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The application of wavelet denoising to infrared spectra
was investigated. Six different wavelet denoising methods
(SURE, VISU, HYBRID, MINMAX, MAD and
WAVELET PACKETS) were applied to pure infrared
spectra with various added levels of homo- and
heteroscedastic noise. The performances of the wavelet
denoising methods were compared with the standard
Fourier and moving mean filtering in terms of root mean
square errors between the pure and denoised spectra and
visual quality of the denoised spectrum. The use of
predictive ability as a possible objective criterion for
denoising performance was also investigated. The main
conclusion is that for very low signal-to-noise ratios (S/N)
the standard denoising methods (Fourier and moving
mean) are comparable to the more sophisticated methods.
At higher S/N levels the wavelet denoising methods, in
particular the HYBRID and VISU methods, are better.
Wavelet methods are also better in restoring the visual
quality of the denoised infrared spectra.
Keywords: Wavelets; wavelet packets; denoising; infrared
spectra; homoscedastic noise; heteroscedastic noise;
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The rapid quantitative and qualitative information obtained
from applying multivariate methods to spectra (e.g., IR, Raman,
UV) has been a very popular way of replacing slow wet
chemical analyses. We are interested in particular in the
determination of the concentrations of important compounds
produced by industrially relevant bacteria and yeasts. In order to
extract reliable information from any kind of data vector such as
those in IR spectra,1,2 unwanted noise has to be dealt with.3–6

There are several ways of reducing the effect of noise in spectra,
taking the mean of several co-added spectra being the most
common. Unfortunately, co-adding of spectra is a time-
consuming method when a large number of spectra are to be
recorded. In particular, we are interested in cases of high-
throughput analyses where FTIR spectra are recorded at
numerous locations on 2D surfaces, e.g., TLC plates, in
biological tissues and in bacterial colonies. It is true that when
a very small number of FTIR spectra are to be recorded, it is
relatively rapid to use the appropriate number of co-adds to
ensure a satisfactory signal-to-noise ratio, (S/N). However,
when only a small number of co-adds is desired, mathematical
techniques for removing the noise after recording of the spectra
are more attractive.

The theory of convolutions and filter theory have been
applied to a wide range of problems. However, there are certain
types of problem where the frequency-domain methods are not
optimal for removing noise. The traditional filtering methods in
most cases rely on the frequencies obtained in the power
spectrum being stationary. The theory of wavelets promises
several improvements to the traditional filtering methods. The
major difference is the fact that wavelet methods can much
better resolve frequencies varying in time (or along a pseudo-
time axis such as that representing wavenumbers).

Theory

Introduction to Wavelets and Wavelet Packets

Wavelets are becoming an increasingly important tool in image
and signal processing.7–10 Wavelets are effective in extracting
both time- and frequency-like information from a time-varying
signal. The short-time Fourier transform performs a constant
bandwidth splitting of the signal whereas the wavelet transform
has a proportional (octave) bandwidth splitting of the frequency
domain. Unlike the Fourier transform, the wavelet transform
can use a variety of different basis functions with different
properties. Non-orthogonal wavelet bases are referred to as
frames,11–13 but will not be discussed here.

The more popular orthogonal wavelet bases have several
interesting properties that make them a suitable basis for tools in
signal analysis and compression. One important property of
many wavelet basis functions is their localisation of both time
and frequency domains simultaneously.

A continuous wavelet decomposition can be written as
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where ys(x) is the wavelet function at a particular scale s, i.e.,
the same wavelet function is dilated or contracted according to
the scale, and f(t) is function to be analysed; b signifies the
translation of the wavelet at scale s. Eqn. (1) can be expressed
as a convolution:

w(s,b) = ys(t) ¤ f(t)? F[w(s,b)] = F[ys(t)]F[f(t)] (2)

Eqn. (1) is really a convolution of the signal f with the wavelet
function in the time domain and we have emphasised this in eqn.
(2) by using the convolution operator symbol ¤. The equation
to the right of the arrow is the convolution in the time domain
expressed in the frequency domain by straightforward applica-
tion of the convolution theorem;14 F indicates the Fourier
transform operator.

The scale can be interpreted as a measure of frequency. A
short scale contains high-frequency components whereas a long
scale contains low-frequency components. An intuitive way of
looking at the wavelet transform is to interpret it as a sequence
of combinations of bandpass filters. The wavelet function y(t)
(also referred to as the ‘mother wavelet’) can be interpreted as
a high-pass filter acting on the original signal; the scaling
function f(t) (also referred to as the ‘father wavelet’), on the
other hand, behaves as a low-pass filter. The wavelet function
y(t) can be written as a linear combination of the scaling
function. The scaling function has the property that it can be
written in terms of scaled versions of itself:

  

f(x) = ckf(2x - k)

k = 0

N
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In this paper, only the discrete wavelet transform will be used.
This means that we restrict the choice of scale s and translations
b; in general, we set

s = a0
j, b = kb0a0

j (4)

where a0 = 2 and b0 = 1 is the most common choice; j is an
index that can be any natural number.

A common algorithm for calculating discrete wavelet
coefficients is the so-called Mallat algorithm.15–17 At each
scale, high- (H) and low- (L) pass filters are applied to the input
signal. The actual shapes of these filters are determined by the
kind of wavelet function used. The output from the high-pass
filter at each scale is recorded as the wavelet coefficients. The
low-pass filter extracts the low-frequency components for the
next scale where another set of high- and low-pass filters is
employed. At each successive scale (n 2 1) the length of the
vector upon which the filters operate is halved; this is referred
to as decimation. Thus, the number of scales is log2(n). The
corresponding vector of wavelet coefficients for a scale j is
written as w(j). Wavelet reconstruction, i.e., going from wavelet
coefficients back into the original domain, is simply a
multiplication of a vector w containing the coefficients for all
scales with a matrix consisting of all time shifted wavelet
functions for all scales:

f = wBT (5)

where BT is the transposed matrix of wavelet functions for all
scales. The structure of the vector w is

w = [w(0)w(1)w(2)···w(J)] (6)

The tree structure of the Mallat algorithm can be extended
such that the filters are also used on the output from the high-
pass filter. Such a decomposition of the data is encompased in
the theory of wavelet packets.18–30 The wavelet packets form a
superset of the traditional wavelet coefficients, which corre-
sponds to the leftmost branch of the tree. Because of this
algorithmic tree structure, it is possible to prune branches in the
tree to optimise some fitting criterion.

Denoising Using Wavelets

Noise is a phenomenon that affects all frequencies, whereas the
signal of interest is most likely to occupy a small part of the
frequency domain. Since the signal will tend to dominate the
low-frequency components, it is expected that the majority of
high-frequency components above a certain level are due to
noise. This is the underlying philosophy for traditional Fourier
filtering where low-pass filters cut off the high-frequency
components. Similarly, we can expect small wavelet coeffi-
cients at short scales to be mainly noise components. The
procedure for wavelet denoising will therefore be as follows:

(i) apply a wavelet transform to signal fnoisy and obtain the
vector w of wavelet coefficients;

(ii) suppress or remove those elements in w that are thought to
be attributed to noise; and

(iii) apply the cognate inverse wavelet transform to w to obtain
a function fdenoised.

In this paper, we use eight different denoising techniques.
Two of them (Fourier filtering and moving average) are used as
references for the performance of the wavelet methods. All the
methods presented are part of the WaveLab package for
MATLAB,31 which was used in all experiments presented.

Wavelet denoising methods in general32–36 use two different
approaches, hard and soft thresholding. The hard thresholding
philosophy is simply to set all the wavelet coefficients below a
certain threshold to zero. Soft thresholding, on the other hand,
reduces the value of wavelet coefficients towards zero if they

are above a certain value (referred to as ‘shrinking’). For a
certain wavelet coefficient at scale j we have

wk = sign(wk)(ıwkı2 l)+ (7)

where sign returns the sign of the wavelet coefficient wk and the
parentheses represent the threshold value. We will sometimes
refer to this function as SOFT (w,t), where t is the threshold and
w the vector to be thresholded.

Methods for Denoising

SURE

This denoising method is based on Stein’s Unbiased Risk
Estimate37 and is applied to the whole wavelet coefficient
vector, i.e., the thresholding is performed on each scale j. The
SURE method is a hard thresholding approach where the major
work is invested in finding the right threshold for the different
scales. First, we need to sort the squared wavelet coefficients
{ak = [wk

(j)]2} in ascending order. The cumulative total of ak is
computed:

  

bi = ak

k =1

i

Â (8)

Further, a vector c is needed which has the same size as the
number of elements in the current scale j. The first element in c
is nj 2 1, where nj is the number of elements in the wavelet
coefficient vector at scale j, and decreases linearly for
successive vector elements to 0 (the last element). A risk value,
ri, is computed for every wavelet coefficient:

  
ri =

(nj - 2i) + bi + aici

nj
(9)

The wavelet coefficient that has the minimum ri is selected as
the threshold value for that scale j. Note that the absolute value
of the coefficient is used as the threshold. If the coefficient
ıwi

(j)ı is chosen as the threshold, all coefficients with absolute
values below will be set to zero. We will refer to this threshold
as t = SURE [w(j)].

VISU

For some of the denoising methods we need to specify L, which
is the longest scale used in the thresholding. In this method we
apply the denoising only on the coefficients in the index interval
[2L + 1, n] where n is the number of wavelet coefficients. The L
parameter must be much smaller than J where n = 2J. We
define the threshold parameter t = (2 log n)1

2, which is used in
the soft thresholding scheme described above.

HYBRID

This is a soft threshold method where in some cases the soft
threshold tA = (2 log nj)

1
2 is used, and in other cases tB = SURE

[w(j)] is used, depending on the parameter e, defined as fol-
lows:
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where J is the total number of scales and nj is the number of
elements in scale j.

MEDIAN ABSOLUTE DEVIATION (MAD)

Here the soft thresholding method is applied to the individual
scales j. The threshold used for each scale j is

    
s j =

median[w(j) ]

.0 6745
(12)

Each wavelet coefficient scale is divided by sj, v(j) = w(j)/sj, and
we use the threshold t = (2 log nj)

1
2. The thresholding is then

done by SOFT [v(j), t].

MINIMAX

This procedure finds ‘optimum’ thresholds tn such that the risk
R(fdenoised, f), given by

  

R( f denoised, f ) =
1

n
( f i

denoised - f i )
2

i =1

n

Â (13)

between the estimated wavelet coefficient qest and the true
wavelet coefficient q satisfy

R(qest,q)@L(e2 + Ropt) (14)

where L is a constant which is related to the optimum risk Ropt
if we had an oracle that could tell us what wavelet coefficients
are larger than the noise level e. A set of thresholds tn are used
that satisfy tn @ (2 log n)1

2. For very large n the optimum
threshold values will approach (2 log n)1

2. The thresholds are
subsequently used in a soft thresholding scheme.

Fourier

This is the classical Fourier denoising approach where the
components with high frequencies are assumed to represent
noise only and are therefore removed. In this case we use a soft
thresholding technique which is dependent on input from the
user. A region in the power spectrum of the signal is specified
which most likely contains noise; this is usually located in the
upper region of the power spectrum. The maximum amplitude
value in this region is used as a cut-off level. At the located cut-
off frequency a sigmoid function is used to implement a soft
threshold.

Moving mean filter

A simple moving average filter was chosen as the ‘baseline’
method with which to compare the other, more complicated
methods. A sliding window of size w is selected. For each step
in the sliding process we find the mean of the curve points inside
the window. This mean value is used as the output of the filter
at each step. The window size is chosen to reflect the frequency
content of the true signal by making sure the cut-off frequency
of the filter is slightly larger than the bandwidth of the true
signal.

WAVELET PACKETS (WP)

The WP denoising method used here has two significant steps:
estimation of the best WP basis for denoising followed by
proper selection of the denoising threshold. To select a basis, the
Coifman–Wickerhauser ‘best basis’ algorithm is used.38 This
algorithm is based on finding the basis that gives rise to the
minimum entropy of the signal energy distribution. The energy
of a signal is the sum of the squares of its elements. This energy

will be the same for different choices of bases, but the
distribution will be different over its coordinates. To quantify
this distribution, the entropy of the squares of the coordinates of
the signal is used. From a data compression viewpoint it is
advantageous to find a distribution with a low entropy. This
means the signal can be described by a small number of bits.
After finding the best basis the WP method uses Stein’s
Unbiased Risk Estimate in the calculation of hard denoising
thresholds.

Heteroscedastic and Homoscedastic Noise

Definitions and properties

Let us assume we have a signal, h(t), that contains only
homoscedastic noise. In general, we write this as

h(t) = an(t) + s(t) (15)

where a is a scalar that determines the size of the noise n(t) and
s(t) is the pure signal. This Fourier transforms to

H(w) = aN(w) + S(w) (16)

such that the signal is independent of the noise and is
concentrated only in the region defined by S(w). For hetero-
scedastic noise, however, the noise correlates in intensity with
the amplitude of the signal

h(t) = af[s(t)] n(t) + s(t) (17)

where f(s) is the dependence of the noise on this signal. A
Fourier transform of the noisy signal h(t) produces

H(w) = aF[s(t)]¤N(w) + S(w) (18)

where ¤ is the convolution operator and upper case letters
signify the corresponding Fourier transform of the functions in
the time domain (written in lower case letters). The spectrum of
the heteroscedastic noise can thus be regarded as the convolu-
tion of the spectrum of the homoscedastic noise with that of the
signal. Accordingly, all frequencies in the spectrum will contain
information related directly to the signal, s(t).

Constructing heteroscedastic noise

When constructing heteroscedastic noise for the purpose of
assessing different denoising methods, it is necessary to decide
on the structure of the function f described in the previous
section. The easiest choice is to let it be a constant such that the
heteroscedastic noise is

h(t) = a s(t) n(t) + s(t) (19)

In this paper, however, we decided to formulate f such that it is
in accordance with the type of heteroscedastic noise that is
normally present in absorbance spectra. It has been demon-
strated39 that the non-linear transform from transmittance to
absorbance spectra itself converts homoscedastic noise into
heteroscedasticity. It should be stressed that other phenomena
can contribute to the observed heteroscedasticity. For instance,
irreproducibility of transmitter offsets may also have an
influence. We have, however, in order to simplify, assumed that
the heteroscedasticity observed is caused only by the conversion
from transmittance to absorbance. We note that the Beer
transform is

A = log(I0/I) = 2log T (20)

where A is the absorbance, I0 is the original intensity of the
incident beam, I is the reduced intensity of the beam after
passing through the sample and T is the transmittance.
Homoscedastic noise in a transmittance spectrum will be
converted into heteroscedasticity after the transformation into
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absorbance units. This means that our observed signal s(t) is the
result of a Beer transform

s(t) = 2log[q(t)] (21)

where q(t) is the transmittance signal. Adding homoscedastic
noise n(t) to the transmittance signal q(t) now gives

z(t) = 2log[a q(t) + n(t)] = log{1/[a q(t) + n(t)]} (22)

In order to see that the noise becomes related to the size of the
signal, we will use an intuitive rather than a mathematical
argument. Assume that we have a large peak in the trans-
mittance region with a small perturbation from noise. The 2log
(large number + small perturbation) corresponds to a region in
the 2log function that is relatively flat, i.e., the small
perturbations from the noise will not change the output
significantly (which now becomes an absorbance). If we have a
small signal that has a size comparable to the noise, then we will
have a situation where the fluctuation in the signal + noise will
be comparable in size with the noise. Now, the 2log (small
number + small perturbation) will be in a very steep region of
the non-linear function and therefore any small changes will
correspond to a large change in the output (absorbance). This
means that the standard deviation (which is a measure of change
in value) will be higher for regions containing small trans-
mittance intensities (i.e., high absorbance) and low for regions
containing high transmittance intensities (i.e., low absor-
bance).

In this paper we make use of this fact and therefore convert
from absorbance to transmittance units and add homoscedastic
noise with a certain S/N. The S/N values in all the experiments
are obtained from the following equation

  

S / N =

sj

j

n

Â
(sj - nj )

2

j

n

Â
(23)

where sj and nj are the jth true signal and noise element,
respectively. The noisy transmittance spectrum is subsequently
transformed back into the absorbance domain where the noise is
now heteroscedastic. In general, any non-linear transform of a
signal will convert homoscedastic into heteroscedastic noise.

Experimental

Assessment of Denoising Performance

We shall use two different ways of assessing the performance of
the different denoising methods. The first method is based on
the use of the root mean square (rms) difference between the
denoised noisy spectrum and noise-free spectrum as a measure
of the performance of the different methods. Since the denoising
process can often introduce offsets and scalings that can
influence the rms values, we employed the technique of
multiplicative scatter correction (MSC)40–45 on the denoised
spectra before calculating the rms differences. In MSC it is
assumed that the observed spectrum y can be written in terms of
the reference spectrum s as y = as + b. The MSC operation on
y is therefore yh = (y 2 b)/a. In this paper y is a spectrum that
has been denoised using one of the methods described and s is
the noise-free spectrum. Values of a and b are constructed for
every denoised spectrum for each denoising method. The rms
difference is calculated between yh and s.

The second method of assessing denoising preformance used
in this paper is to measure the rms error of prediction on an
unseen validation set using the denoised data set.

All the data sets used in this paper (data sets 1–4) are such that
we know the true underlying noise-free spectrum. This will, of
course, not normally be the case in real applications and in
general the investigator is left with visual inspection of the
denoised signal as a way of determining the appropriateness of
the denoising method for the data set. However, in the case of
FTIR spectrometry noisy spectra will approach the ‘true’ noise-
free spectra as the number of co-adds (followed by averaging)
is increased.

Description of Experimental Conditions

Infrared spectra for data sets 2, 3 and 4 were recorded in the
wavenumber interval 4000–600 cm21 using a Bruker IFS28 FT-
IR spectrometer (Bruker Spectrospin, Coventry, UK) equipped
with a liquid nitrogen cooled MCT (mercury cadmium telluride)
detector and a diffuse-reflectance absorbance TLC accessory (4
cm21 resolution, spectra collected at 20 s21). ASCII data were
exported from the Opus software used to control the FTIR
instrument and imported into MATLAB.

Data set 1

This data set consists of an artificially generated IR absorbance
spectrum to which is subsequently added homoscedastic noise
and heteroscedastic noise with S/N = 1, 2, . . ., 30.

Data set 2

Homoscedastic or heteroscedastic noise (S/N = 1,2, . . ., 30)
was added to the pure diffuse reflectance spectrum of sodium
succinate.

Data set 3

To improve the S/N it is standard procedure in all instruments to
take the mean of several spectra of the same sample. The S/N
will improve as the square root of the number of co-added
spectra that are used in the mean calculation for homoscedastic
noise. This square root dependence is approximately true for
heteroscedastic noise up to about 300–400 co-adds. Above this
number of co-adds the S/N improves almost linearly (not
shown).

Unfortunately, taking the mean of a sufficiently large number
of spectra is too slow a process when rapid screening of
thousands of samples is necessary. Here we want to use
denoising methods to improve the accuracy in the estimation of
the profile of the ‘true’ spectrum (i.e., a mean spectrum of many
co-adds that has a high S/N) from single co-add spectra (i.e.,
with low S/N). Our choice of compound in this experiment was
glucose at a 20 mm concentration. The reference, and estimate
of the ‘true’ spectrum, was the mean of 300 co-adds. Our data
matrix was a set of 300 single co-add spectra. When we plotted
the mean vector versus the standard deviation vector of this data
set we observed a clear linear relationship. This confirms our
knowledge about absorbance IR spectra that the standard
deviation of the absorbance is proportional to the mean value of
the absorbance. Unfortunately, some regions in the spectra were
significantly different from the glucose regions and thus
removed from the data set. These regions were 4000–3619 and
1186–600 cm21, which constituted the first and the last part of
the spectra.

Each of these spectra was subjected to the eight denoising
methods described above and the rms difference was calculated
between the denoised spectrum and the ‘true’ spectrum. The
mean value of this rms difference over all the 300 spectra for all
the eight methods was used to give an indication of the best
method.
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Data set 4

Data set 4 consists of 40 diffuse reflectance FTIR spectra of a
developed culture of the bacterium Staphylococcus aureus
containing the antibiotic ampicillin at different concentrations
(0.5–20 mm). Infrared spectra (256 co-adds) for each of these
samples were recorded. ASCII data were exported from the
Opus software used to control the FTIR instrument and
imported into MATLAB. The samples were separated into
calibration and validation sets, each containing 20 objects, using
the DUPLEX method.46 PLS with leave-one-out cross-valida-
tion was used for finding the optimum model for the calibration
data. In order to demonstrate the denoising effect at different
noise levels, we added heteroscedastic noise to the data set with
S/N in the region [1, 20].

Calculation and Presentation Details

All the data were reconstructed using the Symmlet 8 wavelet,
which we have found to be a very good wavelet for modelling
spectra. One of the reasons for this is that the Symmlet 8 basis
resembles to some extent the shape of peaks found in IR
spectra.

The low-frequency cut-off for shrinkage was set to L = 5.
Denoising of the spectra was also performed using a threshold
of L = 0 but it had a tendency to produce reconstructed spectra
that were judged not to be sufficiently smooth. L was also used
as the branch depth in the wavelet packet transform.

The rms difference between the reconstructed and the true
spectrum (i.e., that with very little noise) was calculated for each
method at each S/N.

The resulting matrix for each denoising method contained the
rms differences from the true spectrum for each denoised
spectrum at each S/N level.

We summarise the results of these matrices by taking the
mean and the standard deviation for all the spectra in the data
sets. For convenience, we will sometimes refer to the different
denoising methods by numbers: 1 = VISU, 2 = SURE,
3 = HYBRID, 4 = MINMAX, 5 = MAD, 6 = FOURIER,
7 = PACKETS, 8 = MOVING MEAN and 9 = NOISY
SIGNAL (i.e., the untreated signal containing noise).

Results

Data Set 1, Homoscedastic Noise

Homoscedastic noise (S/N from 1.61 to 30.00) was added to this
spectrum and the results obtained by applying the various
denoising methods to the noisy spectrum are given in Table 1.
The best methods over the whole S/N range are the wavelet
HYBRID (3) and Fourier (6) methods. The HYBRID method is
slightly better than the Fourier method for low S/N ( < 7.5). At
very low S/N levels the HYBRID and the Fourier methods
together with the moving average converge to almost identical
performance.

The mean rms for the HYBRID method is 6.21 (median 3.67)
and the mean for the Fourier method is 6.70 (median 4.59). To
obtain a visual impression of the denoising process, we
inspected the reconstruction results of four methods, HYBRID,
Fourier, PACKETS and moving mean, at S/N = 4.69. The
visualisation (not shown) seems to confirm the rms differences
in that the denoised spectrum from the HYBRID method is
better than the results from the Fourier and moving average
methods. The PACKETS denoised spectrum, however, seems
visually to be better than the reported rms values would suggest.
In the Fourier denoised spectrum we observe unwanted ringing
effects from aliasing. Similar ringing effects can be seen in the
wavelet reconstructions at lower frequencies.

Data Set 1, Heteroscedastic Noise

Heteroscedastic noise was added to the noise-free data set 1.
The results of applying the eight different denoising methods to
the noisy spectrum is shown in Fig. 1. Again, the HYBRID
denoising method (3) is slightly better for almost all the S/N
levels, with the Fourier (6) next, equalling the HYBRID over
most of the S/N range. The PACKETS method performs almost
as well in this data set. The mean rms difference produced by the
HYBRID method is 6.27 compared with 7.14 for the Fourier
method.

Reconstructed denoised spectra for methods 3, 6, 7 and 9 at
a noise level S/N = 4.67 are displayed in Fig. 2. The Fourier,
HYBRID and moving average methods all show similar ringing
effects which are absent in the PACKETS reconstruction.

Table 1 Rms differences between the ideal spectrum and the denoised spectrum for eight denoising methods applied to data set 1 to which has been added
homoscedastic noise. The column headed S/N contains the signal-to-noise ratio used for each of the 20 experiments. The methods are indicated by numbers:
1 = VISU, 2 = SURE, 3 = HYBRID, 4 = MINMAX, 5 = MAD, 6 = Fourier, 7 = WAVELET PACKETS, 8 = Moving mean and 9 = NOISY
SIGNAL

S/N 1 2 3 4 5 6 7 8 9

1.61 31.34 32.05 30.14 41.44 30.55 27.61 30.34 81.69 27.52
3.27 17.96 17.17 12.74 23.90 17.50 13.22 20.11 40.15 13.12
4.69 17.09 13.69 11.07 16.55 14.59 12.29 14.02 27.97 12.70
6.05 12.79 15.46 9.38 14.96 13.24 13.18 11.79 21.68 10.57
7.98 10.23 10.84 6.84 10.25 11.10 6.64 7.31 16.44 9.38
9.08 10.56 8.53 8.51 9.35 11.96 10.64 9.12 14.46 9.25

10.68 8.84 9.12 5.54 9.03 9.48 5.43 6.94 12.29 9.25
12.50 7.09 6.93 4.78 7.60 8.62 4.89 6.11 10.50 8.54
13.56 6.79 5.76 3.95 6.26 6.52 6.38 5.11 9.68 7.86
15.02 6.46 5.51 3.71 5.90 8.43 5.53 4.83 8.74 8.45
17.43 5.76 4.08 3.64 5.26 7.37 3.73 4.13 7.53 8.08
18.69 5.60 3.46 2.95 4.42 6.99 3.06 3.87 7.02 7.77
20.92 5.39 4.58 3.35 4.45 8.04 4.29 3.65 6.27 8.43
21.45 5.60 3.91 3.09 3.98 7.59 3.06 3.29 6.12 8.17
22.88 5.08 3.46 2.79 3.81 7.17 2.84 3.51 5.74 7.91
24.80 4.50 4.37 2.42 3.81 6.60 2.42 3.20 5.29 7.93
26.79 4.46 3.70 2.47 3.58 6.12 2.33 3.24 4.90 7.99
28.10 4.39 2.96 2.37 3.12 6.30 2.20 3.30 4.67 7.87
29.28 4.16 2.59 2.29 2.97 6.16 2.25 2.76 4.48 7.78
30.00 4.22 2.97 2.24 2.87 5.90 2.10 2.61 4.37 7.88
Mean 8.92 8.06 6.21 9.18 10.01 6.70 7.46 15.00 9.82

Median 6.11 5.05 3.67 5.58 7.81 4.59 4.48 8.13 8.30
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Data Set 2, Homoscedastic Noise

The effect of the different denoising methods on data set 2 (to
which are added various levels of homoscedastic noise) is
shown in Table 2. Again, using the rms difference criterion,
HYBRID (3) is the best method overall, followed very closely
by both the Fourier and PACKETS methods, which behave very
similarly to each other. The denoised spectrum for the four
methods HYBRID, moving mean, Fourier and PACKET at
noise level S/N = 4.97 was computed (not shown). We observe
that the visual quality of the WAVELET PACKET denoised
spectrum is better than that of the Fourier method, although this
is not reflected in the trend observed in the rms difference
values. The PACKET method in general produces smooth
spectra but can be erroneous in larger detail.

Data Set 2, Heteroscedastic Noise

Fig. 3 shows the effect of the different denoising methods on
data set 2, to which are added various levels of heteroscedastic
noise. The HYBRID method is again best at mid and high S/N
but the Fourier method performs better at low S/N. The most
interesting feature from the analysis is the far superior
performance of the moving mean over all the other methods for
mid to low S/N.

Surprisingly, the moving mean (8) method gives much lower
rms values than any of the spectral methods. Is this trend also
observed in the denoised spectrum for the different methods (S/
N = 3.67)? Visual inspection of the reconstructions does not
reflect the rms values above (see Fig. 4). This is presumably due
to the eye favouring smoothness such that a smooth signal with
large scale errors would be seen as better than a slightly noisier
trace which is actually more representative of the true signal.

Data Set 3

The eight different denoising methods described above were
used on each of the single co-adds and the rms difference was
calculated between the denoised co-adds and the ‘true’ signal.
The mean and the standard deviation values for all the rms
values were calculated as a measure of ranking the denoising

Fig. 1 Result of denoising using six wavelet methods, Fourier and median
filter denoising on data set 1. Heteroscedastic noise. Only four of the applied
methods are shown.

Fig. 2 Reconstructed noisy spectra of data set 1 containing heteroscedastic
noise.

Table 2 Rms differences between the ideal spectrum and the denoised spectrum for eight denoising methods applied to data set 2 to which has been added
homoscedastic noise. The column headed S/N contains the signal-to-noise ratio used for each of the 20 experiments. The methods are indicated by numbers:
1 = VISU, 2 = SURE, 3 = HYBRID, 4 = MINMAX, 5 = MAD, 6 = Fourier, 7 = WAVELET PACKETS, 8 = Moving mean and 9 = NOISY
SIGNAL

S/N 1 2 3 4 5 6 7 8 9

1.34 62.95 100.10 51.66 80.51 64.78 62.61 59.25 58.00 121.68
2.52 48.99 39.54 33.86 38.65 51.93 45.73 42.53 33.18 64.58
3.86 36.21 27.41 22.51 26.45 43.20 27.29 28.91 26.50 42.21
4.97 32.82 20.76 19.79 18.61 38.38 24.07 24.40 23.62 32.76
6.71 25.60 15.37 16.42 14.34 29.15 16.47 19.84 20.30 24.24
7.68 20.52 17.87 11.48 14.10 31.78 16.28 14.17 20.10 21.19
8.92 20.62 12.41 10.59 11.89 27.57 13.24 13.47 19.38 18.24

10.60 18.21 10.40 9.47 9.49 26.66 11.16 12.89 18.71 15.36
11.26 16.45 11.36 8.83 9.76 23.77 11.51 10.60 18.68 14.45
12.66 15.34 10.54 8.27 8.72 24.53 10.47 10.80 18.42 12.86
13.77 13.52 10.01 7.88 8.70 23.44 9.59 9.14 18.31 11.82
15.56 13.80 7.88 7.34 7.20 22.58 8.37 8.56 18.12 10.46
16.27 12.20 8.57 7.14 7.48 21.69 8.28 7.73 18.06 10.00
17.55 12.03 8.03 6.42 6.82 22.09 7.59 7.55 17.91 9.27
19.04 11.50 6.95 6.08 5.94 19.97 8.11 7.46 17.86 8.55
20.37 11.31 6.56 6.00 5.76 20.02 6.93 7.14 18.03 7.99
21.48 10.54 6.75 5.59 5.55 20.53 6.66 6.60 17.79 7.58
24.02 9.67 5.30 5.13 5.17 22.67 6.06 5.95 17.72 6.77
23.96 9.55 6.04 5.22 5.14 21.76 6.30 6.05 17.95 6.79
24.98 9.23 5.73 5.02 4.72 21.10 6.15 6.46 17.65 6.51
Mean 20.55 16.88 12.74 14.75 28.98 15.64 15.47 22.67 21.81

Median 14.57 10.21 8.07 8.71 23.60 10.03 9.87 18.37 12.34
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methods. The measured S/N of the data set was fairly high, 107
± 5. The mean rms values for the different methods were 0.85 ±
0.05 for VISU, 1.07 ± 0.05 for SURE, 1.04 ± 0.05 for HYBRID,
1.06 ± 0.05 for MINMAX, 2.8 ± 0.1 for MAD, 1.75 ± 0.03 for
Fourier, 1.03 ± 0.05 for PACKETS, 1.07 ± 0.05 for moving
mean and 3.88 ± 0.03 for NOISY SIGNAL. All the wavelet
methods [except for method 5 (MAD)] have a lower rms than
the Fourier and moving mean methods. Again, using visual
inspection of the reconstructions (not shown), we see that the
Fourier and moving mean methods have a tendency for
oversmoothing of certain regions. The wavelet methods seem to
be better at capturing significant spikes in the spectra.

Data Set 4

The noise-free and untreated data set was first analysed with the
partial least squares (PLS) method. A five factor PLS model was
formed using full cross-validation. When this model was
applied to an unseen validation set, an rms prediction error of
9.7% was achieved. Further denoising on this data set will
improve the prediction error by approximately 2%. In order to
observe the performance for different noise levels, hetero-
scedastic noise was added to the data set (S/N = 1–20). For
each noise level, all the denoising methods described earlier
were used prior to PLS modelling (five factors extracted). The
results of the rms errors of prediction are shown in Fig. 5. As
shown before, the traditional methods such as Fourier and
moving average perform better than or as well as all the wavelet
methods for noise levels lower than S/N = 7. Above this noise
level one of the wavelet denoising methods (VISU) performs

better. None of the denoising methods can achieve an rms error
in prediction lower than 10% in the noise level range.

Discussion and Conclusions

One important implication of improved denoising techniques in
IR spectrometry is that we can improve the S/N with a
significantly reduced number of co-adds. This will be of
particular importance for experiments in which we wish to
record the IR spectra with rapidity, such as in screening for
metabolite overproduction and 2D surface mappings. Under
such conditions, the benefit of higher throughput is essentially
in proportion to the reduction in the number of co-adds. Other
experimental methods that may be expected to benefit from
wavelet denoising techniques are the group of coupled methods
(GC–IR, LC–IR, etc.). When the location of smaller peaks in
coupled methods is necessary, heteroscedastic noise can have a
devastating effect on the correctness of the results.47–49

In addition, denoising applied to spectra in general will be of
importance in any kind of multivariate modelling performed on
the spectra. Examples of popular methods that are often used in
the analysis of spectra are PLS50–60 and neural networks.61–65 In
this case it is possible to construct objective criteria that can be
used to optimise denoising of spectra. For instance, it is possible
to use the predictive ability or classification error to find the
optimum choice of threshold in the wavelet denoising process.
The need for such objective criteria is emphasised by the
disparity, shown by some of the results in this paper, between
the ‘quality’ of denoised spectra as assessed by rms difference
values and by visual assessment of the denoised spectra.

Although the wavelet approach allows greater freedom than
traditional filtering methods, this also requires appropriate
selection of more parameters by the user in order to optimise the
denoising process. The wavelet transform allows a greater
degree of compression into a smaller proportion of coefficients
than the Fourier transform, and should therefore allow a greater
rejection of noise with optimum parameter selection. The major
improvement in the wavelet denoising methods compared with
the standard filtering methods is the possibility of localising the
frequency information to selected parts of the spectrum. For
instance, in IR spectra we have the complex fingerprint regions
in the 1000–400 cm21 range which will contain sharper peaks
than in the 4000–3000 cm21 region. This means that we do not
want to apply the same frequency cut-off for these two regions.
A standard Fourier filtering approach will look at the whole
power spectrum for both regions and apply the frequency cut-
off for the whole spectrum. Accordingly, wavelets can be better
in such cases because they are localised in both the ‘time’ (here
wavenumber) and frequency domains.

The comparison of the transform methods with our ‘baseline’
method of a moving mean filter is instructive. It can be seen

Fig. 3 Result of denoising using six wavelet methods, Fourier and median
filter denoising on data set 2. Heteroscedastic noise. Only four of the applied
methods are shown.

Fig. 4 Reconstruction comparison for data set 2 containing heteros-
cedastic noise.

Fig. 5 The rms error of prediction when using the eight denoising
methods. Here only the best wavelet method is shown (VISU), together with
the comparable classical methods (Fourier and moving mean).
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above that, with the filter length chosen as indicated, the moving
mean filter is just as efficient as any of the more advanced
methods at low S/N, but at the cost of poor performance at high
S/N. It should be noted that shortening the length of this filter
allows it to perform better than the rest at high S/N, but now at
the cost of poor performance at low S/N. The advantage of the
adaptive methods such as HYBRID is that they automatically
produce performance close to the optimum across the whole
range of noise levels studied.

We thank the Chemicals and Pharmaceuticals Directorate of
the UK BBSRC, GlaxoWellcome and Bruker/Spectrospin for
financial support.
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