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Functional genomics1,2 seeks to reverse the usual path of genetic
analysis and move from DNA sequence to biological function3, thus
revealing the roles of genes discovered by determining the complete
genome sequence of an organism. The systematic analysis of gene
function is a much more complex and open-ended enterprise than
was the systematic genome sequencing that preceded it. Thus, com-
prehensive methods of analysis are employed at several levels: those
of the genome, transcriptome, proteome, and metabolome4. This
paper reports a conceptual and experimental framework for the elu-
cidation of gene function by analysis of the metabolome.
Metabolomics shares two important advantages with proteomics in
terms of the elucidation of gene function. Both are context-
dependent, that is, the total complement of proteins or metabolites
changes according to the physiological, developmental, or patholog-
ical state of a cell, tissue, organ, or organism. Moreover, unlike mes-
senger RNA (mRNA) molecules (the subject of transcriptome analy-
sis), proteins and metabolites are functional entities within the cell.
A third advantage of metabolomics, which it shares with neither
proteomics nor transcriptomics, is also its greatest difficulty. For
many organisms, there are far fewer metabolites than genes or gene
products. Thus, for the single-celled eukaryote, S. cerevisiae, there
are fewer than 600 low-molecular-weight intermediates5, whereas
there are ∼ 6,000 protein-encoding genes6. However, this apparent
simplicity means that there is no direct relationship between

metabolite and gene in the way that there is for mRNAs and pro-
teins. To overcome this difficulty, we have proposed that the genes of
known function should be exploited in the elucidation of the role of
unstudied genes in an approach that we call FANCY, for functional
analysis by co-responses in yeast7. In this paper, we exemplify the
FANCY approach by studies on S. cerevisiae, and demonstrate that it
may be used to reveal the role of genes that produce no overt pheno-
type when deleted from the yeast genome.

The approach is based on the idea that the growth rate of a deletant
may not be much changed, precisely because the concentrations of
intracellular metabolites have altered so as to compensate for the
effect of the mutation. By implication, mutants that are silent when
scored on the basis of metabolic fluxes (such as growth rate8–10) should
produce a very obvious effect on metabolite concentrations7.
Accordingly, metabolome analysis should reveal a phenotype in many
previously silent mutants. The deletion or overexpression of a single
protein-encoding gene may well cause the concentrations of many
metabolites to change simultaneously. In principle, quantifying the
relative changes of metabolite concentrations caused by a mutation in
a silent gene should make it possible to identify the site of action of
that gene’s product. In this paper, we develop this principle.

Co-response coefficients11,12 are defined as the relative steady-
state response of two variables (e.g., internal metabolite concentra-
tions) to the change of a system parameter (e.g., a mutation in a
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silent gene). Their measurement is central to the FANCY approach.
When a (silent) gene encoding a product of unknown function is
deleted, the resulting co-response coefficient profile will be similar
to that of a strain that is deleted for a (known) gene acting on the
same functional domain of the cell13–15. Should the gene product act
in another part of metabolism, the metabolite concentrations will
change in a different way, or will not change at all, resulting in a dif-
ferent co-response coefficient profile. The problem is that, for genes
of unknown function, the investigator does not know which
metabolites’ co-response coefficients should be measured. Thus,
comprehensive methods of metabolite analysis are required5,7,16,17. In
this paper, we show (for a series of known genes, and using both spe-
cific and comprehensive methods of analysis) that the measurement
of co-response coefficient profiles can reveal the site of action of the
product of a silent S. cerevisiae gene, even when deletion of that gene
has no measurable effect on yeast growth rate.

Results
The test system. We wished to employ an experimental system that
would provide a stringent test of the FANCY approach to the eluci-
dation of gene function by metabolome analysis. To this end, we
chose to examine the effect of the separate deletion of the yeast
PFK26 and PFK27 genes, and show that these two genes are silent in
terms of growth rate phenotype, but that they do have a metabolome
phenotype. Because these metabolome phenotypes can be classified
as similar, this will demonstrate that, had the gene function of
PFK27 been unknown, it could have been found on the basis of the
gene function of PFK26.

PFK26 and PFK27 encode the same enzyme, 6-phosphofructo-
2-kinase (6PF-2-K; EC 2.7.1.105), which catalyzes the conversion of
fructose-6-phosphate (F6P) into fructose-2,6-bisphosphate
(F2,6bP)18–21. This reaction represents a dead-end branch to the
Embden–Meyerhof pathway and, although the flux through this
branch is not expected to be great, F2,6bP is a strong activator of 
6-phosphofructo-1-kinase and an inhibitor of fructose 1,6-bisphos-
phate-1-phosphohydrolase22–24. When both genes are deleted, no 
6PF-2-K activity is detectable. Strains in which only one of the two
genes has been deleted have been reported to show similar growth rates
to wild-type strains on all carbon sources tested21.

Growth competition experiments fail to reveal phenotypes for
the pfk26 and pfk27 deletions. Before proceeding with the metabolite
analyses, we first checked the impact of single pfk26 or pfk27 dele-
tions on growth rate, using a very sensitive technique. Competition
experiments in chemostat culture represent a very sensitive
approach to the measurement of the effects of single-gene deletions.
This method is capable of distinguishing between genes whose dele-
tion has a qualitatively similar, but quantitatively different, pheno-

typic effect9,25. Accordingly, we carried out growth rate competitions
between the FY23.pfk26∆ and FY23.pfk27∆ deletion strains and
their FY23 parent under both glucose-limited aerobic and glucose-
limited anaerobic conditions. The results (shown for FY23.pfk27∆,
only, in Fig. 1) demonstrated that we were unable to detect any selec-
tive impact of either deletion under these two growth conditions.
Therefore, both pfk26∆ and pfk27∆ represent exactly the kind of phe-
notypically silent mutations that we required for a stringent test of
the FANCY approach.

FANCY of relevant metabolites can discriminate between differ-
ent mutant types. As an initial test of the ability of FANCY to reveal
the phenotype (and likely site of action) of apparently silent muta-
tions, we analyzed the concentrations of a number of specific
metabolites in the parent strain FY23 and five mutant strains. The
latter were derived directly from FY23 by the replacement of single
open reading frames (ORFs) with the kanMX marker, using the
short flanking homology (SFH) technique26. In each case, the
kanMX marker was left in the chromosome at the site of the deleted
ORF. Because of this, the mutant FY 23.ho∆ was included as a con-
trol, since the replacement of the HO gene is phenotypically neu-
tral25,27. The other four mutant strains were separately deleted for the
PFK26, PFK27, PET191, and COX5a genes. PET191 organizes the
assembly of the cytochrome oxidase complex, whereas COX5a
encodes a protein subunit of the same complex. Deletion of PET191
results in complete respiratory deficiency, whereas cox5a deletants
retain some 10–15% respiratory activity28 as a result of the activity of
the COX5b paralog. Thus FY23.pet191∆ and FY23.cox5a∆ represent
deletion mutants that are impaired in a domain of energy metabo-
lism different from that affected by the pfk26∆ and pfk27∆ muta-
tions. They have qualitatively similar, but quantitatively different,
impacts on phenotype9.

The intracellular concentrations of a number of glycolytic inter-
mediates and products were measured in the mid-exponential phase
of such a batch culture of each strain (see Experimental Protocol).
Importantly, the pfk26∆ and the pfk27∆ strains were found to have
metabolome phenotypes: they exhibited elevated concentrations of
F6P and, perhaps, pyruvate (Pyr) (Table 2). Moreover, their
ATP/ADP ratios were decreased compared to that of the wild-type
parent strain, FY23. Also the two strains that had a reduced respira-
tory capacity, FY23.pet191∆ and FY23.cox5a∆, now had phenotypes,
showing decreases in ATP/ADP ratio and increases in intracellular
pyruvate concentration. Their intracellular levels of G6P had
decreased, while those of F6P had increased. In spite of this, all six
strains exhibited a similar growth rate on minimal medium with
glucose as a carbon source as measured from their batch culture
kinetics (Table 2). This illustrates our point that strains without phe-
notype in terms of flux should have a phenotype in terms of the con-
centrations of metabolites that are involved in flux homeostasis 
(cf. ref. 7). As expected, the ho∆ strain did not show any significant
differences in the metabolite profile as compared to the wild type.
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Figure 1. Competition between FY23pfk27∆ and its wild-type parent.
Both wild-type and deletant cells were grown to steady state in
separate fermenters, under aerobic conditions (dilution rate, 0.1 h-1).
Then 40% of the culture volume was exchanged between the two
fermenters. One fermenter was set for anaerobic growth (O2 at 0.6%
saturation), the other was left for aerobic growth (O2 at 100%
saturation).
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Table 1. The S. cerevisiae strains used in this study

Strain Genotype Reference   

FY23 (wild-type) MATα ura3-52 trp1-∆63 leu2-∆1 Ref. 54
FY23.pfk26∆ MATα ura3-52 trp1-∆63 leu2-∆1 pfk26∆:: This study

KanMX4
FY23.pfk27∆ MATα ura3-52 trp1-∆63 leu2-∆1 pfk27∆:: This study

KanMX4
FY23.pet191∆ MATα ura3-52 trp1-∆63 leu2-∆1 pet191∆::  Ref. 28

KanMX4
FY23.cox5a∆ MATα ura3-52 trp1-∆63 leu2-∆1 cox5a∆:: Ref. 28

KanMX4
FY23.ρ0 MATα ura3-52 trp1-∆63 leu2-∆1 [ρ0] Ref. 28
FY 23.ho∆ MATα ura3-52 trp1-∆63 leu2-∆1 ho∆:: Ref. 25

KanMX4 
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Now that we had phenotypes for the previously “silent” strains,
the issue was whether we could classify the phenotypes such that
they reflected gene function. We decided to perform co-response
analysis, that is, to examine whether the measured concentrations of
the metabolites varied in the same or in different directions. For the
strains that had a metabolome phenotype, we calculated the changes
in the logarithm of the metabolite concentrations for each mutant
strain versus the wild type. We then took the arctangents of ratios of
these relative changes, which correspond to co-response indicators,
or the relative directions of the changes in two metabolites 
(in degrees between –90° and +90°; Table 3). The profiles of the 
co-response indicators of the pfk26∆ and pfk27∆ strains were simi-
lar. This can be appreciated from the similar directions, in degrees of
the co-response, between the various metabolites and G6P, or by just
reading the signs on the values of their co-response indicators 
(+ means that the two metabolites increase or decrease together; 
– means that one metabolite increases whereas the other metabolite
decreases). The co-response indicators calculated for the two 
respiratory-deficient mutants each exhibited a profile that was very
different from those of the pfk– mutants, but similar to that of each
other.

Thus this co-response analysis demonstrated the practical feasi-
bility of the FANCY approach to the elucidation of function.
However, it used data on the intracellular concentration of specific
metabolites, relevant to the domain of metabolism of the genes
under study. For functional genomics, this limitation to a small set
of metabolites is a disadvantage because, for a gene of unknown
function, it would be impossible to select the correct set of metabo-
lites in advance. It was therefore required to generalize the FANCY
approach to examine all, or a large and arbitrary set of, metabolites.
This demands the adoption of a comprehensive, rather than specific,
method of metabolite analysis. We now show that the FANCY
method can be applied to the analysis of changes of the metabolome
at large, even without identifying the actual metabolites whose con-
centrations have changed.

Multivariate FANCY: cell extract analysis clusters genes into
functional categories. In this further development of FANCY, we
have evaluated three different physical methods for the compre-
hensive analysis of metabolites within yeast cell extracts. These
comprised Fourier-transform infrared spectroscopy (FTIR5,29,30),
electrospray mass spectrometry (ES-MS 31,32), and nuclear magnet-
ic resonance (NMR) spectroscopy. High-resolution 1H-NMR spec-
troscopy has been used previously to analyze metabolite changes in
human and animal body fluids and tissue extracts in different dis-
ease states and after treatment with drugs and toxins33. The tech-
nique has the advantage that it is, in principle, capable of detecting
any proton-containing metabolite present in the tissue extract pro-
vided that it is present above a minimum threshold concentration.
The range of metabolites detectable by this method could be
extended by changing the method of sample preparation or by
detecting other nuclei, for example 31P or natural-abundance 13C.
Although we have not assigned the peaks in the spectra obtained
from these preparations, this is nevertheless a relatively straight-
forward procedure.

Metabolites were extracted from mid-exponential phase cultures
of FY23 and six mutant strains, grown aerobically on a minimal glu-
cose medium. (The extra strain investigated by this approach was a
cytoplasmic petite mutant, FY23.ρ0. This mutant should be qualita-
tively and quantitatively identical to the completely respiratory-
deficient nuclear petite, FY23.pet191∆.) The extracts from each
strain were then analyzed using 1H-NMR spectroscopy (see
Experimental Protocol).

The power of the NMR approach, as compared to the enzymatic
analysis approach of Table 3, is that (for a limited investment in
time) it measures changes in many more (in principle, arbitrary)
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Figure 2. Cluster analysis of NMR spectra from cell extracts. 
(A) Flowchart to show chemometric approach used to cluster the
NMR data. Step 1: The region around the most prominent NMR peak
due to water (4.4 – 5.5 p.p.m.) is removed and the internal standard 
(0 p.p.m.) used to normalize each ordinate (thus allowing quantitative
comparison of spectra) before it, too, is removed from the spectrum.
The region beyond 5.5 p.p.m. (the aromatic region) is also removed.
The resulting reduced data set describes the subspectral region
between 0 p.p.m. and 4.4 p.p.m. (i.e., 1,300 variables). Step 2: PCA
transforms the original set of variables to a new set of orthogonal
variables called principal components (PCs). Step 3: DFA has 
“a priori” information based on spectral replicates and uses this to
minimize within-group variance and maximize between-group
variance. (B) DFA plot based on the first eight PC projections from the
NMR spectral data. The numbers represent the NMR spectra of
extracts of the following strains: (1) FY23.cox5a∆; (2) FY23.ho∆; 
(3) FY23.ρ0; (4) FY23.pet191∆; (5) FY23.pfk26∆; (6) FY23.pfk27∆.

A

B

©
20

01
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/b

io
te

ch
.n

at
u

re
.c

o
m

© 2001 Nature Publishing Group  http://biotech.nature.com



metabolite concentrations. This discriminatory potential was opti-
mized further by examining which (combinations of) metabolite
concentrations were most diagnostic of the differences between dif-
ferent strains and which merely reflected experimental error 
(differences between experiments with the same strain). Figure 2A
illustrates the principal components analysis (PCA) and discrimi-
nant function analysis (DFA) methods that were implemented for
this purpose. The two most discriminatory combinations of
metabolite concentrations are used as the axes in Figure 2B.
Mutants with identical phenotypes should cluster in this plot.
Mutants with qualitatively different phenotypes should be clearly
displaced from each other.

The results shown in Figure 2B demonstrate the power of this
approach. Three main clusters are delineated. One contains the two
completely respiratory-deficient mutants, FY23.pet191∆ and
FY23.ρ0, whereas a second contains all extracts obtained from the
control strain, FY 23.ho∆. The wild type has previously been shown
to be very similar to this5. The third cluster groups spectra from
FY23.pfk26∆ and FY23.pfk27∆ together and clearly separates them
from the control strain’s cluster. In terms of the DF1 component,
spectra from the partially respiratory-deficient mutant,
FY23.cox5a∆, occupy positions intermediate between those of the
control strain cluster and that of the completely respiratory-
deficient mutants. The fact that multivariate FANCY has greater res-
olution than the FANCY employing data on a limited number (six)
of specific metabolites (Table 2) becomes clear from the fact that, in
terms of the DF2 component, the FY23.cox5a∆ mutant is distin-
guished from the FY23.pet191∆ and FY23.ρ0 mutants.

The co-response indicators of Table 3 correct for differences due
to various extents of the same phenotype (i.e., for phenotypes being
only quantitatively different). For the multivariate FANCY, this cor-
responds to focusing on the direction in which a mutant is displaced
from the origin in Figure 2B. For the FY23.pfk26∆ and FY23.pfk27∆,
that direction is, indeed, the same (approximately –50°) and quite
different from the direction in which the respiratory-deficient
mutants were displaced. The analysis of these NMR spectra, there-
fore, has clearly demonstrated FANCY’s ability to group genes of
related biological activity and even to discriminate appropriately
between mutations that have qualitatively similar, but quantitatively
different, effects on phenotype.

Discussion
The use of metabolome data in the systematic analysis of gene func-
tion has the twin advantages that metabolites are functional cellular
entities that vary with the physiological context and also (for many
organisms, including yeast) that the number of metabolites is far
fewer than the number of genes or gene products. However, in con-
trast to the case for transcripts and proteins, there is no direct rela-
tionship between metabolites and genes. For this reason,
metabolomics (more than any of the other levels of analysis in func-
tional genomics) requires that we exploit our knowledge of experi-
mentally characterized genes in the elucidation of the function of

unstudied genes. This may be achieved by comparing the change in
the cell’s metabolite profile that is produced by deleting a gene of
unknown function with a library of such profiles generated by indi-
vidually deleting genes of known function.

The FANCY approach to the elucidation of gene function has a
firm theoretical basis in metabolic control analysis (MCA; see ref. 7).
The central device of MCA is the control coefficient34–39; this mea-
sures the fractional change in either the flux through a pathway, or
the concentration of some metabolite, relative to the fractional
change in the activity of some effector (usually, but not necessarily,
an enzyme). Flux control coefficients (FCCs) add up to 1 (refs 34,
39) and tend to adopt values between 0 and 1. Thus, if an enzyme
completely determines the rate of flux through a given pathway, it
will have an FCC of 1. If its action is completely irrelevant to the
pathway, it will have an FCC of 0. In practice, most enzymes have
FCC values closer to 0 than 1. In contrast, concentration control
coefficients (CCCs) sum to zero, such that they may have substantial
values, both positive and negative. Changes in the activity of a single
enzyme may produce very large changes in the concentration of spe-
cific metabolites, often acting to minimize the effect of the change in
enzyme activity on flux (see earlier comments and ref. 7). Thus, in
seeking to elucidate the functions of unstudied genes through
metabolomics, we must have either very sensitive measures of flux
(because FCC values are on average close to 0), or comprehensive
measures of metabolite concentrations (because CCC values may be
large but, if a gene is of unknown function, we do not know which
metabolite concentrations to measure).

In a top-down approach to functional analysis via the
metabolome, growth rate competition experiments provide a sen-
sitive means of measuring changes in flux9,10,40. Competition
experiments in chemostat culture failed to reveal any growth rate
differences between the pfk26 and pfk27 deletants and their wild-
type parent (Fig. 1). Thus both mutants had completely silent
phenotypes. However, by comparing the glycolytic metabolite
profiles in these mutants with those of the wild-type strain and of
two respiratory mutants, we detected a “phenotype” at the level of
metabolite concentrations. Furthermore, by quantifying the rela-
tive change of the intracellular metabolites in wild-type and
mutant strains, we were able to associate the glycolytic and respi-
ratory mutants in pairs, distinguishable from one another and
from the wild type. Thus, had PFK27 been a gene of unknown
function, we would have identified the part of the metabolic net-
work on which its gene product impacts, that is, on the same part
as the gene product of PFK26. The present approach, relying as it
does solely on steady-state metabolic snapshots, consequently dif-
fers noticeably from those requiring a significantly larger number
of time-dependent data points (e.g., ref. 41).

It would be possible to employ this method for systematic func-
tional analysis by constructing a database of co-response indicator
profiles for a library of strains, carrying single-ORF deletions in all
kinds of known genes. Such a database could readily be screened for
similarities between the co-response indicator profiles of known and
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Table 2. Internal metabolite concentrationsa

Strain Growth rate G6P F6P ATP Pyr ADP AMP ATP/ ADP
(h-1)

Wild type 0.31 2.05 ±0.11 0.40 ±0.03 2.80 ±0.32 3.39 ±0.54 0.42 ±0.11 0.20 ±0.02 6.67
ho∆ 0.31 2.22 ±0.10 0.39 ±0.03 2.71 ±0.07 4.35 ±0.40 0.43 ±0.06 0.20 ±0.03 6.30
pfk26∆ 0.30 2.24 ±0.06 0.57 ±0.04 2.45 ±0.13 5.45 ±1.01 0.71±0.10 0.17 ±0.00 3.45
pfk27∆ 0.30 2.71 ±0.02 0.67 ±0.02 2.35 ±0.02 4.56 ±0.38 0.67 ±0.07 0.15 ±0.02 3.51
cox5a∆ 0.30 1.81 ±0.08 0.53 ±0.09 1.70 ±0.17 5.51 ±1.91 0.76 ±0.14 0.16 ±0.01 2.24
pet191∆ 0.31 1.88 ±0.11 0.46 ±0.07 1.75 ±0.06 5.97 ±1.04 0.84 ±0.09 0.15 ±0.03 2.08

aGiven in mM, assuming that 3.75 ml cytosol is equivalent to 1 g of total protein. Each metabolite concentration is the average of the values obtained from three 
independently grown cultures (± s.e.m.).
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unknown genes. Indeed, simply the sign (or quadrant) of the indica-
tors, rather than their absolute values, could be compared (see Table
3). Nevertheless, in the absence of any independent indication of the
likely domain of activity of an unstudied gene, this would be a rather
ponderous way of pursuing functional genomics via the
metabolome. An attractive alternative is to exploit methods of
metabolite extraction and analysis that are comprehensive in their
scope and use them to produce metabolic snapshots of strains delet-
ed for single genes of either known or unknown function. In the
early stages of such an analysis, it is not necessary to identify which
metabolites the mutations affect. Instead, similar snapshots can be
grouped together using statistical techniques, such as discriminant
function analysis. Thus genes of unknown function can be grouped
with those of known function, and the concentrations of relevant
metabolites determined later in order to localize the lesion by a com-
parison of co-response coefficients. While this means that high-
throughput techniques, such as FTIR spectroscopy, can be used in
the early stages of the analysis, it may be more profitable to employ
analytical procedures that permit the subsequent assignment of
metabolite identities. We have provided an example of one such
technique, high-resolution NMR spectroscopy (Fig. 2), although
MS or LC-MS may be equally useful.

This study shows that, although a mutation may cause no signif-
icant change in growth rate, silent phenotypes can be revealed by
significant changes in concentration of the intracellular metabolites.
Moreover, in combination with co-response coefficient profiles, the
site of action of the silent mutation in the metabolic network may be
revealed. This approach should obviously be useful for the rapid
identification of new and interesting silent regulatory genes in vari-
ous parts of the metabolism of various organisms. However, the
FANCY approach is also capable of revealing the function of genes
that do not participate directly in metabolism or its control. For
instance, a gene involved in amino acid biosynthesis may, upon dele-
tion, affect the cellular concentration of one or a few amino acids. A
gene involved in protein synthesis, in contrast, may affect the con-
centration of all amino acids. Having demonstrated the feasibility
and analytical power of the FANCY approach on a difficult test sys-
tem, we are now exploiting the method in a high-throughput screen
of single-ORF deletion mutants of yeast5,42.

Experimental protocol
Yeast strains. The yeast strains used in this work are all direct derivatives of
strain FY23 (Table 1). FY23.ρ0, a mtDNA0 cytoplasmic petite mutant was
generated by ethidium bromide mutagenesis43. All deletion derivatives were
generated by PCR-mediated gene replacement using the kanMX cassette26.
Strains FY23.pfk26∆ and FY23.pfk27∆ are deleted for the PFK26 and PFK27
genes, respectively. Strains FY23.pet191∆ and FY23.cox5a∆ are nuclear
petites exhibiting no and 15% respiratory activity, respectively28. Finally,
strain FY23.ho∆, which is deleted for the HO gene, was used as a control,
because this deletion has no measurable phenotypic effect25.

Batch cultures. Yeast cells were pregrown at 30°C in 20 ml 2% (wt/vol) glu-
cose, 0.5% (wt/vol) ammonium sulfate, 0.17% (wt/vol) yeast nitrogen base
without amino acids (Difco, Detroit, MI) and 100 mM potassium phthalate at
pH 5.0, supplemented with required nutrients (40 mg/L uracil, 40 mg/L L-
tryptophan, 60 mg/L L-leucine). The next day, the cells were diluted in 100 ml

fresh medium and grown to an OD600 of 1.
Competition experiments in chemostat culture.

Competitions between FY23.pfk26∆ and FY23
pfk27∆ and their parent strain, FY23, were carried out
in aerobic and anaerobic, glucose-limited chemostat
cultures, exactly as described previously9.

Metabolite extraction and analysis. A 6 ml sample
of culture was injected into 24 ml of 60% (vol/vol)
methanol at –40°C. The pellet was washed, spun
down at –20°C, and extracted with buffered boiling
ethanol44. Intracellular metabolite concentrations in
the resulting cell-free extract were determined enzy-
matically45 using a Cobas Bio Autoanalyser (Roche,

Basel, Switzerland). The relative response of two metabolites to an infinitesi-
mal modulation of any system parameter can be expressed in terms of the co-
response coefficient, Ω (ref. 11). Here, we consider the analog for the finite
modulation due to a mutation:

X refers to the concentration of any metabolite, G6P to the concentration
of glucose-6-phosphate, and subscripts M and W to mutant and wild-type
cells, respectively. This co-response coefficient has the disadvantage that it
becomes disproprtionately large if the mutation has little effect on the G6P
concentration. We therefore discuss the co-response in terms of the co-
response indicator, θ (ref. 46), which we define as the arctangent of the co-
response coefficient:

This corresponds to the direction of the co-response in terms of an angle,
θ, between −90° and +90°. If θ = +45°, X and G6P respond identically and
positively to the mutation. If θ = −45°, X and G6P respond equally but in
opposite directions, etc.

For comprehensive analysis of cellular metabolites, NMR spectrometry
was used. An aliquot (20 ml) of a mid-exponential phase culture was trans-
ferred into a 50 ml Falcon tube, containing 20 ml of HPLC-grade methanol
at −40 to −50°C in an ethanol/dry ice bath. Extracts were made by adding 
2 ml of hot ethanol to the pellet after a cold spin (see above) and, after tem-
porary storage at −80°C, were dried under vacuum. The dried extracts were
dissolved in 0.6 ml of 0.1 M potassium phosphate buffer, pH 7.0, in D2O,
containing 1 mM 3 (trimethylsilyl) tetradeutero sodium propionate (TSP),
quickly vortexed, and then centrifuged at 14,000 r.p.m. for 10 min to remove
material that had not dissolved. 1H spectra were acquired at 400 MHz into
40,000 data points using a 90 s pulse, an acquisition time of 4 s, and a sweep
width of 5 KHz. The overall pulse repetition time was 5 s. The samples were
spun at 16 Hz and maintained at 30°C during data acquisition. The spectra
were the sum of 128 transients. The summed free induction decays (FIDs)
were multiplied by an exponential 1 Hz line-broadening before Fourier
transformation into 8,000 data points. Peak intensities were output from an
8.84 p.p.m. window, which started at −0.52 p.p.m. and contained 2,897 data
points. The chemical shift scale was referenced to the signal from TSP at 
0.0 p.p.m.

Chemometrics. The region around the most prominent NMR peak due to
water (4.4–5.5 p.p.m.) was removed and the internal standard used to nor-
malize each ordinate (thus allowing quantitative comparison of spectra)
before it, too, was removed from the spectrum. Finally, it was known that the
region beyond 5.5 p.p.m. (the aromatic region) is of little interest to this
study, so this was removed as well. The resulting reduced data set describes
the subspectral region between 0 p.p.m. and 4.4 p.p.m. (i.e. 1,300 variables).
Each column of the data set was then normalized to unit variance. Following
this preprocessing, a multistage projection method47 was employed to cluster
similar NMR spectra.

The aim of the multivariate analysis was to observe the natural groupings
of the strains in terms of their NMR spectra, and to establish the extent to
which the patterns so revealed are concordant with the physiological proper-
ties of the strains. The multistage projection method detailed in Figure 2 is a
robust and reliable way of analyzing spectroscopic data48. Before employing
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Table 3. Co-response indicatorsa

Strain F6P/G6P Pyr/G6P ATP/G6P ADP/G6P AMP/G6P [ATP/ADP]/G6P

pfk26∆ +80° +80° –60° +80° –60° –80°
pfk27∆ +60° +50° –30° +60° –50° –70°
cox5a∆ –70° –80° +80° –80° –60° +80°
pet191∆ –60° –80° +80° –80° –70° +90°

aThe responses, for each of the four mutants, of various metabolite concentrations (relative to the response
of G6P) are given as co-response indicators in units of degrees (in between –90° and +90°). These were
defined as indicated in the Experimental Protocol, and calculated from the data in Table 2.
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any multivariate analysis, each column of the data set is normalized to unit
variance. This is done to eliminate bias, in subsequent analysis, toward any
column that contains either large absolute values or large variances49.

The first stage of this analysis involved the reduction of the dimensionality
of the NMR data by PCA (refs 50,51), a method to redefine each spectrum as
a linear combination of several subspectra. The spectrum for each strain ana-
lyzed is divided into a similar set of subspectra. Thus, the original data are
represented as a series of vectors in n-dimensional space, each of which is
unique for a particular strain.

The influence of each of the original variables on the new principal compo-
nents (PC) is determined on the basis of the maximum variance criterion.
Thus, the first PC is considered to lie in the direction describing maximum
variance in the original data. Each subsequent PC lies in an orthogonal direc-
tion of maximum variance that has not been considered by the former compo-
nents. The number of PCs computed for a given data set is up to the analyst.
However, usually as many PCs are calculated as are needed to explain a preset
percentage of the total variance in the original data (the number of PCs is
always less than or equal to the number of original variables).

The second stage of the data analysis involved using DFA (refs 52,53) to
separate the samples further into groups of replicates using the PCs calculat-
ed in stage 1 as the source data. DFA is a supervised projection method
(whereas PCA is unsupervised). A priori information (as to which samples
are replicates of one another) is used to produce measures of within-group
variation and between-group variation. This information is then used to
define discriminant functions that optimally separate the a priori groups;
that is, a plane is defined within n-dimensional space onto which all of the
vectors are projected. This plane is defined such that it gives the maximum
separation between the different groups, and so gives a diagram in which
data from similar strains are clustered together and well separated from those
produced by strains having different metabolic characteristics.
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