  the number of peak parameters is too high, there 
is a risk of the optimisation program to terminate in 
unfavourable local minima. The reason for this is that 
the search space becomes too large. If  possible, it is 
recommended that constrained optimisation should be 
used in these cases which will limit the possible 
search space. 

Another problem with non-linear curve fitting is 
that the procedure involved is rather time consuming 
and cannot be trusted to be totally automatic. Never- 
theless, in cases where a deeper understanding of the 
problem at hand is needed we believe the extra effort 
needed for a non-linear fitting procedure can be jus- 
tified. 

3.4. Duplex  data splitting 

It is common to split data sets into a calibration 
and a validation data set. There are several strategies 
for splitting data, where we have adapted the 'duplex' 
approach first presented by Snee [67]. The idea be- 
hind the 'duplex' algorithm is to divide the original 
data set into two subsets which cover approximately 
the same region in the multidimensional feature space 
and have similar statistical properties. The algorithm 
is started by finding those two objects that are far- 
thest apart using Euclidean distance metric. This pair 
of objects is placed in the validation set. In the re- 
maining steps of the algorithm we find all the dis- 
tances between pairs of objects in the calibration set 
and the validation set which are closest to each other. 
Among these pairs we chose the pair with the maxi- 
mum distance. Of these two objects one is put into 
the calibration set, and the other is put into the vali- 
dation set. The process is continued until the number 
of objects in the original data set is exhausted. The 
'duplex' algorithm has been generalised to enable 
splitting of the original data set into multiple data sets 
(the 'multiplex' algorithm) by Jones and co-workers 
[68] but has not been used here since we created only 
one calibration and one validation set for each data 
set. 
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4. Experiments and data sets 

To demonstrate the feasibility of the method four 
data sets will be used. Data set 1 is artificially con- 
structed and consists of 30 spectra where each spec- 
trum has three Gaussian peaks. The 'duplex' method 
was used to split this data set into a calibration and a 
validation set; each containing 15 objects. Both het- 
eroscedastic and homoscedastic noise was added to 
produce a signal-to-noise-ratio (SNR) of 20 ___ 3. No 
variation in the peak position was included here. See 
Fig. 2 for representative raw data profiles for each of 
the three classes. 

The height of peak #1 and the width of peak #3  
are here constructed to be the only variables that de- 
termine the class memberships, see Fig. 3. 

Data set 2 Table 1 consists of 51 diffuse re- 
flectance FT-IR spectra of a developed culture of the 
bacterium Escherichia coli containing the antibiotic 
ampicillin at different concentrations. Infra-red spec- 
tra (256 coads) for each of these samples were 
recorded in the wavenumber interval 4000 cm-1 to 
600 cm-1 using a Bruker IFS28 FT-IR spectrometer 
(Bruker Spectrospin, Coventry CV4 9GH, UK) 
equipped with a liquid N2-cooled MCT (mercury- 
cadmium-telluride) detector and a diffuse-reflec- 
tance absorbance TLC accessory (4 cm-1 wavenum- 
ber resolution, spectra collected at 20 s - l ) .  ASCII 
data were exported from the Opus software used to 
control the FT-IR instrument and imported into 
MATLAB. For this analysis we used only a subre- 
gion (1881-916 cm -1) of the wavenumber range. 
The dependent variable for the data set is the ampi- 
cillin concentration which is in the region 0-5000/xg  
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Fig. 3. The pure values of the two significant peak parameters in 
Data set h a l  is the height of the first peak and c3 is the width of 
the third peak. The numbers plotted correspond to the three differ- 
ent classes in this data set. 

m1-1. PLS was used for constructing the calibration 
model using 33 spectra for the calibration set and 18 
for the validation set. 

Data set 3 is constructed to compare the PLS 
loading weight plots of SPR and PPR when the un- 
derlying calibration model is based on the width of 
one of the peaks. In this case we have two Gaussian 
peaks where the second has a variation of the peak 
width in the interval [0.01, 0.4]. Both peaks are lo- 
cated at the same position on the axis and therefore 
contain no shifts. 

Data set 4 consists of 150 FT-IR spectra of the 
three compounds histidine, glycine and sucrose in 
different concentrations. The span of 27 different 
concentration distributions of each compound is 
shown in Table 2. Six replicate 5 /zl aliquots of 27 
samples consisting of different combinations of histi- 
dine (100 mM), glycine (300 mM) and sucrose (100 
mM) solutions were dried into wells in a sandblasted 
aluminium plate. Infrared spectra were collected and 
data processed as described for Data set 2 above, but 

=o 
t~ 

8 
< 
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50 1 O0 150 200 
Variable bins 

Fig. 2. Here we see one representative spectrum from each of the 
three classes in Data set 1. 

Table 1 
The percentage correct prediction of the validation set for PPR and 
SPR of Data set 2. The first column indicates the number of PLS 
factors used, the second indicates the data set using all peak pa- 
rameters (i.e., peak positions b are included for each peak), the 
third column indicates the PLS model on peak parameters without 
the positions and the fourth column indicates the SPR results 

PLS PPR (with PPR (without SPR 
factor peak pos.) peak pos.) 

1 76.87% 78.19% 68.01% 
2 90.81% 89.99% 84.23% 
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Table 2 
Percentage of histidine, glycine and sucrose solutions used in Data 
set 4. Six replicates of each combination were analyzed by FTIR 

Histidine Glycine Sucrose 

100 0 0 
90 10 0 
90 0 10 
80 10 10 
70 20 10 
70 10 20 
60 30 10 
60 20 20 
60 10 30 
0 100 0 

10 90 0 
0 90 10 

10 80 10 
20 70 10 
10 70 20 
30 60 10 
20 60 20 
10 60 30 
0 0 100 

10 0 90 
0 10 90 

10 10 80 
20 10 70 
10 20 70 
30 10 60 
20 20 60 
10 30 60 

using 16 coads. Initially we had 6 replicates of  each 
concentration distribution, but found that 12 of  the 
glycine replicates were outliers and therefore re- 
moved from the data set. This data set was created to 
be a classification data set where the objective was to 
identify the three different compounds given a spec- 
trum. The class membership was determined by find- 
ing the compound with the maximum concentration. 
The DUPLEX algorithm was used to create the cali- 
bration and validation data sets. 

5. Results 

5.1. Da ta  se t  1 

There are three different classes of  objects in this 
data set.Representative spectra in SPR for each of  the 
classes are shown in Fig. 2. The classification rule for 

~ E L S E  

Fig. 4. The CART decision tree on Data set 1 using PPR. 

this data set was artificially constructed and is shown 
in Fig. 3. Two peak parameters are sufficient for 
classification: the height of  peak # 1  ( a l )  and the 
width of  peak # 3  (c3). Each spectrum was inserted 
into the MATLAB non-linear Levenberg-Marquard t  
optimisation routine to estimate the parameters for the 
three peaks. The parameters for the first spectrum 
were used as starting point for the estimation since 
each of  the three peaks had the same positions for all 
the 30 samples, see Fig. 2. The estimated parameters 
were subsequently analyzed by the univariate CART 
algorithm (using the OC1 program implementation). 
The estimated decision tree is shown in Fig. 4. This 
is in perfect agreement with the true decision tree and 
when it was applied to the validation set there was no 

c lass i f i ca t ion  error .  Note that the decision tree in Fig. 
4 displays the same information as Fig. 3: IF the 
height of  peak # 1  ( a l )  is less than 0.25 it is CLASS 
3. IF the height of  peak #1  ( a l )  is more than 0.25 

ELSE 

50%(3) correct 60%(3) correct 50%(3) wrong 40%(2) wrong 

Fig. 5. CART decision tree on Data set 1 in the SPR. The predic- 
tion error of this decision tree on the validation set is 33%. 
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Fig. 6. A 2D illustration of the decision rule for the two signifi- 
cant variables Nos. 121 and 22. The rule was found by applying 
CART to Data set 1 with the SPR. 

AND the width of peak #3  is less than 0.15 it is 
CLASS 1 ELSE it is CLASS 2. 

We now look at the decision tree made on the ba- 
sis of the SPR. The variables 22 and 121 were found 
from CART to be the most significant. The predic- 
tion error on the validation set was 33%. Fig. 5 is a 
presentation of the corresponding decision tree. In 
Fig. 6 we see the result of the prediction on the vali- 
dation set. The lines added in this 2D plot together 
with the true class identities of the objects, corre- 
spond to the decision rule found. All objects belong- 
ing to class 1 have been correctly classified, whereas 
the rule has problems with distinguishing between 
class 2 and 3 objects. In addition to the poor predic- 
tive ability, the resulting classification model was not 
unique. This means that in the neighbourhood of 
variables No. 22 and 121 there are other variables that 
can also be used in classification models that per- 
form equally or even better (e.g., using variables 
No.25 and 124 resulted in 20% prediction error). That 
variable No. 121 is selected to be important does not 
indicate that peak #3  is important in the modelling. 
In fact, variable No. 121 is closer to peak # 2  than 
peak #3. 

1.5 

Eleven Lorentzian peaks were selected as impor- 
tant in each of the 51 IR spectra. These peaks were 
among those suggested by the peak detection pro- 
gram mentioned above. A typical spectrum (both the 
observed and that reconstructed on the basis of the 
eleven Lorentzian peak functions) is shown in Fig. 7 

together with all the individual Lorentzian bases 
making up the spectrum (dashed lines, bottom part of 
figure). The reason for using Lorentzian functions in 
the curve fitting is because this is the most com- 
monly encountered band shape in infrared spectrom- 
etry [69]. The statistical results of the non-linear curve 
fitting indicates that the fitting is satisfactory: The 
mean correlation (between observed spectrum and 
reconstructed), r 2, for all the spectra was 0.99 + 
0.004 and the mean root mean square (RMS) value 
between observed spectrum and reconstructed was 
2.4 ___ 0.4. 

PLS was applied to both the SPR and the PPR to 
observe the differences in model quality and predic- 
tion ability. For the PPR variables we applied au- 
toscaling before PLS analysis as peak heights, posi- 
tions and widths are on different scales and in abso- 
lute numbers are often quite different. For example, 
the peak height parameter would get much more in- 
fluence in the PLS model than the peak width with- 
out autoscaling. Autoscaling is not performed for the 
SPR since the relative absorption variable heights are 
for specific regions in the spectrum essentially pro- 
portional to the ampicillin concentration. 

Using the validation set for both representations as 
a criterion, we found that the PPR using all (a, b, c) 
parameters (resulting in a total of 33 variables) had 
an optimal PLS model at A = 10 factors with a 8.5% 
prediction error. The SPR (251 variables) had an op- 
timal PLS model at A = 7 factors with a 7.6% pre- 
diction error. From a prediction error perspective the 

1 
=o 
t ~  

0.5 . Q  
< 5.2. Data set 2 

0 
1800 1600 1400 1200 1000 800 

Wavenumber 

Fig. 7. This figure shows the different peaks modelled by the 
non-linear curve fitting procedure. Both the observed and esti- 
mated spectrum is shown in this figure and as can be seen the fit 
is very good. Data set 2. 
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Fig. 8. PLS score plot of Data set 2 using PPR. Here all the b- 

coefficients are included. 

SPR is slightly better than the PPR. Since we are here 
more interested in the interpretation aspects of the 
models, we are focusing on the first two PLS factors 
for both representations. The prediction error for the 
PPR is then 9.2% and for the SPR it is 15.8%. In other 
words, the new representation has better prediction 
power for the first two factors. Since the additional 
PLS factors improve the prediction by just a few per- 
cent in both representations we will ignore them in 
the following discussion. The loading weight plot for 
the PPR is shown in Fig. 8. The quasi-circular struc- 
ture of the loading weight plot is caused by the au- 
toscaling procedure [70]. As expected the height of 
peak # 1, which is dominant for ampicillin, has a very 
high positive loading weight along the first PLS 
component. The width of peak # 1 is dominant for the 
second PLS component. In fact, most of the vari- 
ables along the positive side of PLS component No. 
2 describe the change in peak widths. On the nega- 
tive side of the second component there is an excess 
of variables describing peak shifts. One surprising 
result from the loading weight plot is peak #9 ' s  im- 
portance along PLS component No. 1. From the plot 
we can see that the height, shift and width of peak #9  
is proportional to the ampicillin concentration. This 
increase is reflected in a corresponding decrease in 
the widths of peaks #2, #6  and #7  (all have less than 
- 0 . 2  in loading weight along PLS factor 1). 

The corresponding loading weight plots for the 
SPR are not that conclusive regarding the interpreta- 
tion, see Fig. 9 for plotting PLS factor 1 versus 2 and 
Fig. 10 for plotting both PLS factors separately. Both 
representations agree on the fact that the height of 
peaks #3  and #5  are important for component one 
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7 t a ~  

0.2 ................................................................................................ 
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¢~ 0 .1  . . . . . . . . . . . . . . . . . . . .  ~ ............................................................ t , . .  23 i 
0 = i~ 
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0 0 . 0 5  0 . 1  0 . 1 5  
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Fig. 9. This is the plot of the two first PLS loading weight  vectors 

for Data set 2. 68% correct prediction after first PLS factor and 

84% after the second. 

and vary in proportion to the ampicillin concentra- 
tion. The PPR, however, has given the height of peak 
#2  much less loading weight than in the SPR. Some 
of these differences are probably caused by the fact 
that we use autoscaling in the PPR and no scaling in 
the SPR (an autoscaling in SPR did not improve the 
predictive ability). Along the second component for 
the SPR peaks #1 and # 2  again dominate. 

It was surprising to find that some shift parame- 
ters were given relatively high loading weights. To 
investigate whether this was an artefact or not we re- 
moved all the b-coefficients from the data set and re- 
peated the analysis. Taking out these parameters re- 
duced the predictive ability of the PLS model slightly 

0.2 . . . . . . . .  

~, -o.2 
o_ 1800 1600 1400 1200 1000 800 

Wavenumber 

02 i 
o 

~, -o .2  
o.. 1800 1600 1400 1200 1000 800 

Wavenumber 

Fig. 10. This is the plot of the two first PLS loading weight  vec- 
tors for Data set 2. 
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(10% prediction error after two PLS factors), see Fig. 
11 for a plot of the new loading weight plot. Now, 
peak # 9  is not so important for the prediction. 
Heights of the peaks #2,  #5  and #6  are now among 
the variables with highest loading weight along the 
first PLS component. There is, however, another 
more striking effect which now can be seen after re- 
moval of the peak position parameters. The height 
parameters in PPR more or less dominate the first 
component whereas the widths dominate the second. 
The peak that does not follow this pattern is #10 
which is in fact has a width variable that has the sec- 
ond-to-highest loading weight along component one, 
height of #1.  This 'clustering' of the width and 
height parameters can be interpreted as when the 
heights of the peaks are increasing the widths are de- 
creasing. 

0.2 

co,, -0.2 
~_ 0 0.05 0.1 0.15 

PLS factor 1 

1 I  ......... . . . . . . . . .  ......... 1 
- ol ........... - ...... t 
~. 0 0.5 1 

PLS factor 1 

Fig. 12. The PLS result for the SPR and the PPR where the under- 
lying calibration model is dependent on the width of the second 
peak. It is not difficult from the lower PLS loading weight plot to 
see that the variable marked 'c2' has a high loading weight along 
the same latent variable as the height of peak 1 ( 'a l ' ) .  This fact is 
not very obvious from the upper plot for the SPR. Data set 3, 

5.3. Data set 3 

This data set was constructed to investigate the ef- 
fects on the loading plot patterns when the dependent 
variable is influenced by peak width changes. The 
underlying calibration model used in the example was 
chosen to be: 

y = a I + 2 c  2 

The PLS analyses were performed on both the SPR 
and the autoscaled peak parameter vectors. Not sur- 
prisingly, both models were optimal (using cross val- 
idation) for one PLS factor. For visualisation reasons 
only, the plots in Fig. 12 also include the second PLS 
component. The upper part of Fig. 12 shows the 
loading weight plot for the sample point representa- 
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I ~Oa i 

! 5c i 

"~ [ 8a l la 
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-0-~).4~ ~ 0 0.2 0.4 
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Fig. 11. PLS score plot of Data set 2 using PPR. Here all the b- 
coefficients have been removed. 

tion and the bottom part the loading weight plot for 
the PPR. Of course, it is a matter of opinion which 
plot is the easier to interpret, but we feel confident in 
saying that the bottom loading weight plot quite eas- 
ily conveys the message that both the height of peak 
1 and the width of peak 2 are very important for pre- 
dicting y and that they are positively correlated. The 
same type of information cannot as far as we can see 
be extracted from the sample point representation 
loading weight plot. 

5.4. Data set 4 

Each spectrum was recorded in the wavenumber 
interval 4000 cm-1 to 600 c m - 1 .  Curve fitting in the 
complex fingerprint region was avoided and we se- 
lected as subregion 4000 cm-1 to 2000 cm-1 (see 
Fig. 13 which shows the spectra for the three com- 
pounds in this region). This region is mainly domi- 
nated by broad Ganssian like peaks which are due to 
a continuum of vibration frequencies from various 
hydrogen bonds. Based on the mean spectrum of this 
region, the peak finding algorithm mentioned above 
was used to locate approximately the different peaks. 
Five Gaussian peaks seem to explain sufficiently the 
variation in the spectrum. To obtain good starting 
values for the final curve fitting of all spectra we 
computed the mean spectrum of the three classes 
(compounds) histidine, glycine and sucrose. Each of 
these spectra were fitted to the five Gaussian peaks 
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Fig. 13. The three mean vectors of the three classes belonging to 

histidine, glycine and sucrose in Data set 4. 
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Fig. 15. The mean of the fitted Gaussian curves together with the 
mean of glycine spectra. The four first of the Gaussian primit ives 

that represents the curve are shown in dashed lines. The fifth 

Gaussian is very broad and function as a baseline off-set (not 
shown). Data set 4. 

giving start value parameters better suited for each 
class. The results of the curve fitting for the total data 
set was satisfactory: The mean RMS error is 3.3 +__ 1.0 
(median RMS 3.0). The mean correlation ( r  2) is 
0 .997_ 0.003 (median correlation 0.998). To get a 
visual impression of the curve fitting, see Fig. 14 
(shows the mean vector of class histidine together 
with the mean of the reconstructed curve and its 
Gaussian components). Analogous figures for the 
glycine and sucrose classes are shown in Fig. 15 and 
Fig. 16. 

Both PPR and SPR representations of Data set 4 
were analyzed with rule induction. Here the classical 

univariate CART algorithm was used since its results 
are usually very simple to interpret. In all analyses we 
used full cross validation to guide the tree pruning. 
DUPLEX was used to separate the data into calibra- 
tion and validation data sets. The pruned classifica- 
tion tree for PPR is shown in Fig. 17. The decision 
rule is based on one variable only: the height of peak 
# 1.71 out of the 75 spectra in the validation set were 
correctly classified. For the SPR we found that the 
pruned decision tree gave worse predictions (50 out 
of 75 correct) than the unpruned tree (70 out of 75 
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Fig. 14. The mean of the fitted Gaussian curves together with the 
mean of histidine spectra. The four first of the Gaussian primit ives 
that represents the curve are shown in dashed lines. The fifth 
Gaussian is very broad and function as a baseline off-set (not 
shown) Data set 4. 
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Fig. 16. The mean of the fitted Gaussian curves together with the 
mean of sucrose spectra. The four first of the Gaussian primitives 
that represents the curve are shown in dashed lines. The fifth 
Gaussian is very broad and function as a baseline off-set (not 
shown). 
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SE 

94.7%(18) correct 88.5%(23) correct 
5.3%(1) wrong 11.5%(3) wrong 
(Histidine) (Glycine) 

Fig. 17. The final CART decision tree of the PPR of Data set 4. 
The rule is very simple since it depends only on the height value 
of the first peak. 71 out of 75 objects in the validation set were 
correctly classified. The word 'correct' corresponds to the per- 
centage overlap between the model prediction in the square output 
boxes and what was observed in the validation set. Below the word 
'wrong' is the class assigned by the model which was not correct. 

correct). The final decision tree for SPR is shown in 
Fig. 18. Here three wavenumber bins are found to be 
important, 142 (3456 cm-1),  157 (3398 cm -1) and 
260 (3005 c m -  1 ). In other words, SPR needed a more 
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Fig. 19. A demonstration of why the SPR performs worse than PPR 
on Data set 4. Peak #1 has a region of shift between approxi- 
mately 3500 cm-1 and 3400 cm - I  . The SPR cannot follow the 
shift but can try to 'cover' the region of shift by using more vari- 
ables. 

complex model which in addition also has about the 
same prediction ability. What is the reason for this? 
We found this to be a typical example of where PPR 
should perform better than SPR. In Fig. 19 we have 
plotted the position of peak #1 for the different 
spectra. We see clearly a shift which is located ap- 
proximately in the wavenumber region 3500 cm -1 

~ ~ 100%(30) correct 

~ ~ 92%(23) correct 
• I • 8%(2) wrong 

G yc ne (Glycine) 

89,5%(17) correct 0%(0) correct 
10.5%(2) wrong 100%(1) wrong 
(Histidine/Glycine) (Glycine) 

Fig. 18. CART decision tree for the SPR on Data set 4. This rule is more complicated than the corresponding rule for the PPR and has less 
predictive ability: 70 out of 75 objects in the validation set were correctly classified. The word 'correct' corresponds to the percentage over- 
lap between the model prediction in the square output boxes and what was observed in the validation set. Below the word 'wrong' is the 
class assigned by the model which was not correct. A(x) is here used to indicate that the absorption at wavelength x is used in the model. 
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and 2800 c m -  1. As a rough rule, peak #1  of  the three 
classes are ordered sucrose < glycine < histidine. 
Apparently, this shift tendency is not significant 
enough for the CART algorithm to pick out as a sta- 
ble SPR variable for classification. It is theoretically 
impossible for the SPR explicitly to contain the shift 
information of  a peak. The second best thing any al- 
gorithm working on a SPR can do is to localise sev- 
eral variables spanning the region of  the shift. This is 
most likely what has happened in this case. We point 
out in particular the two SPR variables 142 (3456 
cm -1 ) and 157 (3398 cm -1 ) in the plot of  Fig. 19 and 
we observe that they are located approximately in the 
variable region of  the peak # 1 position. In a sense 
both CART models on SPR and PPR contain approx- 
imately the same information, but PPR manages to 
present it in a compact and much more accessible 
form. 

6. Discussion 

chemistry. In the introduction we suggested that 
sampling points are at lower abstraction level than 
peaks. This kind of  hierarchy of  abstraction levels can 
also be found in object-oriented programming. Here 
one starts with a baseclass where all objects within 
have certain properties. The baseclass has subclasses 
where additional properties are specified. For analy- 
sis of  spectra, we could have defined a baseclass 
called 'function' .  All properties concerned with func- 
tions in general would be included here, but this is too 
general for our purposes and thus subclasses would be 
necessary. Within the class of  functions we have peak 
functions like the Gaussian and the Lorentzian, but 
also polynomial and fractal functions. By classifying 
according to mathematical properties such as types of  
critical points and smoothness we can include a rich 
pool of  knowledge into final classification models. It 
would then be possible to ' zoom-in '  on specific 
functional properties in relation to a calibration or 
classification problem. 

The method presented is not primarily constructed 
to increase the prediction accuracy, but rather to make 
the final multivariate classification model easier to 
interpret. Of course, too much prediction error can- 
not be tolerated and the limit for tolerance must be 
predetermined. If  minor changes in the peak shapes 
are important for the classification, it is necessary to 
employ different strategies to solve the problem. In 
such cases it may be possible to use other functional 
representations o f  the spectra, e.g. B-splines or 
wavelets. Any failure of  using the height, position and 
width as peak parameters in a modelling indicates that 
the underlying modelling relations do not depend on 
these particular geometrical shape indicators. 

We have, however, seen examples of  improved 
prediction ability (compared to SPR) by using the 
PPR. The reason for improved prediction ability may 
be similar to what happens when variable selection is 
performed. The PPR is definitely a reduction of  the 
original number of  variables but could also be viewed 
as a variable selection procedure where the necessary 
features needed in the modelling are more concen- 

trated than in the traditional SPR. 
When the level of  representational abstraction is 

discussed it may be more fruitful to use a classifica- 
tion scheme employed in mathematics rather than 
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