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Figure 1: An overview of the Robot Scientist.
1 Introduction

The aim of the Robot Scientist project is to construct a physical implemen-
tation of a scientific active learning system (see Figure 1). The system will
construct an initial set of hypotheses and then repeat the following cycle:
(1) devise experiments to select between competing hypotheses, (2) direct
a robot to physically perform these experiments, (3) automatically analyse
the experimental results, and (4) revise its hypothesis set in the light of the
experimental results. This cycle is then repeated until only one hypothesis
remains.

The Robot Scientist project is investigating scientific active learning by
applying it to the problem of functional genomics to automatically produce
useful knowledge about genes of unknown function.

2 Functional Genomics

With the completion of the sequencing of genomes of an increasing number
of organisms, the focus of biology is turning towards determining the role of
genes. For example, the yeast S. cerevisiae, one of the most intensely stud-
ied of all organisms, has ~6,000 predicted protein-encoding genes [9]. Of
these, only ~60% can be assigned a function with any confidence. Most of
these genes have had functions proposed based on sequence similarity, but
have not been confirmed experimentally. Furthermore, many annotations
are incomplete and incorrect as functional assignment by homology is in-
correctly assumed to be transitive. The new science of functional genomics
is dedicated to determining the function of genes of unknown function, and
to further detailing the function of genes with purported function.

To meet the challenge posed by functional genomics, new, and highly
ingenious experimental techniques have been developed. These techniques
permit large-scale, and parallel interrogation of cell states under different
stages of development and defined environmental conditions. Such analyses
may be carried out at the level of transcription [35, 6] and at the level
of translation [40, 26]. Most recently, the metabolome (the cell’s small
molecule complement) [7, 28], protein interaction assays [39], and large-scale
phenotyping [31, 34] have emerged as other important levels for functional
genomics studies.

The above experimental techniques are valuable as they provide win-
dows into the internal workings of cells. However, their output is more
often a deluge of data than distilled scientific knowledge. To integrate and
exploit this experimental data it is essential to develop models of cells that
can explain and predict the experimental observations. To this end, we view
the cell as a biochemical machine: it consumes simple molecules to manu-
facture more complex ones by chaining together biochemical reactions into
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long sequences referred to as metabolic pathways. Such metabolic pathways
are not linear but often intersect to form complex networks.

2.1 Problems in the Analysis of Metabolism

In the analysis of metabolism important questions are:

Problem 1 Given a model of metabolism and a set of nutrients, is it pos-
sible to synthesise each of a defined set of compounds?

Problem 2 Given a model of metabolism and a particular compound, what
nutrients are necessary to synthesise that compound?

Problem 3 Given a model of metabolism and a pair of compounds, what
is the shortest distance between them (measured in number of reactions or
energy-equivalents(ATP))?

Problem 4 Given an incomplete/incorrect model of metabolism, a set of
nutrients, and a set of compounds that can be synthesised, discover miss-
ing/incorrect reactions.

The size and complexity of metabolic networks has proven beyond the
capacity of human reasoning and has hindered our ability to solve the above
problems. This is a principal motivation for the use of logic.

3 A Logical Model of Metabolism

In this section, a logical setting is defined for reasoning about metabolism.
Reactions and compounds are described as logic formulae in the predicate
calculus and together form a logical model of metabolism. The model’s
consistency and completeness can be analysed by comparing the model’s
logical consequences with the outcome of experimental results and thereby
permits a clear specification of the problem of inferring missing reactions
based on in vivo observations.

3.1 Metabolic Graphs

Metabolic pathways in an organism are not linear but often intersect to form
complex networks. A cell’s metabolism is therefore naturally modelled by a
graph structure. The classical metabolic graph is reviewed and a new type
of metabolic graph, the complete metabolic graph is presented.

A reaction is a pair (I,7) where [ and r are sets of compounds corre-
sponding to the substrates and products respectively. A reaction is modelled
as a unidirectional transformation; the forward and reverse directions of a
bidirectional reaction are treated as two separate reactions, i.e. the graph
is directed®.

Classical metabolic graph. Each vertex corresponds to a single com-
pound. An edge describes a reaction from one compound to another.
This representation shows the key compounds involved in a reaction
and is useful because of its clarity.

In principle, there are no irreversible reactions in chemistry. Although the
equilibrium constant (standard Gibbs energy) will always be finite, it can be
immense, e.g. order 10° for pyruvate kinase. So, although in theory all enzymes
catalyse reversible reactions, they are not assumed to be reversible in this model.
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Figure 2: Representation of metabolic graphs. A single step in the
glycolysis pathway as typically represented in the literature and rep-
resented as a complete metabolic graph.

Complete metabolic graph. Each vertex corresponds to a set of com-
pounds that are available in the cell. These compounds may be used
directly to form parts of the cell or to partipate in further reactions.
The graph has a unique start vertex corresponding to the nutrients
available to the cell. An edge corresponds to a reaction and the
destination of an edge is the set of available compounds plus the re-
action’s products. As a result, a pathway corresponds to a monoton-
ically increasing set of compounds available in the cell. Some vertices
correspond to large numbers (several hundred) of compounds. See
Figure 2.

Let the nutrients available to a cell N be a set of compounds.

Definition 1 (Complete metabolic graph) Let R be a set of reactions
R={(li,r1),(l2,72),...} and N be a set of nutrients. A complete metabolic
graph is a directed acyclic graph G = (V, E) where vertices are defined as
the union of a number of vertex sets V.= Vo U VL U --- and vertex sets V;
are defined recursively as follows

Vo =N
Vit :{U, | (,r)e R, veEV,, I Cu, v =vUr, va’}

and edges E are defined
E={(u,v) | u € Vy, v € Vpy1, u C v}

The complete metabolic graph has a minimal element (bottom) and a
maximal element (top). The bottom corresponds to the cell’s nutrients and
the top corresponds to all the compounds that are available to the cell that
have been either provided as a nutrient or that can be synthesised. For any
path vy, ve, ..., v, where (v;,vi11) € E, the following holds v; C va -+ C vy,
i.e. the set of compounds available to the cell increases monotonically with
every biochemical reaction.

Example 1 Let the set of nutrients be N = {a} and reactions
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{a,b,c,d}
{a,b,d} {a,c,d}
{a,b,c}
{a,b} {a,c}
{a}

Figure 3: Representation of metabolic graphs. A single step in the
glycolysis pathway as typically represented in the literature and rep-
resented as a complete metabolic graph.

({a}, {0})
o ) ad o)
({6}, {d})
({c}, {d})
From this the vertex sets V; are computed:
Vo ={{a}}

W = {{avb}v{avc}}

Vo ={{a,b,c},{a,b,d},{a,c,d}}
Vs = {{avbvcv d}}

Vi =0

and the vertices given by V. = {{a}} U {{a,b},{a,c}} U --. Edges are
computed from the vertex sets

({a},{a,b})
({a},{a,c})

E = ({avb}v{avbv C})
({a,b,c},{a,b,c,d})

G = (V, E) is complete metabolic graph and is shown in Figure 3.

Edges of the complete metabolic graph are labelled with the enzymes
that catalyse the reactions and the genes that code for these enzymes. Edges
are labelled with the pair (g, e), where g is the gene name and e denotes the
enzyme name.

The complete metabolic graph is better suited than the classical graph
to the problem of relating predictions to in vivo observations and reasoning
about missing reactions.
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3.2 Logical Models of Metabolism

Below we describe a logical setting for metabolism and show how synthesis
of compounds corresponds to logical consequence. As a result these com-
pounds can be derived by deduction.

The following symbols are used below A (logical and), |= (logically en-
tails) and O (falsity). Further details can be found in [17].

Definition 2 (Metabolism) Let G = (V, E) be a complete metabolic graph.
A logical model of metabolism is a conjunction of clauses that represents ex-
actly the edges in E and the paths constructed from these edges.

Example 2 Let G = (V,E) be the complete metabolic graph defined in
Ezxample 1. A logical model of metabolism M is defined intensionally with
reactions R and predicates for deriving the edges and paths

reaction({a}, {b}) <

reaction({a}, {c}) <

reaction({b}, {d}) +

M = ¢ reaction({c},{d}) <

edge(X,Y) < reaction(A, B) A subset(A, X) A union(X, B,Y)
path(X,Y) + edge(X,Y)

path(X, Z) < edge(X,Y) A path(Y, Z)

where subset/2 and union/3 are predicates defining conventional set op-
erations.

Definition 3 (Nutrients) A conjunction of clauses each corresponding to
a compound available to the cell from its growth medium

N=cANcaA---N¢p.

Definition 4 (Reachable) Given a model of metabolism M and a set of
nutrients N, a compound c is reachable if it is a logical consequence of the
metabolism and the nutrients

MAN Eec.

Therefore it is possible to compute whether a particular compound can
be reached, given a set of nutrients and a model of metabolism, by using
deductive inference. If the above definitions are restricted to logic programs
(i.e. conjunctions of definite clauses) then deductive inference can be per-
formed by SLD resolution as implemented in Prolog.

3.3 Auxotrophic Growth Experiments

Auzotrophic growth experiments are a classical technique for inferring metabolic
pathways in a microorganism [16]. An auzotrophic mutant is a strain of
an organism that has a mutated or deleted gene so that it is defective in
a biosynthetic pathway and as a consequence cannot grow and replicate.
However, by adding the normal product of the pathway growth can be re-
stored.

As a concrete example, consider the pathway shown in Figure 4 that
synthesises the essential compound S. With the wild type (the strain with
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Figure 4: Auxotrophic growth experiments (adapted from [16]). Dot-
ted lines indicate defective pathways.

Strain Supplement
A B C S
Wild type + + + +
Mutant I - + + +
Mutant I - — + +
Mutant III. — — — +

Table 1: Restoring growth of auxotrophs by adding supplements.

no missing genes), S can be synthesised via the precursors A, B and C
using the enzymes Ej, E» and E5. However, in mutants I, IT and III, gene
deletions prohibit one of the enzymes from being synthesised and as a result
these mutants will not grow.

Growth can be restored by adding the precursors or the end product.
When the compounds A, B,C and S are added to the four strains, the
observed growths are shown in Table 1. The growth properties of the single-
gene deletion strain in the presence of the appropriate precursors indicates
the reaction that the enzyme catalyses. Given a gene of unknown function,
one can use auxotrophic growth experiments to infer the biochemical role
of the enzyme that it codes for.

Study of cells has revealed a number of essential molecules that must
be present for growth and replication to occur. These molecules include
macromolecules such as proteins, nucleic acids (DNA and RNA), phospho-
lipids (cell membrane), lipopolysaccharides and oligosaccharides (cell wall)
as well as the following building blocks: amino acids, purines, pyrimidines,
lipids, and saccharides. The deletion of any genes essential in the synthesis
of these molecules will prevent growth and replication. As a result, aux-
otrophic experiments can be used to infer the biochemical function of genes.

3.4 Logical Setting for Auxotrophic Growth Experi-
ments

Definition 5 (Logical phenotype) A logical phenotype is an observable
property of the organism under study that takes a truth value. A logical
phenotype p may be true or false denoted p™ or p~ respectively.

In auxotrophic growth experiments, the observable property is growth
of the microorganism. The truth values of the logical phenotype correspond
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to growth and no growth.

Definition 6 (Metabolic baseline) Let M, be a model of the metabolism
of the wild type, N be a set of nutrients and p be a logical phenotype. The
metabolic baseline for that phenotype is defined as

My AN |=p*

Definition 7 (Metabolic necessity) Let M, be a model of the metabolism
of a mutant strain m, N be a set of nutrients and p be a logical phenotype.
Metabolic necessity for that phenotype is defined as

My, AN = pt

Definition 8 (Metabolic sufficiency) Let M,, be a model of the metabolism
for mutant strain m, N be a set of nutrients, p be a logical phenotype, and
r be a reaction. Metabolic sufficiency for that phenotype is defined as

M, AN Ar|=p*

Definition 9 (Weak consistency) Let M, be a model of the metabolism
of a mutant strain m, N be a set of nutrients, r be a reaction. My, is said
to be weakly consistent if

My AN Ar O

Definition 10 (Strong consistency) Let M, be a model of the metabolism
of mutant strain m, N be a set of nutrients, r be a reaction, and p be a logical
phenotype. M, is said to be strongly consistent if

My, ANNArAp EO

The problem of inferring reactions and gene function with auxotrophic
growth experiments can be defined as:

Definition 11 (Pathway Discovery)

e Given: a model M, of the metabolism of a mutant strain m and
a logical phenotype p that satisfy metabolic baseline and necessity
conditions

e Find: one (or more) reaction(s) r such that the new model of metabolism
My, = M,, A r satifies sufficiency and strong consistency conditions.

4 Inference of Metabolic Pathways

Inference or reasoning is the derivation of new facts from existing facts or
premises by any acceptable form of reasoning. Three main types of logi-
cal inference are deduction, induction and abduction [27]. Abduction and
induction are related and their distinction is still controversial [8]. One dis-
tinction is that abduction infers ground propositions while induction infers
non-ground propositions (or rules). According to this distinction, the type
of inference most suited to the inferring reactions from auxotrophic growth
experiments is abduction.

Abduction is the inference of the case from the general rule and the
result. Abduction is often referred to as a form of common-sense reasoning
as it can be used to reason from cause to effect.
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Example 3 Given the rule
rained-last-night —  grass-is-wet

if we observe that the grass is wet, we infer that it rained last night. This
s abductive inference and can be seen as the reverse of deductive reasoning.

4.1 Theory Completion by Abductive Logic Program-
mming

Definition 12 (Theory Completion) Let I, T and E be sets of well-
formed formulae in the predicate calculus.

e Given: integrity constraints I, examples E, and a theory Ty;, that
satisifies I,

e Find: a theory T' = T}ty U Thqq obtained by adding clauses Tyqq4
such that: T = E, and T satisfies I.

There exist several techniques for deriving completions [23]. The ap-
proach used by Moyle and Muggleton [24, 4] is logical backpropagation.
However, logical backpropagation has a number of limitations; most sig-
nificantly, it cannot infer clauses with more than one literal. The implica-
tion for inferring metabolic reactions is that it can only infer single reaction
steps. As there are cases where an enzyme catalyses several reactions, logi-
cal propagation cannot discover these reactions.

Another way of deriving completions is Yamamoto’s Skip Ordered Lin-
ear resolution for Definite clauses (SOLD) [41]. SOLD resolution is a variant
of SLD resolution refutation [32]. SOLD resolution is a proof technique for
deriving a goal clause H from a definite program T and a goal E where
TUE | H. A theory completion can be found by applying SOLD resolu-
tion to the existing theory T, and the negation of the example E:

T =Tpip UTqaqd, where Tpqq € SOLDR(Tﬁx, E)

4.2 Graph Inference by Theory Completion I

The use of abductive inference to complete a theory can be illustrated by
the following simple application. Consider the graph shown in Figure 5.
This graph is defined by the clauses

edge(a, b) +
edge(c,d)

Suppose there is evidence that this graph is incomplete. More specifi-
cally, it is known that there exists a path between nodes a and d, i.e.

path(a, d) +
where path/2 is defined as

path(X,Y) + edge(X,Y)
path(X, Z) < edge(X,Y), path(Y, Z)

Consequently, we have the theory T%;, and an example E defined as
follows
edge(a,b) «
edge(c,d) +
path(X,Y) + edge(X,Y)
path(X, Z) < edge(X,Y) A path(Y, Z)

Tfiac =

?
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Figure 5: A simple graph.
E = { path(a,d) +

By applying SOLD resolution to the background knowledge and exam-
ple, the following set of clauses is inferred

;

SOLDR(Tyi,, E) = { edse

The clauses correspond to sets of edges that could be added to the graph
to complete the pathway. The completed theory 7' is constructed by adding
one of the completions found by SOLD to the original theory T';;, i.e.

T = Tfm UTeqd, where T,qq € SOLDR(Tﬁx, E)

4.3 Graph Inference by Theory Completion I1

It is not always the case that a single edge can complete the graph. SOLD
resolution can also be used to infer multiple edges by introducing new ver-
tices. For instance, in the graph inference example above (Section 4.2), the
completions inferred by SOLD would also include:

SOLDR(Tyiz, E) = < edge(a, $sk) A edge($sk, c)

This clause thereby introduces a new vertex into the graph labelled with
a Skolem constant $sk. This is illustrated in Figure 6.

In a graph with v vertices, there may be up to n = v(v — 1) edges.
For those cases where only a single edge is required to complete the graph,
the number of possible completions is therefore O(v?). More generally, if a
completion requires up to r edges the number of completions is given by

”

et

i=1
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Figure 6: A simple graph with a new vertex and two edges (dotted
lines) inferred by SOLD resolution.

For completions with only a small number of edges (r < n) the number
of completions is O(v"), i.e. the number of completions is polynomial in
the number of vertices and exponential in the number of edges allowed in a
completion.

Clearly there can be many possible completions and integrity constraints
can be used to eliminate inappropriate completions. Integrity constraints
will be discussed further in Section 5.3.

Note we are learning the definitions of predicates that are unobservable.
In the above examples the only observable is the existance of a path in the
graph. Yet the predicate being learned is the existence of edges. Abductive
logic programming is therefore highly suited to the problem of metabolic
reconstruction where the individual reactions are difficult or even impossible
to observe, but the existance of a pathway to an essential compound is
relatively easy to observe.

5 Developing a Logical Model of Yeast Metabolism

5.1 Data

There has been considerable effort in cataloging current knowledge of bio-
chemistry and molecular biology and making it accessible to the scientific
community. The Kyoto Encyclopaedia of Genes and Genomes (KEGG) [11]
is one example. Most of the data in KEGG consists of information on inter-
acting molecular and gene pathways. Related to KEGG are the Biochemical
Pathways (BP) index of Boehringer Mannheim [21], and the Encyclopaedia
of E. coli Genes and Metabolism (EcoCyc) [12].

Almost all existing bioinformatic databases are designed only to store
data generated by biological experiments and to make these data available
to the scientific community. Such databases do not support the kind of rea-
soning necessary for automatically inferring metabolic pathways. We have
therefore developed a logical model of yeast by converting most of KEGG
into logical statements. The resulting logical model holds information about
genes, the enzymes they code for, the reactions they catalyse and the com-
pounds involved in the reactions. Some details of the model are shown in
Table 2.
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number of yeast genes 6121
yeast genes of assigned function 1026
yeast genes of unassigned function 5095
number of reactions 5215
number of compounds 5873

Table 2: Properties of the logical model constructed from KEGG.

5.2 Case Study: The Aromatic Amino Acid Biosyn-
thesis Pathway

A logical model of the aromatic amino acid biosynthesis pathways of the
yeast S. cerevisiae was constructed using the literature (See Appendix B).
The model was then compared with the pathways found in KEGG. Reac-
tions were found in KEGG that are do not occur in S. cerevisiae. Also there
are some reactions missing in KEGG. This illustrates how even a well-known
pathway in a well-studied organism may be inconsistent and incomplete.

5.3 Metabolic Inference by Theory Completion

The complete model of aromatic amino acid biosynthesis pathways was used
as the basis of a rediscovery experiment. When a single reaction was deleted,
as occurs with a single-gene deletion, the theory completion approach de-
scribed in Section 4 infers the set of candidate reactions® to restore the
defective pathway.

Unconstrained, the set of candidate reactions can grow rapidly. The
number of reactions is polynomial in the number of vertices, and exponential
in the number of reactions that may be added. However, many of the
candidate reactions are chemically unrealistic, for instance a single reaction
between the start and end of the pathway may complete the pathway, but
cannot be performed by a single enzyme. Integrity constraints are therefore
used to limit completions to only those that are chemically plausible using
the principle of conservation of mass. This was found to reduce the number
of candidate reactions significantly.

5.4 Eliminating Conjectured Reactions by Auxotrophic
Growth Experiments

Despite the use of integrity constraints there are typically multiple candidate
reactions. The candidate reactions can be viewed as competing hypotheses
and by conducting suitable growth experiments we aim to eliminate (falsify)
hypotheses until there remains only one.

A single trial on a mutant consists of the selection of a growth medium
and the measurement of growth on that medium [31, 34, 37]. Each hypoth-
esis tested will be a prediction of the results of the experiment. Growth
is measured by photometry at a single time point after inoculation which
gives an easily automated measure of biomass. Errors are controlled by
performing replicates of each trial and by using the wild type as a control.

Standard growth experiments are characterised by a very large space
of possible growth media. A typical growth medium for S. cerevisiae con-

2The use of SOLD resolution to construct theory completions allows new reac-
tions to be inferred. In contrast, logical backpropagation [25, 4] cannot infer new
reactions but can only select from a complete set of reactions supplied in advance.
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sists of carbon sources (at least 50 possible), nitrogen sources (at least 10
possible), other amino acid supplements (/20 possible), nucleic acid bases
and nucleosides (at least 10 possible) and various minerals (=20 possible).
For example a medium could be a combination of 5 carbon sources, 2 nitro-
gen sources, 10 amino acids, 3 bases and 10 minerals, each component of a
medium may be present in varying amounts.

The number of trials that can be performed is clearly prohibitively large
and there is a clear need for (1) a high-throughput technique to automate
the execution of experiments, and (2) an intelligent way of selecting trials.

6 The Robot Scientist

The aim of the Robot Scientist project is to provide a physical implemen-
tation of a scientific active learning system. The study of systems that can
choose the next experiment is known as active learning. There are two
computational tasks in active learning: (1) formation of hypotheses that
are consistent with the known background knowledge and experimental re-
sults, and (2) selection of the best experiment (or set of experiments) to
discriminate between hypotheses?.

The remainder of this section describes the Robot Scientist Platform,
the logical interface to the platform referred to as the Oracle; and briefly
describes the active learning system ASE-Progol.

6.1 The Robot Scientist Platform

The Robot Scientist Platform is a robotic system for conducting microbi-
ology assays with minimal human intervention. The platform consists of a
laboratory robot, a plate reader and a dedicated PC to control them. The
robot is designed to automate the task of liquid handling and can conduct
assays by pipetting and mixing liquids on microtitre plates. It is also able
to transfer the plates into the adjacent plate reader where measurements
can be made using a variety of protocols.

The robot scientist platform may be seen as an oracle that can be
queried about the the observable behaviour of micro-organisms. The num-
ber of different trials that can be performed is essentially limitless. It is
for this express reason that it was built with the objective of connecting it
to an intelligent algorithm capable of choosing future experiments based on
previous trial outcomes.

6.2 The Hardware

The robot is a Beckman Coulter Biomek 2000 Workstation, a liquid handling
robotic workstation*. The robot has a work surface consisting of 12 cells.
Each cell can hold either microtitre plates, reservoirs for liquids, tips for
pipetting, or tools for pipetting and gripping.

The reader is a Wallac Victor2 plate reader®. The reader’s counting
modes cover all the main nonradioactive counting technologies, including

®Note that experiment selection in active learning should not be confused with
the statistical study of experimental design: the difference is between deciding
which question to ask next (active learning) versus ensuring that a set of experi-
ments can answer a question (traditional experimental design).

“See http://www.beckman.com for detailed specifications.

5See http://lifesciences.perkinelmer.com.
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fluorometry, TR-fluorometry, luminometry and photometry. It also has
shaking and temperature control features. The server is an IBM PC running
Windows NT4. It hosts the robot and reader’s software and is connected
to the local network and the internet.

6.3 The Oracle

The Oracle is the high-level interface to the robot scientist platform. It takes
as input a query and returns a response. The query corresponds to a trial
and the reponse is the trial’s outcome which is established by conducting
an assay. Random error can be recognised and eliminated by conducting a
number of assay replicates.

Queries are specified as clauses in the Prolog logic programming lan-
guage and the results are also returned as Prolog clauses. The Prolog defi-
nition of a trial is compiled into a sequence of steps to be performed by the
robot and plate reader. These instructions are queued to be executed by
the robot. The robot is programmed to execute the experimental procedure
shown in Appendix A.

6.4 Closed-Loop Learning

The project will use existing results in active learning theory to develop a
method of selecting efficient experiments to discriminate between hypothe-
ses. The system forms an initial set of hypotheses using machine learning,
devises experiments to select between competing hypotheses, directs a robot
to physically perform these experiments and automatically revises its hy-
pothesis set in the light of the experimental results. This cycle is repeated
until the robot scientist converges on a single hypothesis.

The experimental strategy will seek to minimise the expected cost of
finding the best hypothesis. Bryant et al [4] are developing an active learn-
ing system based on Inductive Logic Programming called ASE-Progol. In
this work, they have developed a computationally efficient active learning
strategy that is linear in: the number of hypotheses considered, the num-
ber of experiments considered, and the time to determine the accuracy of a
hypothesis.

7 Related Work

Metabolism has been modelled with a variety of representations such as
differential equations [18, 19, 20], boolean networks [1], petri-nets [29, 10],
m-calculus [30], graphs [14, 13] and propositional logic [3]. However, no rep-
resentation is optimal as the choice depends on the problem that is to be
solved. For instance, differential equations are well suited to representing
the concentrations of metabolites along a pathway and identifying rate-
limiting steps but ill-suited to identifying pathways because there are no
existing techniques for inferring models with missing reactions. A represen-
tation very similar to the complete metabolic graph was developed indepen-
dently by Karp and co-workers [33]. The Karp approach lacks a rigorous
definition and it is not clear how it would be used to infer reactions.

First order logic allows the natural representation of networks and has
formalised methods for reasoning over these structures (such as deductive,
abductive and inductive inference). This makes first order logic well suited
to reasoning about missing reactions and erroneous pathways.
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The general problem of reverse engineering pathways can be stated as
follows: given a set of input-output pairs of observations of the cell, derive
biochemically plausible models of the pathways that can account for these
observations. Existing approaches can be classified along three dimensions:
(1) the type of observation, (2) the pathway representation and (3) the path-
way inference method. Previously used observations include gene expres-
sion time-series [1] and metabolite concentration time-series [2, 15]. Types
of pathway representation have already been discussed above. Pathway in-
ference methods include: systematic enumeration [14, 36, 22] and genetic
programming [15].

8 Discussion

8.1 Limitations of Auxotrophic Growth Experiments

Auxotrophic growth experiments cannot be used to infer function for all
genes. The technique is applicable to only those mutant strains that grow
on rich media but not on minimal synthetic media. At present it is not
known exactly how many yeast mutant strains grow on minimal media.
However, the EUROFAN I project has examined 660 strains of which 67-163
are suitable for auxotrophic growth experiments. In the remaining cases,
there are several genes that code for an enzyme or there are redundant
pathways and as a result there is no clear phenotypic effect from knocking
out a single gene. These cases could be addressed by multiple gene deletions
or by adding compounds known to inhibit specific enzymes.

8.2 Limitations of Theory Completion

With theory completion, clauses can be added to the theory, but not re-
moved. As a result, if an incomplete theory includes an incorrect clause,
the correct final theory cannot be found by theory completion. Therefore, if
the model of metabolism used as the starting point (e.g. taken from KEGQ)
contains an incorrect reaction, theory completion will not be able to find
the correct model of metabolism.

Theory revision [5] is a more general problem setting for discovering log-
ical theories that also allows clauses to be removed. However, it carries the
overhead of being computationally more expensive than theory completion.
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A Experimental Procedure
The experimental procedure executed by the robot scientist platform:

1. for each microtitre plate:

(a) prepare growth media in all wells.
(b) add inoculum.
(c) mix all wells.
2. allow to incubate.
3. for each microtitre plate:
(a) mix all wells.

)
(b)
)
)

transfer a small sample from each well to a measurement plate.

(c

(d) measure optical density.

move the flat plate to the plate reader.
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B A Logical Model of Aromatic Amino Acid
Biosynthesis in S. cerevisiae

The logical model (represented in Progol) is shown in Figures 7 and 8.
In Figure 7, the predicate start/1 lists the compounds (using the KEGG
labelling scheme) that are assumed to be available to the cell. The predicate
end/1 lists the essential compounds that must be synthesised for growth to
be observed.

In Figure 8, the predicate enzyme/4 defines the reactions in the pathway.
The first argument is a list of ORF names (putative genes); the second
argument is the enzyme labelled by Enzyme Commission (EC) numberS.
The third and fourth arguments are lists of substrates and products in the
reaction catalysed by the enzyme.

start (>C00001°) .
start (’C00011°).
start (>C00074’).
start (’°C00279°) .
start (’C00014’).
start (>C00064°) .
start (>C00025°) .
start (°C00005°) .
start (>C00006°) .
start (’>C00002’) .
start (°C00009°) .
start (>C00065°) .
start(’C00119°).
start(’C00026’). % needed for reverse reactions
start (’C00661°). % needed for reverse reactions

% the following required to get from Tryp to Tyr & Phen
start (°C000137).
start (’C000227) .

% start(’edta’). % example inhibitor
end (°C00078”) .

end (°C00079) .
end (’C000827) .

Figure 7: A Prolog model of Aromatic Amino Acid Synthesis. Part I:
start and end compounds.

SEnzyme Nomenclature, = Nomenclature committee of the In-
ternational Union of Biochemistry and Molecular Biology.
http://www.chem.qmw.ac.uk/iubmb/enzyme/.
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enzyme ([’YBR249C’],°4.1.2.15°,[’C04691’,°C00009°], [>C00001”,°C0O0074’,’C00279°]) .
enzyme ([’ YDRO35W’],’4.1.2.15°,[’C04691’,°C00009°], [>C0O0001”,°C0O0074’,’C00279°]) .
enzyme ([’YDR127W’],’4.6.1.3”,[’>C04691°], [7C00944°,°C00009°]) .

enzyme ([’YDR127W’],°4.2.1.10°,[’C00944°], [>C00001°,°C02637°]) .

enzyme ([’ YDR127W?]1,’X’,[2C02652°],[>C02637°]). % Isomers

enzyme ([’YDR127W’],”1.1.1.25°,[?C00493’,°C00006°],[’C02652’,°C00005°]) .

enzyme ([’YDR127W?],°2.7.1.71°,[?C00493’,°C00002°], [>C03175”,°C00008°]) .

enzyme ([’YDR127W’],°2.5.1.19°,[’C00074’,°C03175°], [>C00009’,°C01269°]) .

enzyme ([’YGR254W’],°4.2.1.11°,[’C00631°], [>C00001°,°C00074°]) .

enzyme ([’YHR174W’],’4.2.1.11°,[’C00631°],[’C00001’,°C00074°]) .

enzyme ([’YMR323W’],’4.2.1.11°,[’C00631°],[’C00001’,°C00074°]) .

enzyme ([’YGL148W’],’4.6.1.4°,[’C01269°], [’C00251”,°C00009°]) .

enzyme ([’ YERO90W’],’4.1.3.27°,[’C00251°,°C00014°],[?C00001°,°C00108°,°C00022°]) .
enzyme ([’ YERO9OW’ ,’YKL211C’],’4.1.3.27°,[’C00251°,°C00064°],[’C00108”,°C00022°,°C00025°]). 7% note bc
enzyme ([’YKL211C’],°4.1.1.48°,[’C01302°],[?C00001°,°C00011”,°C03506°]). % s/SDS auxotrophic mutant
enzyme ([’YDR354W’],’2.4.2.18°,[’C04302°,°C00013°],[?C00108°,°C00119°]) .

enzyme ([’YDROO7W’],’5.3.1.24°,[’C04302°],[’C01302°]).

enzyme ([’YGLO26C’],°4.2.1.20°,[’C00065°,°C03506°], [>C00001”,°C0O0078’,’C00661°]) .
enzyme ([’ YGL026C’],’4.2.1.20°,[’C00065°,°C00463°], [?C00001°,°C00078°]) .

enzyme ([’ YGL026C’],’4.2.1.20°,[’C03506°],[’C00463’,°C00661°]) .

enzyme ([’ YPRO60C’],’5.4.99.5°,[’C00251°],[>C00254°]) .

enzyme ([’YNL316C’],°4.2.1.51°,[’C00254°], [*C00001°,°C00011”,°C00166°]) .

enzyme ([’YGL202W’],’2.6.1.77,[*C00166°,°C00025°], [*C00079°,°C00026°]) . ’%not in KEGG
enzyme ([’YGL202W’],°2.6.1.77,[’C01179’,°C00025°], [?C00082,°C00026°]) . ’not in KEGG

enzyme ([’ YHR137W’],°2.6.1.77,[*C00166°,°C00025°], [*C00079°,°C00026°]) . ’%not in KEGG
enzyme ([’ YHR137W’],°2.6.1.77,[°C01179’,°C00025°], [?C00082,°C00026°]) . ’%not in KEGG

enzyme ([’YBR166C’],°1.3.1.13”,[?C00254°,°C00006°],[>C01179”,°C00005°]) .

Figure 8: A Prolog model of Aromatic Amino Acid Synthesis. Part I1:
enzymatic reactions.



