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Metabolomics, like other omics methods, produces huge datasets of biological variables, often accompanied by the necessary

metadata. However, regardless of the form in which these are produced they are merely the ground substance for assisting us in

answering biological questions. In this short tutorial review and position paper we seek to set out some of the elements of ‘‘best

practice’’ in the optimal acquisition of such data, and in the means by which they may be turned into reliable knowledge. Many of

these steps involve the solution of what amount to combinatorial optimization problems, and methods developed for these,

especially those based on evolutionary computing, are proving valuable. This is done in terms of a ‘‘pipeline’’ that goes from the

design of good experiments, through instrumental optimization, data storage and manipulation, the chemometric data processing

methods in common use, and the necessary means of validation and cross-validation for giving conclusions that are credible and

likely to be robust when applied in comparable circumstances to samples not used in their generation.
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1. Introduction

‘‘Science is built up with facts, as a house is with
stones. But a collection of facts is no more a science than
a heap of stones is a house’’

Jules Henri Poincaré (1854–1912)
La Science et l’hypothése.

Since the systematic genome sequencing of the first
free-living microbe (Fleischmann et al., 1995), we have
seen the advent of genome-wide expression profiling
methods, the ‘omes’, in which investigators seek to
understand complex biological systems on a large scale.
The macromolecular omes (especially the transcriptome
and proteome) were the first to gain widespread atten-
tion. However, the metabolome, the complete set of
metabolites in a cell or tissue (for definitions see (Fiehn,
2001; Goodacre et al., 2004)), consists of low-molecular
weight chemical intermediates (Oliver et al., 1998) which
can be considered to be the end products of gene
expression. For fundamental reasons based on meta-
bolic control analysis http://dbk.ch.umist.ac.uk/
mca_home.htm (reviews: (Kell and Westerhoff, 1986;
Fell, 1996; Heinrich and Schuster, 1996)), we can expect
that while change in gene (protein) expression levels will
have only small effects on metabolic fluxes, they must

have large effects on metabolite concentrations. Meta-
bolomics thus represents an ideal level at which to
analyse change in biological system sensitively (Harri-
gan and Goodacre, 2003), under conditions in which
there may be negligible effects on the gross phenotype
(Cornish-Bowden and Cárdenas, 2001; Raamsdonk
et al., 2001). Qualitative and quantitative metabolome
analyses also provide a view of the biochemical status of
an organism under specific conditions. For this reason
increasing interest has been shown in the use of meta-
bolomics for functional genomics, sometimes in parallel
with transcriptomics and proteomics. Metabolomic data
have been generated:

� For a wide variety of organisms – e.g. human
(Lindon et al., 2000; Fiehn and Spranger, 2003),
microbial ( Raamsdonk et al., 2001; Kaderbhai et al.,
2003) and plant (Fiehn et al., 2000; Roessner et al.,
2000),

� using a number of different approaches – metabolic
profiling (Fiehn et al., 2000), fingerprinting (Aharoni
et al., 2002; Johnson et al., 2003) and footprinting
(Allen et al., 2003; Kaderbhai et al., 2003; Allen et al.,
2004),

� using a number of different analytical techniques
(reviews: (Sumner et al., 2003; Kell, 2004))

� for many applications e.g. toxicity determination
(Lindon et al., 2003b; Nicholson and Wilson, 2003),
diagnostics (Brindle et al., 2002), gene function
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determination (Raamsdonk et al., 2001; Allen et al.,
2003) and in discriminating genotypes (Taylor et al.,
2002).

A number of reviews have discussed in detail the
variety of analytical techniques and data collection and
storage methods available (Fiehn, 2002; Mendes, 2002;
Fiehn and Weckwerth, 2003; Fernie, 2003; Hardy and
Fuell, 2003; Sumner et al., 2003; Goodacre et al., 2004;
Kell, 2004). However, we know of no article that seeks
to set out in a systematic manner the detailed way in
which we might best seek to turn metabolomic data
into biological knowledge. In seeking to bring together
elements of best practice in this emerging discipline,
we therefore offer a tutorial review, based on our own
experiences over more than 10 years (Goodacre et al.,
1992; Goodacre et al., 1993; Goodacre and Kell, 1993),
of the numerical issues that one faces when conducting
metabolomics experiments.

We present this here in the form of a metabolome
pipeline (figure 1) which addresses the need to have a
streamlined approach for data collection, storage,
analysis and validation to convert the raw data into
useful knowledge whilst recognizing the wide-ranging
methods and approaches that are used in this area.
Assuming a good experimental design and some attempt
to optimize the instrumentation (which we describe
briefly), the first stage in converting the data to knowl-
edge is cleaning up the raw data and where possible

relating signals to metabolites (preferably providing a
chemical identity for metabolites judged to be present).

Subsequent to this is using the metabolomic data to
answer biological questions, including reconstructing
the metabolic networks in which they participate. The
knowledge thus generated must then be available to be
combined with and compared to other metabolome
data, as well as integrated with transcriptome and pro-
teome data to help build towards an understanding of
the whole system operating within an organism.

2. Experimental design

The starting point in measuring the metabolome is
the experimental design. This is often neglected, but the
high dimensionality of omics data means that it needs
especial attention. Good standard texts include (Hicks
and Turner, 1999; Montgomery, 2001; Myers and
Montgomery, 1995) while (Bland, 1987; Bradford Hill
and Hill, 1991; Schlesselman, 1982) have a more
medically oriented outlook. Textbooks of epidemiology
(Rothman, 2002; Rothman and Greenland, 1998) also
give valuable advice. Many researchers assume nor-
mality of statistical distributions in omics data, and
this is often not found. Nowadays more or less user-
friendly software allows one to effect robust experi-
mental designs. We tend to use DesignExpert (http://
www.statease.com/) for basic experimental design and
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Figure 1. An overview of a pipeline for the design, performance, storage and analysis of metabolomics experiments and their attendant data.
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response surface modelling, and nQuery Advisor
(http://www.statsol.ie/nquery/nquery.htm) for statisti-
cal power calculations in case-control studies.

As well as establishing the type of variation in the
independent variables that the experimenter requires,
and how to optimize this within the constraints of lim-
ited experimental material, resources and time, specific
consideration needs to be given to the following features:

� Biological variation, arising from variations in metab-
olite levels between samples of the same species grown
under identical conditions. It varies from organism
to organism and tissue to tissue and for plants (for
instance) can be very large (Roessner et al., 2000),
although fortunately the machine variability is
smaller (Fiehn et al., 2000). In animals there are
significant diurnal (Lenz et al., 2003) and dietary
(Solanky et al., 2003) variations, which need to be
appreciated when samples are collected,

� sample preparation – as standard and reproducible an
approach as possible is required. This may be simple
for the case of biofluids, when little or no sample
preparation is needed, but may be much more
complex. For high-throughput analyses simple
methods need to be available,

� analytical variance in terms of the relative standard
deviation of a specific experimental approach,

� the requirement for suitable controls or references,
� the type and number of internal standard(s),
� the range and sensitivity of the analytical method

(overall sensitivity depends on both sample prepara-
tion/preconcentration and instrument operation),

� the number of samples and replicates to be analysed,
and whether high-throughput or otherwise.

These form the basis on which the number of sam-
ples, analytical and biological replicates required are
decided.

3. Instrumentation optimization

One area, related to experimental design, that in our
view has not enjoyed the attention it deserves, is that of
instrumental optimization. For mass spectrometers this
is sometimes referred to as ‘‘tuning’’, and it is usually
assumed that this has been done satisfactorily. In fact
this is not (and cannot be) the case. If an electrospray
mass spectrometer (or any other instrument) has 14
tuning parameters (e.g. the cone voltage, gas flow rates,
or whatever), each of which may take just 10 values, the
number of combinations of settings is then 1014 (and the
lifetime of the Universe in seconds is 1017 (Barrow and
Silk, 1995)). Obviously experimenters are not going to
try all these combinations (this is known as ‘‘exhaustive
search’’), and a ‘‘heuristic’’ method (Reeves, 1995;
RaywardSmith et al., 1996; Dasgupta et al., 1999;

Michalewicz and Fogel, 2000), in which good but not
provably optimal solutions are sought, is therefore
appropriate. Evolutionary algorithms (figure 2) are
especially well suited for optimization purposes (Bäck
et al., 1997; Corne et al., 1999) and have been used in
related experimental design problems such as fermen-
tation medium optimization (Weuster-Botz and Wan-
drey, 1995; Davies et al., 2000). Using them, we have
found that the analytical performance of modern
instruments such as electrospray (Vaidyanathan et al.,
2003; Vaidyanathan et al., 2004) and GC-TOF-MS
(O’Hagan et al., in press) can be improved hugely. An
example is given in figure 3.

4. Data gathering

The chemical complexity and range of primary and
secondary metabolites present in microbial, plant and
animal organisms massively exceed the comparatively
limited building blocks of the transcriptome (4–5 nu-
cleotides and derivatives), and the proteome (�20 pri-
mary amino acids). Thus, although the resulting mRNA
and proteins are themselves complex the number of
analytical methods used to measure them is relatively
small, although the analysis of post translational mod-
ification on proteins is still problematic. By contrast, the
chemical properties of metabolites range from ionic
inorganic species to hydrophilic carbohydrates and
sophisticated secondary natural products to hydropho-
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bic lipids – with a wide range of polarity, solubility and
volatility. It is thought that currently no analytical
method can fully identify the metabolome and thus the
method chosen in each experiment essentially only tar-
gets a subset of the full complement of metabolites.
Fingerprinting methods such as NMR (Lindon et al.,
2000; Raamsdonk et al., 2001; Nicholson et al., 2002;
Lindon et al., 2003a; Nicholson and Wilson, 2003),
FTIR (Oliver et al., 1998; Ellis et al., 2003; Goodacre,
2003; Kaderbhai et al., 2003) and pyrolysis (Goodacre
et al., 1992; Goodacre and Kell, 1993; Goodacre and
Kell, 1996) or direct-injection mass spectrometry
(Goodacre et al., 2002; Allen et al., 2003; Kaderbhai
et al., 2003; Allen et al., 2004) provide high-dimensional
inputs for classification methods, but rarely allow one to
identify the chemical bases for their classifications.
Thus, the wide chemical complexity of the metabolome
means that extraction and separation methods of some
kind are normally required, usually involving selective
detection (so-called hyphenated (Wilson and Brinkman,
2003) techniques such as GC-MS, LC-MS and so on)
and since chromatographic separations are often
imperfect there is necessarily a data-deconvolution step.
Another issue, which follows from the ‘‘amplification’’
of metabolite concentration changes relative to those of
proteins (see above) is the very large dynamic range of
metabolites (e.g. pM to mM) that may be important; no

available instrument can presently cover such a range
without differential dilution, although four orders of
magnitude are possible in favourable circumstances.

The outcome of these stages is a full-rank matrix of
peak number(/identity), wavenumber, chemical shift,
m/z and so on (the so-called x-variables) versus sample
number, together with associated metadata such as
gender, age, physiological traits, disease status and so
on, in the form given in figure 4. Some of the metadata
will typically be characters that one is interested in
predicting, and these are known as the y-data. In some
cases the y-data class membership of the samples is
known, and in this case one may exploit supervised
learning methods (see below).

Figure 3. Optimisation of a GC-TOF instrument using closed loop evolutionary computing (O’Hagan et al., in press). The figure shows 120

experiments in which both the number of peaks detected (maximized) and the run time (minimized) (both shown), as well as the signal:noise (not

shown) were optimised. The generation is encoded via the size of the symbol. There is an obvious trade-off, and we settled on the conditions

giving a run time of just over 20 min and just over 1200 peaks.

Figure 4. A propositional approach to describing and using meta-

bolomics data (the x-data) for analyzing complex systems. These may

have other specific properties (the y-data) which one may also wish to

‘explain’ in terms of the x-data.
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5. Data analysis

Irrespective of the analytical technique used, the
analysis of the data is essentially performed in three
stages. Initially the raw data need to be preprocessed to
convert them to a suitable form. Secondly it may be
useful to subject these modified data to data reduction
so that only the most relevant input variables are used in
the subsequent data analysis (Seasholtz and Kowalski,
1993). Some methods used in these two stages are listed
in table 1 below.

Each of these processes requires very careful thought,
since when we are dealing with data containing hun-
dreds of variables (dimensions) the ‘‘knock-on’’ effects
of each numerical data processing step are simply not
transparent, and the conclusions drawn should prefer-
ably be robust to the type of data pre-processing steps
used. Thus normalizing to a constant total signal (to
take into account varying sample sizes) introduces
dependencies between the variables that would not exist
without this step. Similarly how one treats missing
variables can have significant effects on the position of
individual samples in clustering diagrams. Missing val-
ues may arise because they are below the limit of
detection (in which case it is reasonable to assign a value
of zero), or because they were not collected. Deconvo-
lution and further processing of hyphenated data to
establish the contribution of each eluting component is a
very difficult and active area, which needs to begin by
‘‘registering’’ (Woodward et al., 2004) or aligning
datasets (Duran et al., 2003). Automating this reliably is
a high priority for metabolomics.

The objective of the third stage of the data analysis is
to find patterns within the data which give useful bio-
logical information that can be used to generate
hypotheses that can be further tested and refined. For the
metabolome because the biological differences between
samples sometimes arises from comparatively small dif-
ferences in many metabolite concentrations, recognizing
the pattern and interpreting it is not straightforward. The
methods available for metabolome analysis can be
placed in four main (and partly overlapping) categories –
univariate and multivariate statistical, unsupervised
learning (which looks at the overall pattern or structure
of the data), supervised learning (which uses known

information to help guide the classification of the data
(Duda et al., 2001; Hastie et al., 2001)), and system-based
analyses which use theories such as MCA (Fell, 1996) to
help interpret the data in terms of the biological net-
works that generated them (Kell, 2004). Many unsu-
pervised learning methods are equivalent to clustering
methods and are often statistically based, while super-
vised methods come in many varieties (Weiss and Kuli-
kowski 1991; Michie et al., 1994; Mitchell, 1997),
including statistical, neural, rule-based, evolutionary and
so on. Listed in table 2 are examples of a variety of
methods, together with selected references.

6. Univariate and multivariate statistical methods

Before looking into the more complex multivariate
methods, it is always desirable to look at the statistical
properties (mean and variance) of individual metabolites
and the relations between them (and each other) and the
other measured properties of interest. Since there are n2

correlations for n metabolites these can be quite difficult
to analyse if the process is not automated. Unusual
variances may be due to specific outliers, and these need
to be assessed and if necessary removed before sensible
conclusions can be drawn.

Although classical multivariate statistics based on the
analysis of variance (ANOVA) continues to be the
method of choice in many fields, especially experimental
medicine, its philosophy is really quite different from
that which underpins the omics revolution (Kell and
Oliver, 2004). This is very nicely set out in a paper
(entitled ‘‘Statistical modeling: the two clusters’’) by the
distinguished statistician Leo Breiman (Breiman,
2001b), in which he points out that statistics assume an
underlying model, including distributions of properties,
and assesses the goodness of fit to the model, while
machine learning methods make no such assumptions
and use the data to determine the best models – so-called
non-parametric approaches to modelling. The utility of
the models is then assessed using cross-validation
methods (see below). Though these ‘‘two cultures’’
sound similar, they are in fact profoundly different in
their basis, purpose, implementation and performance,
our prejudice being for the unbiased nature of the latter.

Table 1

Methods of data preprocessing and reduction

Data preprocessing Data reduction

Normalization of data – data transforms Limiting the data analysis to a specified range of the processed data

Normalization of data – using internal standard(s) Excluding variables or samples whose variation within replicates is

outside the allowable analytical limits

Deconvolution of peaks Excluding sample outliers, identified e.g. by PCA

Addressing baseline shifts and machine drift

Dealing with missing values
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7. Clustering methods

In the absence of sufficient training data for supervised
methods, the application of unsupervised techniques, in
particular clustering methods, becomes necessary. Clus-
tering algorithms take as their input a set of objects typ-
ically represented as feature vectors, where each vector
describes some measured property (e.g. the intensity in a
spectrum sampled at N points), and aim to assign each of
these vectors to a group, such that those placed in the
same group are more similar to each other than to those
placed in different groups. ‘‘Similarity’’ here, essentially
means proximity in the multidimensional feature space.
To measure proximity, clustering algorithms make use of
one of a number of distance functions, e.g. Euclidean
distance,Mahalanobis distance, cosine distance, etc. (Jain
et al., 1999).

This loose but intuitive concept of clustering can be
quite difficult to realize in practice. One reason for this is
the difficulty, even for humans, to establish unambigu-

ously the clusters that exist within a data set (see
figure 5). Secondly, even in cases where an umambigu-
ous partitioning of the data would be possible, cluster-
ing algorithms can fail drastically. This is because most
existing clustering techniques rely on estimating the
quality of a particular partitioning by means of just one
internal evaluation function (an objective function that
measures intrinsic data properties such as the spatial
separation between clusters or their compactness).
Hence, the internal evaluation function is assumed to
reflect the quality of the partitioning reliably, an
assumption that may be violated for certain data sets
(Estivill-Castro, 2002). However, given that many
objective functions for clustering are complementary,
the simultaneous optimisation (e.g. by means of multi-
objective evolutionary algorithms) of several of these
objectives can help to overcome this problem and ensure
a robust algorithm performance (Handl and Knowles,
2004).

Figure 5. Two possible partitions of the same data set. Dependent on the optimisation criterion either one could be considered of better quality.

Different clustering algorithms will produce differing results.

Table 2

An overview of data analytical methods

Univariate and multivariate

Statistical

Unsupervised Learning Supervised Learning ‘‘Theory-based’’

Mean PCA (Jolliffe, 1986) Discriminant Analysis (Fisher, 1951) Metabolic Control Analysis (MCA)

(Fell, 1996)

Standard Deviation Clustering (Everitt, 1993;

Duda et al., 2001;

Hastie et al., 2001)

(Discriminant) Partial Least

squares (Martens and Næs, 1989)

Bayesian belief networks

(Bernardo and Smith, 2000;

Berry, 1996; Leonard and Hsu, 1999;

Ramoni and Sabastini, 1998)

% Coefficient of Variation Self-organising maps

(Kohonen, 1989)

Artificial Neural Nets

(Bishop, 1995; Ripley, 1996)

Correlation and

regression (Flury and

Riedwyl, 1988)

Auto-associative neural

networks to effect

non-linear PCA

(Kramer, 1991)

Rule Induction (Breiman, 2001a;

Brieman et al., 1984; Quinlan, 1993)

Mutual information

(Shannon and

Weaver, 1949;

Battiti, 1994;

Gilbert et al., 1997)

Inductive logic programming

(Muggleton, 1990)

Evolutionary computation

(Bäck et al, 1997)
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A third fundamental difficulty of clustering is the
determination of the number of clusters in the data set.
Most existing algorithms require this parameter to be
provided, which is a major problem in a setting where
the structure of the data is completely unknown. Whilst
there have been recent attempts to determine the num-
ber of clusters automatically (including the Gap statistic
(Tibshirani et al., 2001), Resampling (Dudoit and
Fridlyand, 2002) and others (De Smet et al., 2002)),
no entirely reliable method exists to date.

In general, the application of clustering algorithms
for data analysis requires a careful analysis of the
results produced. A major problem with traditional
clustering algorithms (e.g. k-means, hierarchical algo-
rithms and self-organizing maps) is the fact that they
return a partitioning without any estimate of the reli-
ability of this result. Indeed many force all points to be
in at least one cluster, whether this is justified or not.
In order to obtain an acceptable degree of confidence
in a clustering result, it is useful to cluster the data
repeatedly, using a randomized algorithm (like k-means
with different initialization), different algorithms, or
resampling of the data (in which a subset of the data
only is used as input), and observe the stability of the
partitioning with respect to these changes (this is
commonly used in phylogenetics, and known as boot-
strapping (Page and Holmes, 1998)). Alternatively,
clustering results can be assessed using internal or
external measures of clustering quality. Internal mea-
sures (e.g. F-measure, Rand Index (Halkidi et al.,
2001)) provide an estimate of the degree of structure in
the data and can help us to determine whether the data
exhibits sufficient structure (i.e. compact, well-sepa-
rated clusters) or whether it seems to be essentially
uniform (in which case the data-preprocessing and the
distance function employed may have to be reconsid-
ered, as these can have a crucial impact on the disc-
ernability of clusters). Different to internal measures,
external measures (e.g. F-Measure, Rand Index (e.g.,
F-Measure, Rand Index Halkidi et al., 2001)) require a
reference partitioning or knowledge of the true class
labels respectively. Hence, they are useful to establish
the difference between two partitionings of a data set,
or for the evaluation of a clustering algorithm on data
sets where the correct classification is known.

8. Supervised learning methods

Supervised learning methods are used when we have
information on both the inputs and the outputs that one
is desiring to understand or to classify. Typically these
come as paired data sets (as in figure 4). This allows us
to ‘‘train’’ a model using some kind of a teacher. A
typical example in metabolomics would be where we
have two classes of sample, from patients with a disease
and from healthy controls. In this case we wish to

determine a biomarker or set of biomarkers from the
inputs that can be used to classify the samples into
disease or control. For dealing with multivariate data
this class assignment problem is shown below in its
simplest form in figure 6 (Kell and King, 2000). The
input consists of a large number of data-points that can
represent a wide range of variables, which may be cat-
egorical, binary (e.g. true/false), or numerical (severity
of disease/grade of cancer). A series of mathematical
transformations when applied to the inputs are used to
generate the outputs. Metabolomics data are thus the
inputs and represent the x-data of figure 4.

Supervised methods are much more powerful than
unsupervised ones such as the widely used principal
components analysis (PCA) and clustering methods
because they concentrate on the variance that matters
for the question of interest (e.g. (Goodacre et al., 1992;
Goodacre et al., 1993)). In machine learning, methods
that use only the x-data, unsupervised methods, are
distinguished from supervised learning methods which
are trained using both the x-data and the y-data (Jain
and Dubes, 1988; Weiss and Kulikowski 1991; Michie
et al., 1994; Bishop, 1995; Livingstone, 1995; Ripley,
1996; Mitchell, 1997; Duda et al., 2001).

The ideal method for supervised learning not only
gives the correct answer, but explains how it got there
(‘‘credit assignment’’). Some methods such as (artifi-
cial) neural networks are good at performing classifi-
cation but poor at explaining the basis for it, while
deterministic rule-based methods such as CART gives
rules that are easy to understand but may not be as
accurate as one would wish. A particularly powerful
form of supervised learning is evolutionary computing
(figure 2), which is based on Darwinian principles of

Figure 6. The class assignment problem. The inputs can be consid-

ered, and are referred to, as the ‘‘explanatory variables’’ or ‘‘x-data’’

whereas the functional or the other classes of interest, which are still

variables associated with the samples, are referred to as ‘‘dependent

variables’’ or ‘‘y-data’’ and are to be obtained as the outputs.
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natural selection and (here) is used to generate and to
optimize a mapping between the input and the output
variables. Genetic programming (GP) is a subset of
evolutionary computing and was largely developed and
popularized by John Koza (Koza, 1992, 1994; Banzhaf
et al., 1998; Langdon, 1998; Koza et al., 1999; Foster,
2001; Langdon and Poli, 2002; Koza et al., 2003). This
method involves an arrangement in which the rules are
arrayed in a tree-like structure that is read from the
bottom and a subset of variables are passed through
appropriate operators or functions to provide the
output. So-called parse-trees can be mutated and
recombined to provide variants that remain syntacti-
cally correct. They help evolve solutions to complex
problems that are simple and intelligible, generating
equations essentially in the form of rules, thereby
having both desirable properties (accuracy and intelli-
gibility) mentioned above. GP has been used success-
fully by us in identifying metabolites in terms of their
involvement in particular processes (Gilbert et al.,
1999; Johnson et al., 2000; Kell et al., 2001; Kell, 2002;
Allen et al., 2003; Goodacre, 2003; Goodacre and Kell,
2003; Allen et al., 2004).

A particular trend is towards voting methods of
various kinds (Bauer and Kohavi, 1999; Dietterich,
2000; Breiman, 2001a), in which ensembles of ‘‘weak’’
learners contribute to more robust classifications via a
committee voting approach (Bishop, 1995) than is pos-
sible with single classifiers alone (Hastie et al., 2001).

Correlation analyses can be used to investigate the
dependency of metabolites on one another (Kose et al.,
2001; Fernie, 2003; Steuer et al., 2003; Urbanczyk-
Wochniak et al., 2003). Most frequently pairs of
metabolites show no clear relationship to each other but
when they do occur they are commonly of two types.
The first is when there is high correlation indicating
two-closely linked metabolites and the second is when
there is non-linear correlation between metabolites. This
may suggest that one of the metabolites is more ‘‘con-
strained’’ than another and that they are connected in
some manner through a feedforward or feedback
mechanism (Fernie, 2003), although other mechanisms
are possible. As correlation methods however, (Pearl,
2000), no distinction can be made between relations of
the substrate-product variety and those based on regu-
latory interactions. However, such correlations can be of
value in seeking biosynthetic precursors of metabolites
whose structures are unknown, as a vehicle to assist in
structure determination.

Finally, Pattern recognition analysis of the metab-
olome can also be achieved using co-response analysis
(Raamsdonk et al., 2001) based on MCA (Hofmeyr
and Carnish Bowden, 1996; Raamsdonk et al., 2001)
where the co-variation of pairs of metabolites under
different conditions can provide useful information of
their ‘‘connectedness’’ (Kose et al., 2001; Steuer et al.,
2003).

9. Data storage

Driven in part by the needs of transcriptomics
(Brazma et al., 2001), there is an increasing recognition
that we need standards and interoperable databases for
storing proteome (Orchard et al., 2003; Taylor et al.,
2003) and metabolome data (Hardy and Fuell, 2003), as
well as for the metabolic models (Hucka et al., 2003)
that are a substantial part of the systems biology agenda
(Kell, 2004). The raw data generally do not support
flexible access and its structure, as discussed above, may
vary greatly from experiment to experiment depending
on the analytical technique used (e.g. m/z peaks for MS,
peak retention times and mass spectrum for GC/MS and
LC/MS, chemical shifts for NMR, wave number for FT-
IR, etc.). Since large amounts of data need to be stored,
handled and disseminated efficiently, databases are used
to store the raw or processed data in a structured form
and to provide fast and modular access to such data.
Further advantages of using a database to store the
experimental data include enforcing consistency and
integrity of the data (Hardy and Fuell, 2003).

Another question to decide is the choice of the
types of data to be stored in a metabolomics database.
It is generally useful to store information about the
whole range of wet experiments including growth,
sample preparation and analytical experiments. From
the metabolomics point of view, it is important to
store the so-called meta-data (the data about the data,
a term which refers to specific conditions, protocols
and parameters used for growth/cultivation and sam-
ple preparation experiments) in order to support
reproducibility of results and to analyse the effects
that cultivation conditions and sample preparation
have on the quality of chemical analysis. Wet experi-
ments are generally performed in relation to some
background knowledge, with the ultimate aim of
enriching that knowledge. Once such a database is
sufficiently populated, some types of biochemical
knowledge can be acquired automatically by applying
machine learning to the content of the database. In
this context, it is practical to store the background
knowledge in the database explicitly and in a machine-
readable form.

The roles of the background knowledge stored in the
database cover the provision of the biological context
for genetic strains being examined (e.g. functions of
specific genes), the interpretation of the results of ana-
lytical experiments (e.g. mapping a mass spectrum to
specific compounds and their chemical properties),
support for the reasoning process of data mining (e.g.
annotation for supervised learning methods), etc. Apart
from the experimental data and the relevant background
knowledge, it is important to cover yet another aspect of
metabolomics in the post-genomic era, which is con-
cerned with the results of machine learning methods
used to turn the metabolomics data into information.
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Namely, the conclusions produced by statistical and
machine learning methods (e.g. correlation, clustering
methods, genetic programming, etc.) also need to be
stored for future use in a suitable form, since some of
these methods are computationally intensive. Numerical
analyses of these types that one might wish to store
include:

– pair-wise correlation or mutual information data
between variables, either in full or in an ordered list.

– clustering or multivariate statistical information.
– a derived rule in a variety of possible formats, etc.

For example, rules uncovered by GP can be stored
in the eXtensible Markup Language (XML) format,
which is platform independent and can be converted
automatically (assuming the provision of appropriate
scripts) into appropriate code depending on users’
preferences for specific platforms. Other data (e.g.
computational times, evaluation results, etc.) related to
specific uses of machine learning methods should be
stored as well, in order to support the comparison of
different methods. This also provides a convenient
means of assessing the suitability of specific methods
(and their parameters) for specific types of data (e.g. a
naive Bayes classifier may work well for FT-IR spectra
but not mass spectra).

Before implementing a specific database, the structure
of the data needs to be described by developing a suitable
model transcribed into a database schema. Depending
on the specific purpose of a database, a suitable balance
needs to be struck between its generality and commit-
ment to specific organisms or analytical methods
(Mendes, 2002; Hardy and Fuell, 2003; Li et al., 2003).
Entity-relationship diagrams (Chen, 1976) traditionally
used to model relational databases are nowadays typi-
cally being replaced by Unified Modelling Language
(UML) models (Booch et al., 1999). For example, UML
has been used to model the databases described in (Paton
et al., 2000; Cornell et al., 2003; Taylor et al., 2003; Jones
et al., 2004). UML is an object-oriented modelling lan-
guage which uses classes and relations as its main
structuring mechanism. Classes are used to describe
structural aspects of homogenous sets of objects by
means of their attributes, operations and relations. XML
is also becoming increasingly used for modelling and
integration of biochemical subdomains, e.g. Chemical
Markup Language (CML), Systems Biology Markup
Language (SBML) (Hucka et al., 2003), Generalized
Analytical Markup Language (GAML), etc. (Achard
et al., 2001). Many database models supply an XML
schema of the database (e.g. (Taylor et al., 2003; Jenkins
et al., 2004; Jones et al., 2004)). Through the use of
elements and their hierarchical organisation, XML al-
lows specification of data integrated together with its
structure. The syntax of XML documents also makes
them self-descriptive and thus largely self-documented.

Once a suitable schema is developed, it needs to be
implemented as a database. A UML model can be
translated straightforwardly into an object-oriented
database. For example, such an approach has been ta-
ken in the development of the object-oriented GIMS
database used to store genomic and functional data
(Paton et al., 2000; Cornell et al., 2003). Also, it can be
relatively easily translated into a relational or XML
database. For instance, the object-oriented model for
functional genomics described in (Jones et al., 2004) has
been implemented as a relational database. The PEDRo
model for proteomics experimental data, on the other
hand, is used to convert data into the corresponding
XML format, and the XML files so produced can be
stored in a database repository of the user’s choice.
Further, an XML model can be manipulated automat-
ically by XML-aware applications to produce an object-
oriented or relational schema (or any other kind for that
matter) or directly translated into an XML-native
database. Features used to determine a specific choice of
database type may include flexibility in terms of gener-
ality, extensibility, ease of access and portability. Fur-
ther, speed of access may be important from the data
mining point of view having in mind the sheer volume of
data that needs to be processed. In addition, interoper-
ability with the existing databases sometimes needs
to be supported as well.

XML databases are particularly suitable for highly
variable data (see above) that cannot be easily repre-
sented by fixed table-like structures. The highly variable
structures could generally be retained in relational
databases as well. However, a new table needs to be cre-
ated for each XML element type that can contain other
nested elements. This could dramatically increase the
number of tables required, and, therefore, negatively af-
fect the transparency of the database and its performance.
XML has been suggested as the most appropriate basis
for creating a standard for the exchange of metabolomics
data (Li et al., 2003). However, relational databases still
offer the fastest access and if the data to be accessed can be
easily described by fixed table-like structures (e.g. mass
spectrum), then a relational database is a natural choice
for some metabolomics applications.

Flexibility in database design is important in this area
because as new analytical techniques or data analysis
methods become available then it is important that this
information can be stored and readily accessed.

10. Validation including cross validation

Behind all stages of the data processing and analysis,
statistical and other numerical validation methods need
to be used to ensure that the quality of the data is high
and that conclusions and interpretations drawn from
the data can be justified. While this statement is an
obvious statement of good intentions, it is surprisingly
hard to be rigorous when very high-dimensional data
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are involved. For example, we discussed above the
general lack of validation of clusters.

Machine learning methods are extremely powerful,
and such power can sometimes be dangerous. It is
always possible, for instance using neural networks, to
learn associations between inputs and outputs of the
form given in figure 6, even if all the values used are
random numbers! This is because such systems possess
what is referred to as a ‘‘content addressable memory’’,
so that once they have ‘‘learned’’ something it can be
retrieved. Of course when other inputs are used the
outputs are equally nonsensical, and we wish our
models to have the ability to generalize, i.e. to produce
‘‘correct’’ outputs when presented with ‘‘new’’ inputs.

The essential strategy used to avoid this pitfall is to
control the training in such a way that the model is tested
using samples that are not used in the training phase but
for which the ‘‘correct’’ answer is known (Chatfield,
1995; Mitchell, 1997; Duda et al., 2001; Hastie et al.,
2001). Resampling methods of this type include boot-
strapping schemes (Efron and Tibshirani, 1993), or leave-
k-out cross-validation where the data for all except k
samples are used serially to predict the k samples omitted;
k > 1 is considered to be more robust. A common
method, and one we usually use, is to split the data into
three sets. One (‘‘training set’’) is used for training the
learning system, another (‘‘validation set’’) is used to tune
the method (in iterative algorithms such as regression,
neural or evolutionary methods, this means to determine
when training is stopped so as to avoid overfitting), and a
third set (‘‘test set’’) is used as a final test of the ability of
the model to generalise. Note that in some works the
meanings of the terms ‘‘validation set’’ and ‘test set’ are
interchanged, and the final set is also commonly referred
to as a hold-out set. Some of the issues used to determine
which samples one would assign to each set, and the use
of these methods in GP, are discussed well and in detail
by Rowland (Rowland, 2003).

11. Concluding remarks

‘‘Errors using inadequate data are much less than
those using no data at all’’

Charles Babbage (1792–1871).

In conclusion, it is important whilst aiming to
produce useful data to recognize the limitations of all
high-volume high-throughput methods currently used in
measuring and analyzing the metabolome. The repro-
ducibility will vary considerably from organism to
organism, from tissue to tissue and between analytical
and extraction methods used. In tandem with this are
the problems that the analysis of high-dimensional data
presents. However, a well-defined approach can be used
to maximize the potential of the raw data to ensure that
coupled to the chemometric data processing that is

necessarily required, the data may be used to give
meaningful and useful results.
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