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“Actually, the orgy of fact extraction in which every-
body is currently engaged has, like most consumer
economies, accumulated a vast debt. This is a debt of
theory, and some of us are soon going to have an
exciting time paying it back—with interest, I hope.”

—Sydney Brenner, In Theory, 1997

As with every other organism whose genome has
been sequenced (Hinton, 1997; Bork et al., 1998), a
chief finding in plants (Bevan et al., 1999; Somerville
and Somerville, 1999) is the presence of a vast num-
ber of genes (many with no relatives in the databases)
whose existence, let alone function, had previously
gone unrecorded. The importance of finding the
function of these genes has led to what amounts to a
complete reversal of conventional scientific strategies
(Brent, 1999, 2000; Kell and Mendes, 2000), in which
one would start with a phenotype (e.g. flower color)
and devise experiments that would lead one to the
genes whose products were responsible for produc-
ing that phenotype. Now, the dawn of the post-
genomic era has (consequently) spawned major com-
mercial and academic programs in which plants with
more or less defined genotypes (e.g. knockouts; Mar-
tienssen, 1998) are being subjected to parallel and
high-throughput analyses at the level of the tran-
scriptome (Ruan et al., 1998; Schaffer et al., 2000;
Schenk et al., 2000), the proteome (Santoni et al.,
1998; Jacobs et al., 2000; Prime et al., 2000; van Wijk,
2000), the metabolome (Oliver et al., 1998; Trethewey
et al., 1999; Fiehn et al., 2000; Johnson et al., 2000; Kell
and Mendes, 2000; Raamsdonk et al., 2001; Tre-
thewey, 2001), and the phenotype (Rieger et al.,
1999), which will provide the wherewithal to assess
the contribution of different genes through the activ-
ities of their products to the overall functioning of
cells and organisms. The problem at hand is then
how best to exploit the high-dimensional data floods
so generated (e.g. with thousands of gene products or
metabolites) for providing the comparatively low-
dimensional explanations that we require at higher
levels of organization (this gene is or is not impor-
tant, for example, in cold tolerance).

MULTIVARIATE DATA ANALYSIS AND
MACHINE LEARNING

This highly multivariate data analysis problem is
most easily thought of in relation to Figure 1A (Kell
and King, 2000), which depicts a familiar view in the
style of a spreadsheet or database table (Fig. 1A), in
which the samples of interest are represented in dif-
ferent rows and a set of their properties in columns.
Some of the columns might represent, for example,
expression profiling data (“explanatory variables” or
“x-data” in the jargon) that are going to be the inputs,
whereas the functional or other classes of interest,
which are still variables associated with the samples
(“dependent variables” or “y-data”), are thus repre-
sented by a subset of the columns. The game then is
to use the values of the input (x) variables to predict
the appropriate classes of interest (the appropriate
value of the y variable). Thus, Figure 1B equivalently
depicts the problem as a set of multivariate inputs
which may be transformed, via a set of mathematical
transformations, into a series of outputs (possibly
just one), such that application of the data vector on
the left leads to the correct classification of the object
from which the data were generated on the right side
of the transformation.

In machine learning, it is normal to distinguish
methods that use only the x-data (unsupervised
methods) from supervised learning methods, which
are trained using both the x-data and the y-data
(Duda and Hart, 1973; Jain and Dubes, 1988; Ther-
rien, 1989; Rich and Knight, 1991; Weiss and Ku-
likowski, 1991; Fukunaga, 1992; Michie et al., 1994;
Bishop, 1995; Livingstone, 1995; Ripley, 1996; Mitch-
ell, 1997). A vast pantheon of examples shows that
supervised methods are always much more powerful
than are unsupervised ones (such as the widely used
Principal Components Analysis and clustering meth-
ods), because they concentrate on the variance that
matters for the question of interest. In an example of
our own concerning the exploitation of mass spec-
trometry in the assessment of the adulteration of
extra virgin olive oils (Goodacre et al., 1992, 1993),
most of the variance in the spectra was found to be
due to the cultivar of olive, and not whether the oils
were adulterated, such that unsupervised methods
were fine for discriminating cultivars (see also Bian-
chi et al., 2001) but were useless for detecting adul-
teration. By contrast, a supervised method (in that
case a fully interconnected backpropagation-type
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neural network (Wasserman, 1989; Hertz et al., 1991;
Bishop, 1995; Ripley, 1996) trained on the same data
succeeded in classifying all the oils in an unseen
(double blind) test set of data (Goodacre et al., 1992;
Goodacre et al., 1993).

The generalized problem so described parallels
rather clearly the numerous DNA microarray exper-
iments that have been performed and which are nor-
mally analyzed purely in terms of co-expression or
clustering (Eisen et al., 1998; Tamayo et al., 1999;
Burke, 2000; Getz et al., 2000), a strictly unsupervised
method. Supervised methods are again much more
appropriate here, though each has strengths and
weaknesses (Brown et al., 1999; Alizadeh et al., 2000;

Gilbert et al., 2000; Hastie et al., 2000), and using
supervised learning methods to classify individual
samples from microarray or other data in terms of a
gene function or other type of class does require that
one has a sensible class structure in the first place
(Kell and King, 2000).

It should be noted that many general approaches
and methods exist for supervised learning (e.g. neu-
ral, statistical, rule-based, symbolic, and so on; Rich
and Knight, 1991; Weiss and Kulikowski, 1991;
Hutchinson, 1994; Michie et al., 1994; Michalewicz
and Fogel, 2000). However, all machine learning
methods have their strengths and weaknesses, and
there is provably no universal method that works
best for all datasets (no free lunch; Radcliffe and
Surry, 1995; Wolpert and Macready, 1997). Conse-
quently, the method one may choose is governed by
one’s individual preferences regarding features such
as speed, accuracy, mathematical rigor, and robust-
ness, and by the comprehensibility of the model
formed. Any claims for the superiority of one method
over another consequently should be seen in this
light. In our view (Kell and Sonnleitner, 1995; Davey
and Kell, 1996; Alsberg et al., 1997; Goodacre et al.,
2000), the best methods not only give one the correct
answer, but give an explanation of what, in biological
terms, is the basis for that answer. This depends on
identifying a subset of the variables with high ex-
planatory power.

Support vector machines (SVMs; Cortes and Vap-
nik, 1995; Scholkopf et al., 1997; Burges, 1998; Cris-
tianini and Shawe-Taylor, 2000; Vapnik and
Chapelle, 2000) are an approach that has generated
much recent interest, most pertinently here regarding
the analysis of expression profiling data (Brown et
al., 1999, 2000). Like all approaches, SVMs too have
their strengths and weaknesses. The strengths in-
clude the existence of formal theory (see above cita-
tions) and a rapid speed of convergence. Against this,
they normally give equal weighting to every vari-
able, so unless one has reasons to remove some of the
variables, those that contribute only noise will tend
to dominate if they are present in large numbers. This
is certainly the case in microarray experiments (Wit-
tes and Friedman, 1999), where, for example, an SVM
failed to learn the helix-turn-helix class (Brown et al.,
1999, 2000), whereas other methods that select only
subsets of the variables succeeded on the same data
(Gilbert et al., 2000; Delneri et al., 2001). Second, like
neural nets (Mozer and Smolensky, 1989; Andrews et
al., 1995; Tickle et al., 1998; Alexander and Mozer,
1999), such methods can have poor explanatory
power (i.e. when you have trained the system and
asked it to classify the test set it will do so,but it will
not straightforwardly tell you which variables are
used). However, as pointed out by a referee, hybrid
methods could prove an interesting approach in
which something like an evolutionary algorithm (see
below) is used to select candidate subsets of variables

Figure 1. Supervised learning of a classical propositional system. A,
The samples are set out to form the rows of a table, while relevant
values (or category membership such as male/female) of their asso-
ciated variables form the columns. Some of the variables are used to
predict the values of other variables. B, In a different but equivalent
representation, the explanatory variables appear on the left and the
dependent variables on the right, and the aim is to produce a
mathematical transformation that uses some or all of the inputs and
classifies the object into the correct class on the right. Such a
classification can also have a numerical value, such as the concen-
tration of a metabolite that cannot be measured directly, the severity
of a disease, and so on.
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for processing through an SVM (compare with
Guyon et al., 2001; Weston et al., 2001) or other
learning method, as has been done using genetic
algorithms for neural network (Broadhurst et al.,
1997) and other statistical data processing analyses
(Horchner and Kalivas, 1995).

A DATA FLOOD DEFENSE SYSTEM

Next, it should be noted that the problem of finding
an adequate model (i.e. a set of mathematical trans-
formations in the sense of Fig. 1B) scales only linearly
with the number of objects but combinatorially with
the number of variables. Thus, the number of models
that either do or do not use a particular variable (let
alone seek to parametrize it) when faced with a
choice of M variables is obviously 2M (a variable is
used or not used, binary 1 or 0). Even for M 5 100,
which is much smaller than the numbers typically
used in microarrays, 2100 > 1030, and the lifetime of
the universe is only approximately 1017 s. Exhaustive
search of such models to find the best model is
clearly computationally intractable. By contrast, if we
state that a model should use just two, three, four, or
five variables out of the 100, the numbers of combi-
nations are, respectively, just 4,950, 161,700,
3,921,225, and 75,287,520. These kinds of numbers are
both (a) much more tractable and (b) likely to lead to
much more intelligible explanations of which vari-
ables (genes/proteins/metabolites) are most impor-
tant to a particular process (stress, flowering time,
and so on) of interest. The rather Zen conclusion is
clearly that we are wise to start by seeking simplicity
in our explanations.

EVOLVING SIMPLE ANSWERS TO COMPLEX
QUESTIONS OF FUNCTIONAL GENOMICS

A particularly useful approach to attacking combi-
natorial optimization problems of this type lies in the
use of the methods of evolutionary computing. In
evolutionary computing (Goldberg, 1989; Michale-
wicz, 1994; Mitchell, 1995; Bäck et al., 1997, 2000a,
2000b; Corne et al., 1999; Zitzler, 1999; Michalewicz
and Fogel, 2000), we have a population of individual
computer programs or algorithms whose output is a
potential solution to a problem (typically a combina-
torial optimization problem). These outputs are
ranked according to their “fitness” (usually their
closeness to the true solution in the dataset they are
given, though other criteria such as simplicity of
explanation may be used as well), and the better-
performing individuals retained. Some of these indi-
viduals/programs/algorithms are then modified,
typically by mutating (changing) them “asexually” or
by recombining parts of them from more than one
parent “sexually,” and the process of generating an
output, evaluating the fitness function, and mutating
and selecting at each generation continued until a

specified stopping criterion is met. (This is usually
the number of generations or the achievement of an
adequately small difference between desired and
true values.)

This may be set out in pseudocode as follows:
1. START by generating a population of individu-

als (computer programs/algorithms)
2. At the end of each generation, EVALUATE the

”fitness” of each individual
3. RANK these individuals and RETAIN a certain

fraction of them with a probability related to their
fitness for one or more purposes

4. CREATE NEW INDIVIDUALS from these par-
ents so as to replenish the population by mutation
(changing an individual parent) or recombination
(between two or more parents)

5. Return to step 2 UNTIL. . .
6. . . .when a suitable criterion (elapsed time,

evolved fitness, generation number) is met, then
STOP.

A particularly interesting subset of evolutionary
computing methods, popularized by John Koza as
genetic programming (GP; Koza, 1992, 1994; Banzhaf
et al., 1998; Langdon, 1998; Koza et al., 1999, 2000),
involves an arrangement in which the rules are ar-
rayed in a tree-like structure that is read from the
bottom and a subset of variables passed through
appropriate operators or functions to provide the out-
put (i.e. fitness). Such so-called parse trees—unlike
conventional computer programs—can be mutated
and recombined to provide variants that remain syn-
tactically correct (Fig. 2). Thus, one can evolve solu-
tions to a complex problem yet produce equations
that are simple and intelligible. These equations are
essentially in the form of rules, in that the best ones
give entirely different outputs for the different inputs
characteristic of examples from particular classes,
and if the classes are encoded as the outputs (say in
binary, 1 or 0 for contribution of a gene to a particular
function), the equations are the rules. (An equivalent
procedure can be used, for example, in spectroscopy
for high-throughput screening, where the output is
continuous and is the concentration of a substance of
interest [Gilbert et al., 1997; Taylor et al., 1998b;
Woodward et al., 1999].) The special power of GP,
which we have found particularly valuable (Gilbert
et al., 1997, 1998, 1999; Jones et al., 1998; Taylor et al.,
1998a, 1998b; Goodacre and Gilbert, 1999; Woodward
et al., 1999; Goodacre et al., 2000; Johnson et al., 2000),
stems from the fact that both the (potentially small
number of) explanatory variables and the functional
form of the relationship between them are evolved
together. As suggested by a referee, and to avoid
confusion, we note that genetic programming differs
significantly from methods such as genetic algo-
rithms. In genetic algorithms, the length of the string
is normally fixed, and what evolves is a parameter-
ization of a given model. In GP, the model itself
evolves too (and while this is normally effected in a
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tree structure, as shown in Fig. 2, linear versions of
GP are also possible; Banzhaf et al., 1998; Gilbert et
al., 2000).

We also mention here that a significant problem,
especially with some of the original flavors of GP, can
be their tendency to bloat, i.e. to continue to grow
branches onto trees even when the contribution of
these branches to fitness is small (Langdon and Poli,
1998), a phenomenon mirroring what may be ob-
served in nature where it is referred to as “Muller’s
ratchet” (Muller, 1964). There are ways around this
however, e.g. by incorporating the desirability for
small trees into the fitness function itself (Goodacre

et al., 2000), and we do not nowadays find this a
problem. Another feature of GPs is that because of
the stochastic way in which they are initiated and
evolve, they are not deterministic. This said, it is
possible to turn such properties to advantage by
running the GP several times, as there is plenty of
evidence that combining or voting among several
independent solutions to a problem can give im-
proved learning (Drucker et al., 1994; Bauer and Ko-
havi, 1999; Dietterich, 2000a, 2000b; Friedman et al.,
2000; King et al., 2000). Finally, all computer-
intensive methods of this type, including those based
on purely multivariate statistical strategies (Martens
and Næs, 1989), have a great many degrees of free-
dom, which require that we provide a careful evalu-
ation with respect to the reality of the solutions found
(Chatfield, 1995).

In our own approach, which we refer to as genomic
computing, we choose to equate the fitness of an
individual, not by a regression-based analysis such
as the root mean square error of prediction or the
percentage of samples classified correctly, but by
using a ranking scheme in which the metric encoding
the quality of the model is analyzed in terms of the
ordering of the samples with respect to their ease of
prediction via the model. We find that this is partic-
ularly good at drawing out the variables that are
most important for the particular problem.

AN EXAMPLE: ANALYSIS OF THE TOBACCO
METABOLOME IN TRANSGENIC PLANTS

As an illustrative example, we set up a transgene
discovery problem in which we measured a series of
metabolites via HPLC and used these as the inputs to
a genetic program designed to find a rule that would
tell from the metabolome data whether the transgene
of interest was present or absent (of course, we could
have sought to encode its activity). The experiment
was also aimed at investigating the biosynthesis and
function of salicylic acid in plant defense by the
expression of a salicylate hydroxylase enzyme to
block accumulation (Bi et al., 1995).

Salicylic acid has been known for more than a
decade to play a key role in defense mechanisms in
many plants and is associated specifically with the
hypersensitive response and the phenomenon of sys-
temic acquired resistance (Mur et al., 1996, 2000;
Draper, 1997; Mur et al., 1997). Tobacco (Nicotiana
tabaccum) has provided a model organism for the
study of salicylate biology in plant defense, but de-
spite a considerable amount of research, little is
known regarding its synthesis, catabolism, and mode
of action. A bacterial gene encoding the enzyme sa-
licylate hydroxylase (SH-L) expressed from the cau-
liflower mosaic virus 35S promoter has provided a
useful tool to block salicylic acid accumulation in
transgenic tobacco (Bi et al., 1995; Mur et al., 1996,
1997; Darby et al., 2000). Six-week-old transgenic

Figure 2. A, Parse-tree representation of an equation which takes
some of the variables as the input and, by reading from the lowest
leaves of the tree, produces an output at the top, which is clearly
equivalent to the equation given on the right. Also shown are car-
toons of how mutation (B) and recombination (C) can be effected to
produce equations (rules) with different properties while preserving a
syntactically logical structure.
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tobacco plants (35S-SH-L) and control plants (Sam-
sum NN) were inoculated with tobacco mosaic virus
(TMV) at a temperature (32°C) non-permissive for
the hypersensitive response (Mur et al., 1997; Roberts
et al., 1999). Under these conditions, the TMV can
replicate and spread without inducing lesion forma-
tion. Following a shift to a permissive temperature
(24°C), hypersensitive response is induced synchro-
nously with cell death visible after 8 h. Leaf tissue
from TMV-inoculated, temperature-shifted plants
was sampled at different time points (0–24 h), flash
frozen in liquid N2, extracted in 90% (v/v) methanol,
dried, partitioned with dichloromethane, and then
analyzed by HPLC using standard procedures (Bi et
al., 1995). A total of 48 peaks from the HPLC traces
were digitized and integrated using standard soft-
ware provided with the instrument, and a total of 36
samples were studied.

The metabolite peak values were used as inputs to
the genomic computing software Gmax-bio (Aber
Genomic Computing, Aberystwyth, UK), with the
presence or absence of SH-L in the genotype being
encoded 1 or 0.

One of many rules which evolved could be written
as follows:

x1 5 V24
x2 5 V37

If x1 ,. 0 Then x1 5 x2/x1 Else x1 5 1
x1 5 Sqr(Abs(x1))

x2 5 V24
x3 5 V42

x2 5 x2 1 x3
x3 5 V30

If x2 ,. 0 Then x2 5 x3/x2 Else x2 5 1
x2 5 Sqr(Abs(x2))

x1 5 x1 1 x2
SCORE 5 x1

PRBBLITY 5 1/(1 1 Exp[2{28.046777 1 SCORE *
1.872833}])

This rule has an accuracy of more than 95% and is
shown in tree form in Figure 3A. A power of genomic
computing is that it ranks variables in order of their
utility in successful rules. The top three variables are
peaks 24, 30, and 42, and peak 24 is indeed salicylate.
The low intrinsic dimensionality of this problem thus
allows us to visualize the salient features of the ex-
periment in a straightforward way, as illustrated in
Figure 3B.

CONCLUSION

Many modern “omics” technologies are producing
highly multivariate data at unprecedented rates.
Only modern machine learning methods can turn
these data into knowledge. Genomic computing pro-
vides an approach that can effect this desirable trans-
formation and provide simple rules that map back
onto the variables measured in the real world and
thus have high explanatory power.

Figure 3. A rule derived from genomic computing for the presence of
a specific transgene (salicylate hydroxylase) in tobacco. A, Tree
illustrating the rule. B, Plot of the data using the three variables
identified as most significant. Presence of SH-L is encoded by the
symbol (M, none; F, present). Time after shift (0, 3, 6, 9, 12, and
24 h) is encoded by size: F27 (abscissa) 5 variable 24, F33 (ordi-
nate) 5 variable 30, and F45 (coming out of page) is variable 42. The
latest time points have low values for variable 24 but large values for
variable 23 (data not shown). Note that the problem is apparently not
linearly separable. The Gmax-bio software (Aber Genomic Comput-
ing) was used with the following default parameters: population size,
1,000; maximum program length, 44 nodes; fitness, based on tour-
nament selection/Gmax(v); crossover operator used 80% of the time;
and of the mutations, terminals were selected 20% of the time.
Operators used were the default numeric (0.1, 1, 3, 5, and Rand) and
arithmetic (1, 2, /, and *) operators plus square root, log, tanh, ,,
AND, OR, or IfT (this latter operator takes three inputs and if the
first Þ 0 then it returns the second, else the third). The derivation of
this rule required 56 generations and approximately 2 min on a
standard 750-MHz Pentium III (Intel) personal computer.
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