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We describe the ® rst application of dispersive Raman spectroscopy

using a diode laser exciting at 780 nm and a charge-coupled device

(CCD) detector to the noninvasive, on-line determination of the bio-
transformation by yeast of glucose to ethanol. Software was devel-

oped which automatically removed the effects of cosmic rays and

other noise, normalized the spectra to an invariant peak, then re-
moved the ``baseline’’ arising from interference by ¯ uorescent im-

purities, to obtain the ``true’’ Raman spectra. Variable selection was

automatically performed on the parameters of relevant Raman
peaks (height, width, position of top and center, area and skewness),

and a small subset used as the input to cross-validated models based

on partial least-squares (PLS) regression. The multivariate calibra-
tion models so formed were suf® ciently robust to be able to predict

the concentration of glucose and ethanol in a completely different

fermentation with a precision better than 5%. Dispersive Raman
spectroscopy, when coupled with the appropriate chemometrics, is

a very useful approach to the noninvasive, on-line determination of

the progress of microbial fermentations.

Index Headings: Raman spectroscopy; On-line monitoring; Chemo-
metric methods; Bioinformatics; Fermentation; Variable selection.

INTRODUCTION

There is a continuing need for on-line methods for the
characterization of bioprocesses.1±3 The ideal method 4

would be rapid, noninvasive, reagentless, precise, and
cheap; although to date, with the possible exception of
near-infrared (NIR) spectroscopy (see below), almost no
such method has been found.

During the last few years there has been a renaissance
in Raman instrumentation suitable for the analysis of bi-
ological systems, initially with the development of Fou-
rier transform (FT)-Raman instruments in which the
wavelength of the exciting laser is in the near-infrared
(usually a Nd:YAG at 1064 nm) rather than in the visible
region, an arrangement which therefore avoids the back-
ground ¯ uorescence typical of biological samples illu-
minated in the visible.5±23 In addition, and at least as im-
portantly, exceptional Rayleigh light rejection has come
from the development of holographic notch ® lters,24±27

and a recent innovation is the use of Hadamard trans-
form-based spectrometers.28,29

Although the FT approach to both infrared and Raman
spectroscopy possesses well-known advantages of optical
throughput,8,30 there are still problems for FT-Raman with
many aqueous biological samples since water may absorb
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both the exciting laser radiation at 1064 nm and the Ra-
man scattered light. In addition, it is often necessary to
co-add many hundreds of spectra to produce high-quality
data from biological systems, and acquisition times are
frequently 15±60 min. More recently, therefore, it has
been recognized that charge-coupled device (CCD) array
detectors are ideal elements for use in dispersive (non-
FT) Raman spectroscopy. However, they normally have
very low quantum ef® ciency at 1064 nm photons. Thus
holographic notch ® lters and CCD array detectors have
been combined with a dispersive instrument, using diode
laser excitation at 780 nm (a wavelength which again
suppresses ¯ uorescence from most samples but which
penetrates water well). The cooled CCD is a multichannel
device which has exceptional sensitivity and very low
intrinsic noise (dark current), so that the signal-to-noise
ratio is improved by at least two orders of magnitude
(compared with an uncooled CCD), and data acquisition
is correspondingly fast.13 These and other31,32 major tech-
nical advances now make Raman a very promising tool
for the rapid, noninvasive, and multiparameter analysis
of aqueous biological systems, and its use for the esti-
mation of metabolite concentrations in ocular tissue has
been reported.33,34

In 1987, Shope et al.35 used attenuated total re¯ ectance
(ATR) Raman spectroscopy for the on-line monitoring of
the fermentation by yeast of sucrose to ethanol, using the
argon-ion laser line at 514.5 nm. Gomy et al.36,37 moni-
tored their alcoholic fermentation using the same laser
with a ® ber-optic probe attached to a Raman spectrometer
but analyzed the ethanol levels only at higher wave-
numbers (2600±3800 cm 2 1). This was because the Raman
monitoring of these processes using 514.5 nm excitation
gave signi® cant ¯ uorescence in the lower wavenumber
region, as can be observed in the spectra shown in these
papers. NIR spectroscopy continues to be applied to on-
line fermentation and biotransformation monitoring, for
example, of ethanol and biomass in rich medium in a
yeast fermentation,38,39 lactic acid production,40,41 biocon-
version of glycerol to 1,3-dihydroxyacetone,42 and nutri-
ent and product concentrations in commercial antibiotic
fermentations.43,44 Hall, Macaloney, and colleagues 45,46 re-
ported NIR spectroscopic monitoring of industrial fed-
batch Escherichia coli fermentation of varying levels of
acetate, ammonium, glycerol, and biomass which they
had previously studied in shake ¯ asks,47 while Yano et
al.48 used NIR spectroscopy to determine the concentra-



1420 Volume 53, Number 11, 1999

FIG. 1. Schematic of the experimental setup for monitoring yeast ethanol biotransformation using a dispersive Raman spectrometer.

tions of ethanol and acetate in rice vinegar fermentations
with good precision. Due to spectral interference from
the biomass, Fayolle et al.49,50 monitored ethanol fermen-
tation using FT-mid-IR spectroscopy and collected spec-
tra of ® ltered and non® ltered culture media.

Although ¯ uorescence has been a major hindrance for
the use of Raman spectroscopy in biology, Shope et al.35

clearly showed that the narrow Raman peaks were dis-
tinct from the broad features of ¯ uorescence and pro-
posed the use of full widths at half-height of the peaks
for chemical quantitation from Raman spectra. Addition-
ally, data analysis using m ultip le linear regression
(MLR)45 for acetate and glycerol and the more sophisti-
cated partial least-squares (PLS) was necessary to model
ammonium and biomass for NIR spectral data to allow
simultaneous immediate analysis for the E. coli fermen-
tation process. Similarly, Shope et al.35 used a least-
squares ® t to analyze the Raman spectra for quantitation
of the production of ethanol during the yeast fermentation
process. Finally, Spiegelman et al.51 have recently shown
that the amount of glucose in aqueous solution can be
measured by using Raman spectroscopy.

Here we describe the on-line monitoring of the glucose
fermentation by yeast to ethanol using a dispersive Ra-
man spectrometer with a 780 nm diode laser, after on-
line ® ltration of the biomass. The NIR diode laser at 780
nm suppresses the bulk of the ¯ uorescence from most
biological samples and has a signi ® cantly greater sensi-
tivity than is the case with excitation at 1064 nm as a
consequence of the inverse fourth power dependence of
Raman scattering ef ® ciency on wavelength. Therefore,
the high sensitivity and increased ef ® ciency mean that
data acquisition times and low laser powers may be used.
Although chemometrics has been applied for analysis of
Raman spectra,52±57 recently Vickers et al.58 showed that
quantitative use of the on-line and at-line spectra obtained
from a compact dispersive Raman spectrometer require
different data treatments from those described for FT-
Raman instruments, and Spiegelman et al.51 have exploit-
ed such using Raman spectroscopy. Therefore, our aim
was to develop and apply speci ® c chemometric methods
for the rapid analysis of the data obtained by using a
compact dispersive Raman spectrometer.

MATERIALS AND METHODS

On-line Setup of the Yeast Biotransformation. All
the chemicals were obtained from Sigma and were of
analytical grade, unless stated otherwise. Two types of
biotransformations were performed as described below.

Allinson’ s baking yeast (Westmill Foods Ltd., Berk-
shire, U.K.) was added as a 1% inoculum to 130 mL of
500 mM D-glucose in distilled water and monitored on-
line by using the setup shown in Fig. 1. The culture was
stirred and recycled continuously unless stated otherwise
(with the use of a modi ® ed 100 mL conical ¯ ask with a
glass side arm ® xed to the bottom) via a 90 cm long
silicone rubber tubing ® xed to a Pharmacia Peristaltic
P-1 pump (set to pump the culture at a ¯ ow rate of 1 mL
min 2 1) and connected back to the ¯ ask with a Sterican
1.10 3 50 mm/19 g 3 2 in. needle (Sterican, B. Braun,
Melsungen, AG) inserted into a 41 size Subaseal stopper.
The silicone tubing was ® tted with two 3 cm long 3 mm
bore quartz tubes halfway along its length (Comer In-
struments, 70, Cambridge, U.K.) and connected to two
by-passes with two 3-way taps, with one by-pass for nor-
mal culture cycling and the other ® tted with a sterile 0.2
m m, 10 mm ® lter for removal of cells prior to spectral
analysis. This second tube was ® xed onto the Macropoint
stage of the microscope of the Raman spectroscope (see
below). A Pasteur pipette was also inserted into the ¯ ask
stopper for the escape of CO2 produced as the second
product of the glucose biotransformation. At the end of
the biotransformation, the non® ltered sample in the sec-
ond quartz tube was analyzed spectrally as for the ® ltered
sample.

For biotransformation 1, samples were withdrawn at 1
h intervals on day 1 and 0.5 h intervals on day 2 and
day 3 with stirring and circulation stopped overnight and
the culture maintained at ambient temperature. Biotrans-
formation 2 was carried with sampling at 1 h intervals
on day 1 and subsequent sampling at 0.5 h intervals for
the following days, but the culture was maintained at 4
8 C overnight in order to slow down the rate of the trans-
formation and obtain a larger number of data points.

Microbial and Biochemical Analysis. Samples (0.5
mL) were withdrawn for biochemical analysis at times
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FIG. 2. The steps performed in processing the data.

FIG. 3. Spectra of glucose biotransformation 2 after 60 h with and
without yeast cells. Upper trace with cells, lower trace without cells.

similar to those for spectral analysis and were stored fro-
zen at 2 20 8 C. They were thawed on ice before micro-
centrifugation, and after appropriate dilutions of each of
the samples the supernatants were used for ethanol and
glucose estimation with the Sigma diagnostic kits, 332-
B (alcohol dehydrogenase assay) and 510-DA (glucose
oxidase and peroxidase assay), and were monitored at
340 and 450 nm, respectively.

Dispersive Raman Spectroscopy. Spectra were col-
lected with a Renishaw Model 2000 dispersive Raman
spectrometer31,32 with a low-power (15 mW) near-infrared
diode laser emitting at 780 nm with incident power on
the sample of 2±3 mW in a 2 m m diameter spot. The
instrument grating was calibrated by using neon lines59

and was routinely checked with a silicon wafer focused
under the 50 3 microscope objective and collected as a
static spectrum centered at 520 cm 2 1 for 10 s.

Data for the on-line monitoring of the ® ltrate (with the
setup described above), in a 3 mm quartz tube clamped
to an adapted Macropoint stage, were obtained by focus-
ing with a 10 3 microscope objective ® xed to a Macro-
point assembly ® tted to the standard objective aperture.
Spectra were collected as 3 scans of 60 s each.

Data Analysis. The GRAMS WiRE software package
(Renishaw) running under Windows 95 was used for in-
strument control and data capture. Spectra were collected
over 100±3000 wavenumbers with 3382 data points. The
spectral resolution of the Renishaw system is around 1.5
cm 2 1. The data were displayed as intensity of Raman

photon counts against Raman shift in wavenumbers
(cm 2 1).

The spectral data were extracted into text ® les and im-
ported into Matlab Version 5.0. With the use of Matlab
routines written for the purpose, the spectra were nor-
malized, and the baselines and any background ¯ uores-
cence removed. As described in detail in the Results sec-
tion, the height, width, area, position of top, position of
center, and offset of top from center of 17 identi ® able
peaks likely to be important for ethanol and glucose were
calculated (these dimensions are referred to as the
hwpast, for height, width, position, area, skewness, and
top). The resulting 102 variables (17 3 6) were then im-
ported into Microsoft Excel, where they were processed
by using a suite of Excel macros (known as AVSM),
which have been produced in-house60,61 for carrying out
variable selection, creating statistical models, and pro-
ducing graphs of the results in a largely automated fash-
ion. With the use of statistical programs written in C 1 1
by Dr. A. Jones, these macros process the data so as to
select the best variables (using characteristicity and Fish-
er or ANOVA for classi ® cation problems, Product Mo-
ment Correlation to the Y data for quanti ® cation prob-
lems such as this), carry out statistical analysis on the
data [predictions using PLS, neural nets, principal com-
ponent regression (PCR), MLR, and principal component
analysis (PCA)], establish the best variables for a given
training and/or query set, and apply the model formed to
an independent validation set. The steps carried out in
processing the data are shown in Fig. 2.

RESULTS AND DISCUSSION

The Raman spectral analysis of this biotransformation
was complicated by interference from spectral features
due to cellular components (Fig. 3). In addition, the Ra-
man scattered light is detected at 180 8 to the incident
excitation (back-scatter) but the absolute extent of pho-
tons that are potentially able to be back-scattered even
by Rayleigh scattering is a complex function of the total
cell mass and other factors in heterogeneous media,62±64

which can vary signi ® cantly during the biotransforma-
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FIG. 4. Comparison of smoothed, normalized spectra from biotransformation 2, taken at equally spaced intervals through the experiment, showing
the change in the spectrum over time. Spectra are arti® cially displaced by 100 photon counts for clarity.

tion. Therefore, a by-pass with a ® lter to remove the cells
from the interrogation zone was ® tted into the setup (Fig.
1), which also caused a substantial decrease in the base-
line, as seen in the lower trace in Fig. 3 as the yeast cells
showed negligible ¯ uorescence with excitation at 780 nm
with the use of a spectro¯ uorimeter (data not shown).

The spectra of the ® ltrates at varying time intervals
(Fig. 4) clearly show the increase in the sharp peak at
877 cm 2 1 which is characteristic of the ethanol symmetric
C±C±O stretch35 as the biotransformation progresses. The
utilization of glucose was monitored across the spectrum
with a number of peaks which are speci® cally assigned
to the glucose molecule.19

Figure 5 shows the ethanol production as glucose de-
pleted during the biotransformations. The apparent stoi-
chiometric ef ® ciency of biotransformation 1 was 83.2%
and of biotransformation 2 was 76.5%.

For the present work, two independent biotransfor-
mations were performed (see above). During the ® rst bio-
transformation 33 spectra and samples were obtained and
for biotransformation 2 there were 45 spectra and sam-
ples. In the second, the last ® ve points were removed
before chemometric analysis as the biotransformation had
reached completion. The ``true’ ’ concentrations for the
glucose and the ethanol used in the PLS modeling were
obtained by using the enzymatic assays described above.

The procedure for extracting the data from the raw
spectra is next described, with the example of a spectrum
(Fig. 6A) taken from the midpoint of biotransformation
2. For the sake of clarity, the abscissa in these plots
shows the actual wavenumbers; the analysis is, however,
carried out with the use of data points. One wavenumber
(cm 2 1) is equivalent to 1.17 points, and the ® rst point
represents a wavenumber of 100 cm 2 1.

The three obvious `̀ spikes’ ’ in the spectrum at ; 250,
600, and 2700 cm 2 1 are due to the interaction of cosmic
rays with the sensitive CCD detector. These cosmic rays
must ® rst be removed. This is simply a process of ® nding
large peaks in the spectra which have a width less than
or equal to a predetermined maximum (seven data points

is usually suf ® cient). A straight line is drawn between the
start and end points (Fig. 6B).

Following the removal of cosmic rays, the spectra are
smoothed. Of the most common available methods,65,66

we have here used a Fourier transform method and a
moving average method. With the Fourier transform
method (in which spectra are Fourier transformed, high-
frequency `̀ noise’ ’ bins removed, and the residue inverse
Fourier transformed), it is often found that some `̀ ring-
ing’ ’ occurs, causing extraneous peaks to be added to the
spectrum. Through experimentation, we have found a
moving average generally to be better for denoising these
spectra. The moving average is carried out on the ® rst
derivative of the spectrum, in an attempt to reduce the
¯ attening off of peaks, which is otherwise the main prob-
lem with a moving average. A width of 15 has been
found generally to be best. This is applied by weighting
the points used to calculate the average by their distance
from the center point, using a sine function. Therefore,
points nearest the center point are given a greater weight-
ing. The weighting therefore for a moving average of
width 15 is as given in Table I. The resulting spectrum
is shown in Fig. 6C.

To ensure that all the spectra are of the same magni-
tude, and to correct for any variations of excitation in-
tensity for example, it is necessary to normalize the spec-
tra. This is done by setting the lowest point to 0 and the
highest to 1000. It is possible to use the highest point as
a standard in this case. The result of the normalization is
shown in Fig. 6D.

The next step is to remove the baseline. Because of
the nature of the Raman baseline, it is possible to
`̀ scoop’ ’ it out, and indeed this has proved to be the most
effective baseline removal method of all those tried
(which included using a Fourier transform method). Note
that this method is unable reliably to pick the peak at
1580 data points (1450 wavenumbers), which is due to
the C±O±H bond vibration of ethanol;67 an alternative
method would have to be used if it was desired to include
this peak in the analysis.
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FIG. 5. Time dependence of the biotransformation of glucose (N) to ethanol (c) by yeast. (A) Biotransformation 1; (B) biotransformation 2.
Measurements were performed enzymatically.

The scoop method, devised herein for this analysis,
works by looking ahead a predetermined number of
points and ® nding the lowest point within that range rel-
ative to the distance from the point. It is therefore anal-
ogous to placing a ruler vertically so that it pivots on the
point, and turning it anticlockwise until a point further
along the ruler (to the right) ® rst encounters a point on
the spectrum within the speci ® ed range. A straight line
is then drawn between the pivotal point and the point of
contact. This then forms the baseline between these
points. The number of points to look ahead that has been
used here is 275 for points 700 to 1400 (wavenumber
697 to 1296), and 80 elsewhere. The ® rst 100 points
(wavenumbers 100 to 185) are ignored (equated to the
baseline), since they are not important, and the scoop

method would not work due to the negative curve in this
region.

We note that, although a curve ® t could be used instead
of a straight line, it is unnecessarily complicated and in-
troduces more problemsÐ principally how to determine
the shape of the curve in such a way as to be consistent
for all spectra.

The spectrum of Fig. 6D is shown here in Fig. 6E as
a dotted line, along with the baseline. The residual,
`̀ true’ ’ Raman spectrum is therefore simply a subtraction
of the baseline from the smoothed, normalized spectrum,
as shown in Fig. 6F.

Now we are in a position to extract the data from the
`̀ true’ ’ , smoothed Raman spectrum which has been cor-
rected for baseline and ¯ uorescence. From the litera-
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FIG. 6. Processing of the Raman data, illustrated using the spectrum of fermentation 2 at approximately half way, containing 494 mM ethanol and
252 mM glucose. (A) Raw data; (B) raw data with cosmic rays removed; (C) reconstructed spectrum of B after denoising using a moving average
® lter of width 15 on the ® rst derivative; (D) spectrum of C normalized by setting the quartz peak (highest point) to 1000 and scaling the remainder
of the spectrum accordingly; (E) ® nding the baseline in the spectrum, using the scoop method; (F) ® nal Raman spectrum with the baseline removed.
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TABLE I. Weighting for a moving average with width of 15 in the
denoising process.

From center 7 6 5 4 3 2 1 0

Weighting 0.195 0.383 0.556 0.707 0.832 0.924 0.981 1

ture,19,35 the peaks corresponding to ethanol and glucose
in the spectra are known, and through examining the
spectra, it was possible to establish the important peaks.
The following peaks were chosen (in wavenumbers):

Glucose peaks: 420, 437, 509, 536, 840, 850, 910, 1056,
1118, 1347 cm 2 1.
Ethanol peaks: 488, 874, 1080, 2925 cm 2 1.
Unknown peaks: 1038, 2873, 2971 cm 2 1.

A peak is said to be present if there is a maximum
within 10 points of these values. The height h of the peak
is the height of this maximum point. The peak start and
end are the minima on either side of this peak. Where
the spectrum has a small peak but becomes lower than
the ® rst minimum found within seven points, this is ig-
nored and included within the peak. This approach helps
to overcome any remaining noise in the data. The width
w is the difference between these two points. The position
p of the peak is half way between the start and end of
the peak. The area a is the sum of the height of all the
points between the start and the end, inclusive. The top
t is the position of the top of the peak (where the height
was measured) and the skewness s is t 2 p. These values
are henceforth collectively referred to as the hwpast of
the peak. Where there is no peak within 10 points of the
speci® ed point, h is set to the height at the speci ® ed point;
w, a, and s are set to 0; and p and t are set to the value
of the speci ® ed point. This is necessary so as not to skew
the statistical methods to be applied to the data unduly.

The hwpast values of the 17 peaks for all the spectra
were then imported into Microsoft Excel, to be processed
by the AVSM suite of Excel macros. These have been
previously described in Ref. 60, where they were used for
the classi ® cation of olive oil variety and region, but have
since been updated for quanti® cation data. They perform
variable selection, using (in this case) either Mutual In-
formation68,69 or simple (product moment) correlation70 on
each variable against the measured concentration from the
chemical assay. Mutual Information is particularly useful
where the data are nonlinear, and nonlinear methods of
analysis are to be used (e.g., arti® cial neural networks).
Since we deal here with PLS (which is linear), and do not
suspect a great degree of nonlinearity in the data in any
case, the results shown here have used product moment
correlation for variable selection. With the use of statistical
programs written in-house (see Refs. 61 and 62), which
include PCR, MLR, and standard backpropagation neural
networks as well as the PLS used here, the Excel macros
establish the best number of variables to use for a predic-
tion.

The data are divided into three sets: a training set,
which is used to form the model; a query set, which in
conjunction with the training set is used to establish the
optimum number of factors for the model; and an inde-
pendent validation set (sometimes called the test set), un-
seen by the model creation program at any time, which
is used to create a prediction. An independent validation

set enables us to help ensure that the model created is
valid; that is, that it is not modeling some chance trend
in the data. The data are divided into their data sets sim-
ply by placing the ® rst sample (that is, the ® rst measure-
ment of the fermentation) in the training set, the second
in the query set, the third in the validation set, and so
on, ensuring that the last point is in the training set (to
avoid extrapolation of models).

Although in practice the validation set has been used
to determine the order of the variables, this arrangement
does not appear to make a substantial difference to the
order of selection.

The data having been divided into appropriate sets, the
AVSM macros are run to produce the results. A PLS
prediction71 of the concentration of ethanol, using three
data sets as described earlier, gave a best prediction of
the query set using just three variables; these were the
height of peaks 11 (874 cm 2 1, ethanol), 9 (1118 cm 2 1,
glucose), and 8 (1056 cm 2 1, glucose) in that order. The
model used one factor (Fig. 7A). Similarly (Fig. 7B),
with the same variables and one factor, a successful pre-
diction of the amount of glucose was obtained. The per-
centage root mean squared error (RMSE) is expressed as
a percentage of the total range of the data, so, in Figs. 7
and 8 the actual RMSE can be obtained thus:

(max(ethanol) 2 min(ethanol)) 3 %RMSE

100

(785.9 2 0) 3 3.892
5 5 30.587.

100

Having shown that it is possible to produce very good
predictions of the stage of a fermentation using data from
the same fermentation for creating a model, the next step
is to try to predict a second fermentation72 using the ® rst
biotransformation for the training and query sets.

The macros, using PLS, carried out on the query data,
showed that eight variables (correlation selected) were
best as judged by the query set: h11 (906, ethanol), h9
(1192, glucose), a9, a11, h3 (479, glucose), h8 (1120,
glucose), h7 (949, glucose), and h3, although the results
(Fig. 8) are inevitably not quite as good as was a predic-
tion of ethanol given training, query and, validation data
from the same biotransformation. Nonetheless, it is clear
from these results that, with suf ® cient data, predictions
of the progress of a biotransformation are possible using
a model formed only on data from a previous biotrans-
formation. This is testament to the reproducibility both
of our methods and of the chemical analysis of the dis-
persive Raman spectroscope.

For comparison, PLS was also carried out on the spec-
tra for biotransformation 2 on the concentration of etha-
nol at different stages in the processing (see Table II).

It may be noted that Table II shows an increase in the
error at the stage of baseline removal. This is to be ex-
pected, because it is almost impossible to remove a base-
line without some information being lost. However, with-
out baseline removal of some form, the subsequent steps
of calculating peak dimensions would not be possible. It
is also known (from previous unpublished observations)
that variations in the baseline are often due to effects such
as changes in the optical density (turbidity) of the sample
or of ¯ uorescence, which may be related to the stage of
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FIG. 7. PLS prediction of concentrations of ethanol and glucose during
biotransformation 2. Best three variables (from 102), selected by cor-
relation. (A) Ethanol; percentage RMSE 3.89 (validation set 4.48; query
set 2.64). (B) Glucose; percentage RMSE 4.80 (validation set 3.72,
query set 3.21).

FIG. 8. Prediction of concentration of ethanol in biotransformation 2
from the model formed on biotransformation 1. Best eight variables,
correlation selected. Percentage RMSE 4.58 (validation set 5.24, quer y
set 3.72).

TABLE II. The error in the predictions of the data sets at various
stages of the data processing, showing that the chemometric meth-
ods applied are essential for optimal results.

All data Query set
Validation

set

Raw spectra
Cosmic and smoothed
Normalized

9.972
7.162
6.114

12.473
8.492
6.688

12.243
9.183
8.364

Eleven bins from each peak,
best 14 variables 3.573 4.003 2.896

Baseline removed 7.972 9.626 10.124
Eleven bins, baseline removed,

best 62 variables 3.206 3.153 4.39
All hwpast variables
Best 3 hwpast variables

5.663
3.892

6.817
2.641

7.123
4.478

the biotransformation but are not therefore re¯ ected in
the peak dimensions. Such variations should be ignored
by a robust modeling system, as in the present case.

It has been suggested that the accuracy of the peak
dimension measurements may yield results inferior to that
which may be obtained through simply using regions of
the spectra around the peaks. With 11 bins taken from
around each individual peak (from 5 below to 5 above)
it has been shown that there is little difference. However,
in spectra where the position of the top of the peak is
not consistent (this is apparently not the case here), such

a method would be severely ¯ awed. It must also be noted
that many more variables were required to obtain the best
results by using bins alone, which must count consider-
ably against it. Table II shows the results obtained by
using actual spectral values, both before and after base-
line removal.

CONCLUSION

The present work has demonstrated that Raman spec-
troscopy has properties that make it an ideal method for
following chemical changes occurring during biotrans-
formations in a nondestructive and noninvasive manner.
The dispersive Raman spectrometer used in the present
work is stable and robust, as observed from the highly
reproducible spectra and data. The 780 nm diode laser
has also proved to be an effective wavelength for sup-
pressing the overwhelming in¯ uence of ¯ uorescence
from the yeast cells. It is possible that excitation at 830
nm (presently under investigation) will yield even further
reduced ¯ uorescence. The collection times for the spectra
were relatively long, and thus the use of a higher intensity
laser with shorter collection times to eliminate any sam-
ple heating effects is also presently under investigation.
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The amount of data produced by Raman spectroscopy
in terms of data points is huge. To analyze all these points
would mean that most of the data under analysis are not
relevant. The distinguishing features in Raman spectra
are the positions and size of peaks. It is therefore nec-
essary to measure only the parameters for the peaks that
are known, or observed, to be of signi ® cance for the sys-
tem under examination. Not only does this approach
speed up the data analysis, but it means that the models
are not unduly affected by noise, which leads to more
parsimonious models73 and therefore better predictive
ability. If there were no noise in the data, one peak would
be able to predict perfectly; the ethanol peak, being the
largest and less subject to measurement errors, would be
chosen. However, because of noise and errors, a number
of peaks are required. The methods described here have
yielded results that could not have been achieved without
the use of chemometric techniques.

If the number of photons reaching the CCD per unit
of metabolite concentration varies greatly with time, then
errors will inevitably be introduced into the predictions.
Thus, as with many spectroscopic methods, normalization
to a peak of reproducible height is important, and has
been found to improve our results, although great varia-
tions in photon numbers have not been experienced in
the experiments presented here.

While others33,34,51 have shown that the amount of glu-
cose in aqueous solution can be measured by using Ra-
man spectroscopy, this is, to our knowledge, the ® rst on-
line measurement of such a biotransformation. Indeed,
the residual errors in the results presented here are suf-
® ciently close to the expected experimental error to sug-
gest that signi ® cant further improvement in precision
cannot easily be expected.
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