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1. Introduction 

Many (perhaps most) biochemical problems are actually "inverse" problems, or 
problems of system identification. In general, if we know the parameters of a system of 
interest, we can set up a model (or actual) experiment, run the model (or experiment), and 
observe the behavior or time evolution of the system. However, especially in a complex 
biological system, the things which are n01mally easiest to measure are the variables, not the 
parameters, and it is the variables which depend on the parameters, not vice versa. 

In the case of metabolism, the usual parameters of interest are the enzymatic rate 
constants, which are difficult to measure accurately in vitrol and virtually impossible so to 
do in vivo. Yet to describe, understand, and simulate the system of interest we need 
knowledge of the parameters. In other words, we need somehow to go backwards from 
variables such as the steady-state fluxes and metabolite concentrations, which are relatively 
easy to measure, to the parameters, which are not. 

A similar situation exists in biological spectroscopy. If we have chemical standards, 
whether pure or mixed, it is easy to obtain their spectra. The inverse problem then involves 
obtaining the concentrations of metabolites, or the overall spectral parameters, from the 
spectra observed in a complex system. 

The purpose of this article is to describe our successful exploitation of artificial neural 
networks (ANNs) in the solution of such biochemical (and other) inverse problems. We 
apply the approach specifically to: 
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(i) model metabolic pathways studied by computer simulations, 
(ii) parameter identification in biological dielectric spectroscopy, and 
(iii) the extraction of chemical information from pyrolysis mass spectra of intact 

microbial cells. 

2. Artificial Neural Networks 

ANNs are collections of very simple "computational units" which can take a numerical 
input and transform it (usually via summation) into an output (see e.g. Refs 2-12). The 
inputs and outputs may be to and from the "external world" or to other units within the 
network. The way in which each unit transforms its input depends on the so-called 
"connection weight" (or "connection strength") and "bias" of the unit, which are modifiable. 
The output of each unit to another unit or to the external world then depends on both its 
strength and bias and on the weighted sum of all its inputs, which are transformed by a 
(normally) nonlinear weighting function refered to as its activation function. 

The great power of neural networks stems from the fact that it is possible to present 
("train") them with known inputs (and outputs) and provide some form of learning rule 
which may be used, iteratively, to modify the strengths and biases until the outputs of the 
network as a function of the inputs correspond to the desired ("true") outputs. The trained 
network may then be exposed to "unknown" inputs and will then provide its view of the 
"true" output(s). 

A neural network therefore consists of at least three layers, representing the inputs and 
outputs and one or more so-called "hidden" layers. It is, in particular, the weights and biases 
of the interactions between inputs and outputs and the hidden layer(s) which reflect the 
underlying dynamics of the system of interest, even if its actual (physical) structure is not 
known. By training up a neural network with known data, then, it is possible to obtain 
outputs that can accurately predict things such as the (continuing) evolution of a time series, 
even if it is (deterministically) chaoticl3. 

Other successful uses of neural networks include speech recognition, DNA sequence 
analysis, the correction of errors in optical astronomy, and the analysis of vapors by arrays 
of artificial sensors. One may also perhaps mention the successful use of simple neural nets 
in the analysis of chemical engineering systems14. 

3. Analysis of Metabolic Systems Using Neural Networks 

As described in several other contributions in this volume, it is possible by computer 
simulation to determine steady-state variables such as fluxes and metabolite concentrations 
as a function of parameters such as the enzymatic rate constants and external metabolite 
concentrations. It is obviously then possible to change one or more of the parameters and to 
determine another set of associated variables, and so on. The idea is that having acquired 
related sets of parameters and variables, we would then be in a position to train neural 
networks in which the (known) variables were the inputs and the parameters were the 
outputs. When the nets had successfully learned to reflect the correct parameters when 
presented with the variables, we would have solved our problem. We could then present the 
net with "random" (experimental) variables and ask it for the parameters. 

The correctness of the network's predictions could obviously be checked by running a 
simulation with the parameters provided by the network and seeing if they generated: the 
variables used as the input to the net. The result would be that we could in fact obtain the 
(enzymatic) parameters of a metabolic network (and hence the control coefficients and 
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elasticities) by measuring the variables alone; We have now implemented this strategy, as 
outlined in what follows. 

For comp\ltational simplicity we concentrate here on a simple, three-step linear 
pathway, as shown in Scheme 1, with each enzyme (one substrate I one product) possessing 
reversible Michaelis-Menten kinetics, and with the steps having equilibrium constants of 
567, 13.4 and 2.3 respectively. 

Scheme 1 

The dataset was obtained by varying the Vmax values of each enzyme and the first 
f01ward Km v\tlue. All other Kms were held constant. The concentration of S1, S2 and the 
steady-state flux were recorded for each parameter set. In addition, each parameter set was 
applied using three different concentrations (1, 10, 100) of the starting metabolite Xo so that 
we could obtain three sets of variables for the same set of parameters (in an experimentally 
realizable fashion), and so aid the training process. 

The parameters of the system were varied as follows. Each parameter was first assigned 
a uniform random number u between 0 and 2.0, which was then used to generate a non­
skewed disfribution spanning two decades using the formula, 1011 • The reason why the 
parameters were generated in this manner was so that the distribution of values would not 
be confined to the upper decades of the range and thus there would be a rqughly equal 
number of random values between 1 and 10 as there would be between 10 and 100. In this 
way 500 random sets of Km and Vmax values were generated, from which the steady-state 
concentrations bf S1, S2 and the fluxes were obtained. A 12-18-4 net was then trained (with 
the stqchastic backpropagation algorithm) using the 12 values of Xo, S1, S2 and J as the 
input and the four varied parameters as the output. 
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Figul'e 1. An Artificial Neural Network's estimate of unseen Vmax,3 values. 

After training to an RMS error of ca 0.08 Uust under 4000 epochs), the net had 
successfully generalized, as illustrated in Fig. 1, which shows the network's estimate of the 
unknown values for Vmax,3 against the "true" values. Other parameters had been learned to a 
more or less similar degree. 

It is worth pointing out that it is only possible for ANNs to learn something that is 
actually learnable, so that if a variable is not significantly related to a particular parameter 
then the network will not learn it; this of course may be used to our advantage, since if the 
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parameter of interest does not significantly control the variable it may be assumed that one 
is not interested in studying it anyway. Because updating of the network is based on the 
overall RMS error, "bad" relationships interfere with the learning of "good" ones; our 
experience to date suggests that any linear correlation coefficient (of logarithmic 
parameters) below some OA will inhibit the net from converging. 

4. Solution of the Inverse Problem in Biological Dielectric Spectroscopy 

In biological dielectric spectroscopy, where dispersions are substantially broader than 
that expected from a purely Debye-like process, it is not always possible, due to technical 
limitations, to obtain data over a wide enough range of frequencies to encompass the entire 
dispersion(s) of interest. Similarly, because of the breadth of the dispersions, it is common 
to seek to characterize the dielectric behavior of interest by means of the Cole-Cole 
function 15. Whilst it is possible to fit dielectric 'data to this equation using appropriate 
nonlinear least-squares methodsl6, these methods are computationally rather demanding, 
and must be undergone, iteratively, for each set of data. 

We have found17 that it is possible to train an artificial neural network with small sets of 
dielectric data (permittivities measured at various frequencies) as the inputs and the 
attendant parameters of the Cole-Cole equation as the outputs. The trained net can then give 
an essentially instantaneous output of the limiting permittivities at frequencies that are both 
high and low with respect to the characteristic frequency, and thus of their difference, a 
parameter which, for the so-called ~-dispersion, scales with the biomass content of cell 
suspensions 16. 

5. Solution of the Inverse Problem in Pyrolysis Mass Spectrometry of 
Microbial Cells 

Pyrolysis is the thermal degradation of a material in an inert atmosphere, and leads to 
the production of volatile fragments (pyrolysate) from non-volatile material such as 
microorganisms. Curie-point pyrolysis is a particularly reproducible and straightf~rward 
version of this technique, in which the sample, dried onto an appropriate metal is rapidly 
heated (0.6s is typical) to the Curie point of the metal, which may itself be chosen and is 
commonly 530°C. The pyrolysate may then be separated and analyzed in a mass 
spectrometerl8, and the combined technique is then known as Pyrolysis Mass Spectrometry 
orPyMS. 

Conventionally (within microbiology and biotechnology), PyMS has been used as a 
taxonomic aid in the identification and discrimination of different microorganismsl9. To 
this end, the reduction of the multivariate data (150 normalized values in the range m/z 51-
200) generated by the PyMS system is normally carried out using Principal Components 
Analysis (PCA), a well-known technique for reducing the dimensionality of multivariate 
data whilst preserving most of the variance. Whilst PCA does not take account of any 
groupings in the data, neither does it require that the populations be normally distributed, 
i.e. it is a non-parametric method. 

The closely related Canonical Variates Analysis technique then separates the samples 
into groups on the basis of the principal components and some a priori knowledge of the 
appropriate number of groupings. Provided that the data.set contains "standards" (i.e. type 
or centro-strains) it is evident that one can establish the closeness of any unknown samples 
to a known organism, and thus effect the identification of the former. An excellent example 
of the discriminatory power of the approach is the demonstration20 that pne can use it to 
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distinguish four strains of Escherichia coli which differ only in the presence or absence of a 
single plasmid. 

We have found21 that it is possible to train an ANN using the Pyrolysis Mass Spectra as 
the inputs and the known concentrations of target analytes in standards as the outputs. The 
trained net can then be tested with thelyrolysis Mass Spectra of "unknowns", and then 
accurately outputs the concentration of the target analyte(s), in the case described here the 
concentration of tryptophan in the growth medium of indole-positive strains of E. coli. 

We have aiso been able to effect a rapid distinction between extra virgin and adulterated 
olive oils using this approach22. It is obvious that this combination of PyMS and ANNs 
constitutes a powerful technology for the analysis of the concentration of appropriate 
substrates, metabolites and products in any biological process. 
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