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Many technologies have been developed to help explain the
function of genes discovered by systematic genome sequencing.
At present, transcriptome and proteome studies dominate large-
scale functional analysis strategies. Yet the metabolome,
because it is ‘downstream’, should show greater effects of
genetic or physiological changes and thus should be much
closer to the phenotype of the organism. We earlier presented a
functional analysis strategy that used metabolic fingerprinting
to reveal the phenotype of silent mutations of yeast genes1.
However, this is difficult to scale up for high-throughput
screening. Here we present an alternative that has the required
throughput (2 min per sample). This ‘metabolic footprinting’
approach recognizes the significance of ‘overflow metabolism’
in appropriate media. Measuring intracellular metabolites is
time-consuming and subject to technical difficulties caused 
by the rapid turnover of intracellular metabolites and the need
to quench metabolism and separate metabolites from the
extracellular space. We therefore focused instead on direct,
noninvasive, mass spectrometric monitoring of extracellular
metabolites in spent culture medium. Metabolic footprinting
can distinguish between different physiological states of wild-
type yeast and between yeast single-gene deletion mutants
even from related areas of metabolism. By using appropriate
clustering and machine learning techniques, the latter 
based on genetic programming2–8, we show that metabolic
footprinting is an effective method to classify ‘unknown’
mutants by genetic defect.

After optimization of electrospray ionization–mass spectrometry
(ESI-MS) parameters for the analysis of yeast minimal medium plus
a metabolite cocktail (see Supplementary Table 1 online), we ini-
tially compared metabolic footprints from different growth phases
of yeast batch culture. Visual inspection of the resulting mass spec-
tra revealed that the metabolic footprint was characteristic of each
specific phase of culture growth (Fig. 1a). Footprints taken early,
during lag and early exponential phase, were comparatively simple,
with clear peaks for many of the exogenously supplied amino acids
visible against the background of the basal medium. The most
marked changes occurred across the transition from exponential to

stationary phase, when the spectra became increasingly complex
with the appearance of numerous small peaks. This implies that the
cells are secreting or excreting metabolites into the culture medium.
At the dilutions we used, and in these media, the normalized spectra
were qualitatively independent of the exact dilution over a broad
range. In particular, no new spectral peaks appeared as samples were
diluted (see Supplementary Fig. 1a,b online). In addition to visual
analysis of the resulting mass spectra, principal components analy-
sis (PCA) was conducted on the preprocessed mass spectral data
(see Methods). As a useful aid to multivariate data visualization,
PCA seeks to rotate the data points into a new coordinate system,
such that the majority of the variance in the data is accounted for in
the directions of a subset of these rotated axes. Hence, plotting the
points in this new coordinate system makes it easier to visualize the
significant effects within the data. In the resulting PCA scores plot
(Fig. 1b), data points are separated along a curve across the first two
principal components (which account for some 98% of the vari-
ance) in a pattern that relates to the time of sampling (growth
phase).

Using direct-injection MS alone, we could not unambiguously
identify unknown peaks in the metabolic footprint. However, it is
important to note that metabolic footprinting was not devised as a
metabolite profiling strategy9, but instead relies on the development
of rules to describe trends in the data that involve only a small num-
ber of the variables (masses)6. This type of pattern recognition
approach10 then allows one to confine identification by tandem MS
to those substances contributing to the rules, thus avoiding the
necessity for time-consuming identification of all metabolites in
first-round analyses.

We next studied the robustness of the method with respect to
variances in conditions that might be anticipated. These included
variations in batches of medium, different inoculum levels and
inoculation from different starter cultures, and the use of filter ster-
ilization as opposed to centrifugation for separating cells from
medium before MS analysis. In addition, we used strains in which
the kanMX deletion cassette had been inserted into the HO mating
locus—a reportedly phenotypically neutral site11,12. We found that,
in all cases, equivalent data points clustered together in a robust and
reproducible manner; representative PCA plots are shown (Fig. 2).
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Yeast single-gene deletants with defects in amino acid metabolism
(see Supplementary Table 2 online) generated by the EUROFAN
project (that is, carrying the kanMX resistance cassette in place of the
target open reading frame) were compared. Wild-type yeast grown on
footprinting medium in batch culture exhausts available glucose
between 12 and 14 h after inoculation, at which time the cell density,
as measured by optical density, is sufficiently great to inhibit growth
by respiration of the ethanol formed earlier, and optical density sub-
sequently remains constant for many hours (Fig. 1). Consequently,
24 h was chosen as both a biologically and technically convenient time
for taking samples. Microtiter-plate yeast cultures of deletant strains
were set up, and 24-h samples were processed and analyzed (see
Methods). PCA conducted on the data gave good groupings of bio-
logical (culture) replicates (data not shown) but was not otherwise
very informative. Consequently, we applied discriminant function
analysis (DFA), a supervised technique that allows groups in the data
to be defined1. Groups were assigned simply on the basis of (biologi-
cal) replicate number, so that the analysis was not biased by precon-
ceived notions of how the footprint data should group according to
our knowledge of the respective metabolic defect. By defining the
groups in this way, one is essentially informing the model that each
strain is different and thereby encouraging it to preserve those differ-
ences. Consequently, when strains do cluster together, this demon-
strates the presence of a real underlying biological relationship. In
addition, cross-validation of the DFA model was done (see
Supplementary Fig. 2 online). Each strain forms a distinct cluster,
with the exception of ho∆, which clusters together with the wild type.
This supports earlier conclusions11 from competition experiments in
chemostat culture that the HO mating-type locus was a selectively
neutral site for deletion cassette marker insertion and that the
ho::kanMX strain would therefore prove a suitable reference for func-
tional analysis of EUROFAN deletants.

The EUROFAN systematic gene deletion project generated MATa
and MATα haploid as well as homozygous and heterozygous diploid
single-gene deletants for the purposes of large-scale functional analy-
sis. Clearly, for essential genes, only heterozygous diploids are viable,
so it was important to establish whether mutants could be distin-
guished on the basis of their metabolic footprints regardless of their
mating type. Footprints of MATa and MATα haploids and heterozy-
gous diploid strains of three different gene deletion mutants (strains 1,
3 and 5; Supplementary Table 2) plus wild type were compared. Data
were processed and analyzed as above. Replicates of the same gene
deletion (that is, all three mating types) were assigned to the same DFA
class. Mutants in genes from even nominally closely related areas of
metabolism (in this case, amino acid biosynthesis) may be distin-
guished on the basis of their footprints, regardless of their mating type
(see Supplementary Fig. 3 online).

A common strategy in functional genomics is to carry out expres-
sion profiling on a series of strains of known genotype and use the pat-
terns to determine the ‘closeness’ to these expression profiles of genes
of ‘unknown’ function. Such a strategy lies behind the FANCY
(Functional ANalysis by Co-response in Yeast) method used previ-
ously for metabolic fingerprinting1, and when calibrated in this way is
known as ‘supervised learning’10,13,14. To demonstrate the potential
application of metabolic footprinting as a ‘guilt-by-association’15

functional genomics strategy, we compared 24-h footprints from
microtiter-plate cultures of 19 different deletion mutants with defects
in a broad range of metabolic categories. Strain 18 (which carries a
deletion in ROX1, a heme-dependent transcriptional repressor of
hypoxic genes) was very slow growing (see Supplementary Fig. 4
online) and had not reached stationary phase by the time of sampling;
it was consequently omitted from further analyses. Two sets of very
similar pairs of enzyme deletants were included in the strain set,
including the pfk26∆ and pfk27∆ strains studied earlier1, so that we

Figure 1  Metabolic footprinting of Saccharomyces cerevisiae. Cultures were grown on minimal medium supplemented with a metabolite cocktail
(Supplementary Table 1 online). Samples were removed from batch culture throughout the fermentation and prepared for mass spectral analysis (positive
ionization, only m/z 65–300 displayed) as described in the text. TOF, time of flight. (a) Representative spectra. (b) Principal components analysis (PCA) of
the data in a.
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could determine whether simple DFA-based clustering of metabolic
footprints would serve to identify the ‘unknowns’ correctly. Footprint
data from strains harboring the nit3 and pfk27 deletions clustered
closely together with strains carrying deletions in the related genes nit2
and pfk26 (Fig. 3a,b). The cluster analysis relies on using just the most
significant discriminant functions for its display in this way, and this
conceals some of the complexity. To this end, we also carried out an
agglomerative hierarchical cluster analysis (HCA; ref. 1) on the basis of
all the discriminant functions used in the model (Fig. 3c). This shows
clearly that the nit and pfk mutants do indeed group most closely with
each other, and that in terms of the overall variance in the data in this
figure these genotypes were well distributed, with the nit knockouts
located fairly near the center of the dendrogram and the pfk knockouts
near the edge in this multidimensional space (Fig. 3c). The dendro-
grams are based on data from all the samples and, as would be
expected, were consequently little affected by removal of individual
genotypes from the analysis (data not shown). In addition, the HCA
shows that cki1∆ and faa3∆ knockouts group most closely with the
wild-type ho∆. Note that they are indistinguishable from it in the two-
dimensional DFA plot of Figure 3b. This is reasonable, because there is
almost certainly redundancy here—that is, other related genes with
the same activities are present to provide equivalent functionality. In
addition to CKI1 (YLR133W, specifying choline kinase), there is an
ethanolamine kinase gene EKI1 (YDR147W) whose product shows
great similarity to choline kinase as determined from the MIPS data-
base (http://mips.gsf.de/proj/yeast/CYGD/db/index.html). The prod-
uct of FAA3 (YIL009W) (acyl CoA synthase) is 100-fold lower in
activity than is the product of FAA1 (YOR317W). FAA2 (YER015W)
and FAA4 (YMR246W) are also closely related and probably arose
from gene duplication of FAA1; indeed the Faa4 protein has 78% iden-
tity to Faa3p and also has this acyl CoA synthase activity
(http://mips.gsf.de/proj/yeast/CYGD/db/index.html). This provides a
useful control experiment.

Although the DFA strategy was highly successful, it was not very
informative as to which masses were important in the discrimination

of the mutant classes. Rule-based methods
(for example, refs. 14,16,17) are much more
descriptive but can be less accurate18. We
therefore used a variant of genetic program-
ming (gmax-bio; Aber Genomic Computing)
to evolve a rule that could be used to give a
simple explanation of what best explained
the differences between the classes of inter-
est. In the case of nitrilase, trained as in
Figure 3, the rule “IF normalized m/z_201 >
0.00126 THEN mutant = nitrilase–” cor-
rectly identified all examples in training, val-
idation and test sets with no false positives.

The continuing need for methods to ana-
lyze complex biological systems with high
throughput and high information content
has led many researchers to measure expres-
sion profiles at the level of the metabolome
or ‘metabolic fingerprint’. We have here
demonstrated that the metabolic foot-
print—the quota of low-molecular-weight
metabolites present in the extracellular
medium—is rich in biochemical informa-
tion, can be determined rapidly by direct-
injection MS, differs reproducibly between
strains and mutant types, and is thus a suit-

able method for the purposes of functional genomics. Specific
advantages of footprinting over fingerprinting include its speed, ease
of performance, the ability to automate it and the opportunity—by
identifying the metabolites involved—to establish the biochemical
basis for a defect. It is obvious that other spectrometric techniques
might be used as easily as MS, and that the formulation of the culture
medium might be varied to steer the analysis toward particular func-
tional domains. Finally, because gene knockouts can be discrimi-
nated reproducibly, it is reasonable that the same strategy might be
used in assays of the mode of action of drugs19 or in the assessment
of cytotoxicity20.

METHODS
Yeast strains. All method development was carried out with the wild-type
diploid strain BY4743 (MATa/MATα ura3∆0/ura3∆0 leu2∆0/leu2∆0
his3∆1/his3∆1 +/lys2∆0 met15∆0/+). Later comparisons with reference strains
carrying the kanMX resistance cassette (conferring resistance to geneticin
(G418)) were done with both homozygous and heterozygous BY4743
ho::kanMX. Experiments with EUROFAN mutants were done with BY4741
MATa haploid (ura3∆0 leu2∆0 his3∆1 met15∆0), in which single genes of inter-
est had been replaced with the kanMX deletion cassette. Yeast cells were grown
in synthetic defined minimal medium (0.67% Yeast Nitrogen Base without
Amino Acids (Difco) (Supplementary Table 1 online), 2% dextrose) supple-
mented with a metabolite cocktail of amino acids, bases and organic acids, all at
a final concentration of 1 mM.

Flask culture. Batch cultures of 50 ml were inoculated with 500-µl washed
inoculum from 5-ml starter cultures and grown in 250-ml flasks in a rotary
shaker at 30 °C, 200 rpm. Typically, cells were counter in a hemocytometer after
washing to ensure that cultures were inoculated to an initial concentration of
approximately 5 × 105 cells ml–1 (optical density at 600 nm (OD600) ≈ 0.1).

Microtiter plate culture. For larger-scale comparison of metabolism
mutants, microtiter plate batch cultures were used. 100-well Honeycomb II
plates (Labsystems) were filled with 100 µl per well (ten replicate wells per
strain) of yeast cells diluted in fresh medium to a concentration of 5 × 105

cells ml–1 from washed 5-ml starter cultures. Plates were incubated at 30 °C
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Figure 2  PCA plots of metabolic footprint data to illustrate the robustness of the method with respect
to variations that may be expected. (a–d) Experiments were done as described in the legend to Figure 1
with the following variations: different preparations of footprinting medium (a), different sample
preparation methods (centrifugation versus filter sterilization; b), inoculation from different starter
cultures (c) and the comparison of true wild type with a phenotypically ‘wild-type’ reference strain
carrying the kanMX deletion cassette in a ‘neutral’ site (mating type switching locus, HO; d).
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and shaken continuously at ‘medium’ intensity in an automatic plate reader
(Bioscreen C; Labsystems) which measured OD600 every 20 min for the
duration of the experiment.

Sampling procedure. For flask cultures, 1-ml samples were removed at appro-
priate points during culture growth and either centrifuged (8,000g, 10 min-
utes) or filter-sterilized (through a prerinsed 0.2-µm Acrodisc filter, Gelman)
to remove cells. The supernatant or filtrate was stored in 200-µl aliquots at
–40 °C until later preparation for mass spectral analysis. For microtiter-plate
cultures, 90 µl was removed at appropriate points during culture growth from
each of three to eight adjacent replicate wells per strain and spun down; 85 µl
of supernatant was removed and stored in microtiter plates at –40 °C until
later analysis.

Mass spectrometry and sample preparation. Before mass spectral analysis,
samples were diluted 10-fold in 30:70 (vol/vol) methanol/water. Formic
acid was added to a final concentration of 0.1% (27 mM) to aid in the ion-
ization of amino acids. The samples were degassed and large particles were
removed by microcentrifugation (8,000g, 3–5 min). Mass spectra were
obtained using a Micromass (Manchester, UK) LCT electrospray ionization
time-of-flight mass spectrometer. Collection of mass spectra was auto-
mated by linking the MS to a Waters Alliance 2690 liquid chromatography
(LC) system in which the HPLC column had been replaced with three m of
0.13 mm internal diameter polyetheretherketone (PEEK) tubing21. Diluted,
degassed sample was dispensed in 200-µl aliquots into polypropylene
inserts within HPLC vials (Waters). The vials were placed in the autosam-
pling carousels of the LC system, arranged in order of time of sampling and
replicate number. Using the MassLynx software (Micromass), the system
was set up as if for an automated LC-MS run: 20 µl of sample was automat-
ically injected into the sample loop and carried through the LC system in
30:70 (vol/vol) methanol with 0.1% formic acid at a flow rate of 500 µl/min.
The flow was split between LC and MS such that flow into the MS did not

exceed 50 µl/min. Spectra were collected in posi-
tive ion mode every second (0.9-s scan time, 0.1-s
interscan delay) for 2 min per sample from m/z
65 to 1,000. A single 2-min run was performed
for each sample consecutively, with a 1-min
intersample wash period, then this cycle was
repeated twice more to obtain three machine
replicates per sample. The ESI conditions were as
follows: capillary voltage 3,000 V, source temper-
ature 80 °C, desolvation temperature 120 °C, RF
lens 100 V, sample cone voltage 30 V and extrac-
tion cone voltage 10 V. Sample cone voltage,
which determines the degree of fragmentation of
the analyte, was chosen such that the molecular
ions of a set of amino acids standards (histidine,
leucine, lysine, methionine, tryptophan and
uracil each at 100 µM) gave a clear peak at the
expected m/z without excessive fragmentation.

MS data preprocessing. The mass spectrometric
methods described above produce vast amounts of
potentially useful data. Automated direct-injection
MS, since it uses the LC system for automation,
produces a spectrochromatogram (an array of the
mass spectra versus time) for each sample analyzed
that can typically hold 106 values (depending upon
the MS range and sampling rates). In their native
form, such data are extremely difficult to interpret.
To convert the data into information of chemical or
biological interest, some sort of multivariate statis-
tical analysis must be used. To simplify any subse-
quent statistical analysis, two simple preprocessing
algorithms were applied to the direct-injection
LC-MS spectrochromatograms. Each LC-MS array
was reduced into a single ‘aggregate’ MS vector by

summing the ion counts of a given m/z ratio over the total scan cycle. Then each
MS vector was ‘binned’ to unit m/z ratio (that is, ion counts of fractional m/z
ratios were added to the nearest integer m/z). Thus, after this initial data reduc-
tion, an MS spectrochromatogram with m/z range 65 to 1,000 will be reduced
to a single vector having 935 values.

Multivariate data analysis. Before any multivariate analysis is carried out, each
mass spectral vector is normalized to the total ion count for that vector, so that
different spectra can be compared quantitatively. Once a set of N spectra (with
mass range p) is concatenated into a single matrix (N objects × p variables),
each column of the data set can be optionally normalized to unit variance. This
is done to eliminate bias, in subsequent analysis, toward any column that con-
tains either large absolute values or large variances22. Notably, however, nor-
malization (to unit variance) can sometimes be more detrimental than
helpful. If there are a large number of redundant variables in the data, the
noise affecting such variables is amplified to the same importance as relevant
variables, and this can easily cloud any underlying statistical trends.
Consequently, in this instance scaling was not done before statistical analysis.
To reduce the dimensionality of the mass spectral data, PCA23 was used in the
first stage of analysis (as described in ref. 1). PCA involves projecting the orig-
inal X-matrix (N objects; p variables) onto a d-dimensional subspace using a
projection (or ‘loading’) matrix, thus creating object coordinates (a ‘scores’
matrix) in a new coordinate system. This is achieved by the method known as
singular value decomposition (SVD) of X:

XN×p = UN×dΛ d×dLT
p×d = TN×dLT

p×d

where U is the unweighted (normalized) score matrix and T is the weighted (or
biased) score matrix. L is the loading matrix where the columns of L are known
as eigenvectors or loading principal components. Λ is a diagonal matrix (that is,
all of the off-diagonal elements are equal to 0) containing the square roots of
the first d eigenvalues of the covariance matrix (XTX), where d < N and d < p.

Figure 3 Metabolic footprinting may be used to classify strains on the basis of the deletion they carry.
An experiment was set up in which 24-h microtiter plate footprints of 19 different deletant strains with
a broad range of metabolic defects were compared. (a,b) Footprint data were used to train a DFA model
(20 PCs, 99.6% of the variance). Footprint data from strains harboring the nit3 and pfk27 deletions
clustered closely together with strains carrying deletions in the respective isoenzymes nit2 and pfk26.
Box in a indicates region enlarged in b. DF, discriminant function. (c) Hierarchical cluster analysis of
the data using all 18 DFs. The scale represents the Euclidean distance in DF space.
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The principal components can be considered as a basis set used to project the
original data matrix, X, onto the scores, T. In other words, the new coordinates
are linear combinations of the original variables. For example, the elements of
the first principal component can be represented as:

t11 = x11l11 + x12l21 +…+ x1plp1

t21 = x21l11 + x22l21 +…+ x2plp1

�
tn1 = xn1l11 + x12ln1 +…+ xnplp1

The influence of each of the original variables on the new principal components
(that is, the contents of the loading matrix) is determined on the basis of the max-
imum variance criterion. The first principal component is considered to lie in the
direction describing maximum variance in the original data. Each subsequent
principal component lies in an orthogonal direction of maximum variance that
has not been considered by the former components. The number of principal
components computed for a given data set is up to the analyst. However, usually
as many principal components are calculated as are needed to explain a preset
percentage of the total variance in the original data (the number of principal
components is always less than or equal to the number of original variables).

The second stage of the data analysis involves using DFA to separate the sam-
ples further into groups of replicates using the principal components calculated
in stage 1 as the source data24,25. In contrast to PCA, DFA is a supervised
method that allows groups in the data to be defined. All DFA classes were
defined only according to replicates of the same strain, such that the analysis
was unbiased by prior knowledge of how deletant strains might group accord-
ing to their underlying metabolic defect.

Finally, the Euclidean distance between group centers in DFA space was used
to construct a similarity measure, which was transformed into a dendrogram
using an agglomerative HCA26,27.

Machine learning. We used the genetic programming software gmax-bio (Aber
Genomic Computing). This takes data in the form described above, together
with knowledge of the target class it is desired to learn, and evolves rules which
effect the necessary nonlinear mapping6,28. We used 50% of the examples in the
training set as an internal cross-validation set.

Note: Supplementary information is available on the Nature Biotechnology website.
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