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Huntington disease patients and transgenic mice
have similar pro-catabolic serum metabolite
profiles
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There has been considerable progress recently towards developing therapeutic strategies for Huntington’s
disease (HD), with several compounds showing beneficial effects in transgenic mouse models. However, human
trials in HD are difficult, costly and time-consuming due to the slow disease course, insidious onset and patient-
to-patient variability. Identification of molecular biomarkers associated with disease progression will aid the
development of effective therapies by allowing further validation of animal models and by providing hopefully
more sensitive measures of disease progression. Here, we apply metabolic profiling by gas chromatography-
time-of-flight-mass spectrometry to serum samples from human HD patients and a transgenic mouse model
in a hypothesis-generating search for disease biomarkers. We observed clear differences in metabolic profiles
between transgenic mice and wild-type littermates, with a trend for similar differences in human patients and
control subjects. Thus, the metabolites responsible for distinguishing transgenic mice also comprised a meta-
bolic signature tentatively associated with the human disease. The candidate biomarkers composing this HD-
associated metabolic signature in mouse and humans are indicative of a change to a pro-catabolic phenotype in
early HD preceding symptom onset, with changes in various markers of fatty acid breakdown (including glycerol
and malonate) and also in certain aliphatic amino acids. Our data raise the prospect of a robust molecular
definition of progression of HD prior to symptom onset, and if validated in a genuinely prospective fashion these
biomarker trajectories could facilitate the development of useful therapies for this disease.
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Introduction
Huntington’s disease (HD) is a devastating autosomal

dominant neurodegenerative condition that manifests with

movement disorder, behavioural disturbance, and cognitive

deterioration. Although it can present at any age, the median

age of onset is 40 years, and death typically follows some

15–20 years after symptom onset. The HD mutation is a
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(CAG)n trinucleotide repeat expansion at the 50 end of the

transcript encoding huntingtin. The (CAG)n repeats are

translated into a polyglutamine tract. Disease is caused by

>35 CAG repeats and the age at onset correlates inversely

with CAG repeat number.

In the 12 years since the Huntington’s disease mutation was

identified, considerable progress has been made with model-

ling pathogenesis in cell and animal models. Mutant hunting-

tin accumulates in intraneuronal aggregates (also called

inclusions). Huntingtin is cleaved to form N-terminal frag-

ments consisting of the first 100–150 residues containing the

expanded polyglutamine tract and these are believed to be

the toxic species found in the aggregates (DiFiglia et al., 1997;

Taylor et al., 2002). HD pathogenesis is frequently modelled

with exon 1 fragments containing expanded polyglutamine

repeats, which lead to aggregate formation and toxicity in cell

models and in vivo (Cooper et al., 1998; Martindale et al.,

1998; Wyttenbach et al., 2000). The extent to which mouse

models expressing N-terminal fragments of mutant hunt-

ingtin recapitulate the human disease phenotype is unclear,

although these mice have pathological and behavioural simi-

larites to HD.

These models have been particularly powerful tools for

developing therapeutic strategies and a number of com-

pounds have emerged from studies in mice that delay disease

onset and/or alleviate progression of the disease. The former

strategy is appealing, since one could effectively cure many

cases if one could force the age at onset of symptoms to

beyond normal life expectancy. This is theoretically feasible

in HD, as mutation status can be assessed presymptomatically

in most cases with technical ease. However, the ability to test

promising approaches based on mouse studies in patients is

handicapped by a number of factors. Human trials in HD

are difficult, costly and time-consuming due to the slow dis-

ease course, insidious onset and patient-to-patient variability.

Any such study would require many hundreds of people to be

treated for at least 3 years in order to have suitable power to

detect clinically realistic outcomes.

Identification of molecular biomarkers associated with the

progression of this disease would aid the development of

effective therapies in at least two ways. First, they would

allow validation of the animal models which have been

used to select candidate therapies. If the animal models

share a wide range of biomarkers with human patients, this

increases the likelihood that treatments effective in the ani-

mals will also ultimately be effective in humans. Secondly,

following changes in biomarkers, particularly in the pre-

symptomatic or early symptomatic phases of the disease

should simplify and shorten early clinical trials examining

the efficacy of candidate therapies. Any such treatment

which successfully rescued biomarkers in animal models in

the early symptomatic phase and delayed disease progression

could be viewed optimistically if it had a similar effect on

biomarkers in early symptomatic patients. Indeed, a marker

that predicted the transition to the disease state in those

carrying the expanded huntingtin allele would be extremely

valuable as it is this group of patients that stand the most

chance of benefiting from disease modifying therapies.

Unfortunately, conventional approaches to biomarker dis-

covery have not yet yielded biomarkers that can be used for

these purposes. Recently, however, it has become clear that

non-hypothesis driven systems biology approaches can be

used effectively in such cases (Kell, 2004; Kell and Oliver,

2004). In this experimental paradigm, the levels of many

thousands of molecules (be it genes, proteins or metabolites)

are measured simultaneously and pattern recognition,

machine learning or statistical methods are used to select

the few that are robustly linked to the development and

progression of the disease under study. The study of the

complete collection of metabolites in an organism is termed

metabolomics (Fiehn, 2002; Goodacre et al., 2004; Kell, 2004).

To date, however, it has not been not possible to accurately

determine the levels of all metabolites simultaneously,

because of the substantial chemical and physical heterogeneity

of the metabolome. As a result, subsets of metabolites

are studied (a process often termed metabolic profiling).

A number of analytical strategies have been successfully

employed (Dunn and Ellis, 2005; Dunn et al., 2005) including

GC-MS, LC-MS, CE-MS, NMR and FT-IR, although each has

its own limitations and advantages.

Metabolic profiling has already proved useful in a number

of disease areas: markers associated with the presence and

severity of coronary artery disease (Brindle et al., 2002),

hypertension (Brindle et al., 2003), subarachnoid haemor-

rhage (Dunne et al., 2005), pre-eclampsia (Kenny et al., 2005),

Type 2 diabetes (Wang et al., 2005), liver cancer (Yang et al.,

2004), motor neuron disease (Rozen et al., 2005) and ovar-

ian cancer (Odunsi et al., 2005) have all been identified by

different implementations of this general approach.

The aim of the present study was to apply metabolic profil-

ing by gas chromatography-time-of-flight-mass spectrometry

(GC-TOF-MS) to serum samples from human HD patients

as well as a mouse model of the disease in a non-hypothesis

driven search for disease biomarkers. Since HD shares many

of the above issues with other late-onset neurodegen-

erative conditions, progress in this field of biomarkers may

provide enthusiasm for parallel approaches in Alzheimer’s

disease, Parkinson’s disease and other chronic disorders of

the CNS.

Methods
Humans
This study was performed with appropriate Local Ethical Committee

approval and with informed consent from the participants. We

have studied 30 HD mutation-positive (>36 uninterrupted CAG

repeats) patients (10 in the presymptomatic and 20 in the early

symptomatic phase) and 20 control subjects recruited from the

HD clinic at Addenbrooke’s Hospital. Prior to recruitment, we

established the following inclusion criteria: asymptomatic gene-

positive cases who were over 18 years of age, who had unified Hun-

tington’s disease rating scale (UHDRS) motor scores of �6

(Huntington Study Group, 1996; range 0–6, mean 1.9, SD 1.85)

878 Brain (2006), 129, 877–886 B. R. Underwood et al.



and who were on no psychoactive medication (antidepressants,

antipsychotics anticonvulsants or medication prescribed to relieve

symptoms) at their last clinic visit. Symptomatic gene-positive cases

had the same inclusion criteria as the asymptomatic group except

that they had overt motor features of the disease and a UHDRS

motor score of �11 (range 11–70, mean 29.9, SD 15.94). We

excluded patients in the final terminal phase of their illness, patients

so impaired as to be unable to give informed consent, and any

patient suffering from current acute medical complaint. The control

group were partners/carers of the patients (aged �18 years) and had

no known neurological disorder and at the time of initially being

screened were on no psychoactive medications.

A detailed history was taken for each patient, with particular

emphasis on variables known to affect metabolite profiles. Age,

ethnicity, occupation, family history (including detailed family his-

tory of HD), smoking status, alcohol consumption, exercise, sleep,

tea and coffee consumption, prescription and over-the-counter

medication, dietary supplementation, height, weight, body mass

index, blood pressure, past medical history, menstrual status, symp-

tom history, independence score and UHDRS motor scores were

recorded. The ages of the groups were as follows: asymptomatic

group = mean 47 (SD 11), range 30–66; symptomatic group =

mean 54 (SD 10), range 42–77; controls = mean 52 (SD 11),

range 31–76; (no significant differences between groups). The

male : female ratios of the groups were 3 : 7 (asymptomatic); 9 : 11

(symptomatic) and controls 13 : 7. The body mass index (BMI) data

of the different groups were as follows: asymptomatic group = range

14.7–30.2, mean 24.5, SD 4.7; symptomatic group = range 16.9–27.8,

mean 23, SD 2.97; control group = range 22.3 – 34.8, mean 27.99, SD

3.49.

Some of the patients invited to take part in the study had been

started on psychoactive medication subsequent to their last clinic

visit. Similarly some of the subjects from the control group were on

such medication. All subjects were included in the study and further

statistical analyses were performed to exclude any possible effect of

differences in drug use between the groups under study. There was no

single medication or class of medication which caused a systematic

difference between the groups. Of the asymptomatic gene-positive

group seven were on no medication, one on ‘other medication’ and

two on fluoxetine. Of the symptomatic gene-positive group 11 were

medication free, 1 was on ‘other medication’ (i.e. not psychoactive)

and 9 were on psychoactive or possible anti-HD medication (fluox-

etine = 1, amitriptyline = 2, minocycline = 1, carbamazepine = 1,

amisulpride = 2, ginkgo biloba = 1, co-enzyme Q10 = 1, olanzapine =

1 and venlafaxine = 1). Of the control group nine were medication

free, six were on ‘other medication’ and four on psychoactive med-

ication (amitriptyline = 3 and paroxetine = 1).

Venous blood samples (10 ml) were transferred to a 15 ml plain

plastic tube and left at room temperature for 2–3 h to clot. The

samples were then centrifuged for 5 min at 3600 g. Supernatant

serum was removed using a Pasteur pipette and the supernatant

was respun for a further 5 min at 3600 g. The serum was removed

and aliquoted in 800 ml volumes and stored at �80�C.

Mice
HD-N171-N82Q mice (B6C3F1/J-Tg(HD82Gln)81Dbo/J, Jackson

Laboratory, Bar Harbour, ME) expressing the first 171 amino

acids of human huntingtin under the expression of a mouse PrP

promoter were used (Schilling et al., 1999). The time course of the

development of symptoms in these mice has been well characterized

(Schilling et al., 1999, 2001). All studies and procedures were per-

formed under the jurisdiction of the appropriate Home Office

Project and Personal Animal Licence and with local ethical commit-

tee approval. The mice were genotyped between 3 and 5 weeks of

age by PCR. Non-transgenic littermates of these mice were used as

the controls.

Three groups of mice were sacrificed to provide analogous groups

to the human subjects (control, asymptomatic and symptomatic).

The asymptomatic transgenic group were sacrificed at 8 weeks and

the symptomatic were sacrificed at 15 weeks of age. A total of 9 trans-

genic symptomatic and 10 transgenic asymptomatic mice were sacri-

ficed. A total of 10 non-transgenic mice were sacrificed, of which 4

were sacrificed at 8 weeks (asymptomatic littermates) and 5 were

sacrificed at 15 weeks (symptomatic littermates). The symptomatic

mouse group contained eight males and one female, the asympto-

matic transgenic group contained seven males and three females. The

control group comprised seven males and three females. The mice

were anaesthetized by intraperitoneal injection of 500 ml of Pentoject

(sodium pentobarbitone, Animal Ltd., York, UK). They were exsan-

guinated by intracardiac puncture, followed by cervical dislocation.

Mouse blood was transferred into a standard 1.5 ml plastic Eppen-

dorf tube and allowed to stand for 2 h to clot. The blood was spun at

3700 g for 5 min. The top 250 ml of serum was then removed and

transferred to a second Eppendorf tube. The supernatant was respun

for a further 5 min at 3700 g. The top 220 ml of the supernatant was

removed and stored at �80�C.

Metabolite profiling
We selected GC-TOF-MS to construct a metabolome estimate for

the serum samples in this study. GC-TOF-MS combines chromato-

graphic separation with sensitive detection and the ability to identify

metabolites through mass spectra and retention time comparisons

with pure standards (although it is employed for detection of small

molecular weight metabolites (<400 Da) generally only after

chemical derivatization to increase volatility and thermal stability).

Sample preparation for GC-TOF-MS analysis was performed as

follows: 175 ml human serum or 50 ml mouse serum was spiked

with 20 ml internal standard solution (1.53 mg/ml succinic d4

acid, 2.34 mg/ml malonic d2 acid and 1.59 mg/ml glycine d5;

Sigma-Aldrich, Gillingham, UK) and vortex-mixed for 15 s. Aliquots

of 450 ml (human samples) or 150 ml (mouse samples) of acetonitrile

(AR grade; Sigma-Aldrich) were added followed by vortex mixing

(15 s) and centrifugation (13 385 g, 15 min) to deproteinize the

samples. The supernatant was transferred into an Eppendorf tube

and freeze dried (HETO VR MAXI vacuum centrifuge attached to a

HETO CT/DW 60E cooling trap; Thermo Life Sciences, Basingstoke,

UK). Two-stage sample chemical derivatization was performed on

the dried sample. An aliquot of 70 ml (human samples) or 40 ml

(mouse samples) of 20 mg/ml O-methylhydroxylamine solution in

pyridine was added and heated at 40�C for 90 min followed by

addition of 70 ml (human samples) or 40 ml (mouse samples) of

20 mg/ml MSTFA (N-acetyl-N-(trimethylsilyl)-trifluoroacetamide)

and heating at 40�C for 90 min. Retention index solution of 20 ml

(6 mg/ml n-decane, n-dodecane, n-pentadecane, n-nonadecane,

n-docosane dissolved in hexane) was added and the samples were

analysed using an Agilent 6890N gas chromatograph and 7683 auto-

sampler (Agilent Technologies, Stockport, UK) coupled to a LECO

Pegasus III electron impact time-of-flight mass spectrometer

(LECO Corporation, St Joseph, USA). Optimized instrumental

conditions for serum have been described elsewhere (O’Hagan
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et al., 2005). Initial processing of raw data was undertaken using the

LECO ChromaTof v2.12 software to construct a data matrix (of

metabolite peak for each specific sample) using response ratios

(peak area metabolite/peak area succinic-d4 internal standard) for

each metabolite peak in each sample.

This approach generates a metabolic profile composed of almost

1300 distinguishable species (uniquely defined by a combination of

retention time and mass spectrum). In some cases, two or more

distinguished species are derived from the same metabolite during

the chemical derivatization process. As a result we estimated that

some 1000 distinct metabolites contributed to the metabolic

profile. Of these, we estimated that �60% can be tentatively assigned

a molecular structure (based on database matching with s >700) with

the rest unidentified or ambiguous.

Chemometric modelling
Since supervised modelling strategies (which make use of class

membership data during model construction) were envisaged, a

validation set of 17 samples (34% of the total) were excluded

from the model building phase, and their disease and symptom status

remained blind to the investigators. Initially unsupervised principal

components analysis (PCA) was used to identify outliers, which

identified one sample (ND130; an asymptomatic gene-positive sub-

ject) in the human dataset as a major outlier in the first three prin-

cipal components and no outliers in the mouse dataset. This

outlier was therefore excluded from all further analyses. Two differ-

ent supervised modelling approaches were then applied. Principal

components discriminant function analysis (PC-DFA) was used to

build models, whose predictivity was initially optimized using 5-fold

cross-validation with randomly selected internal hold-out sets (each

set representative of all classes). The final model was built with all

non-blind data, using the optimal latent variable structure. Projec-

tion to latent structures discriminant analysis (PLS-DA) was also

used, initially optimizing the model by cross-validation based on

Q2. For both PC-DFA and PLS-DA models, the degree of overfitting

was estimated by predicting the class membership of the blind

validation set, testing these predictions by x2. Significant loadings

associated with gene status or symptom status were then reported.

To avoid reporting artefacts due to differences in the gender dis-

tribution or treatment regimens of the controls versus the cases,

separate PLS-DA models were constructed on the entire model set

(irrespective of the gene or symptom status) independently predict-

ing gender and drug regimen. None of these models was externally

predictive of the hold-out set, nor were any of the metabolites in

Tables 1 or 2 dominant loadings, confirming that our findings are

associated with gene and/or symptom status, rather than with

gender or drug regimen.

Results
Serum samples were prepared from 50 individuals, 30 of

whom were mutation-positive for HD (>35 CAG repeats)

and 20 were non-HD controls of similar age and sex distribu-

tion (see Methods). Importantly, the gene-positive subjects

were all in the early stages of the disease [being either asymp-

tomatic (n = 10) or early symptomatic individuals (n = 20)]

ensuring that any metabolic differences that we identified

were unlikely to be due to the major behavioural and neuro-

logical changes associated with more advanced disease.

Our study design deliberately examined only a relatively

small number of subjects for several reasons: most impor-

tantly, by restricting the size of the study we were able to

perform a more comprehensive phenotypic and biochemical

Table 1 Metabolites associated with transgenic
expression of a mini-HD gene in mice

Metabolite Identification

240/242 Glycerol Product of triglyceride breakdown
280 Unidentified ?
572 Glucose Carbohydrate metabolism
589 Monosaccharides Carbohydrate metabolism
122 Lactate Anaerobic metabolism
296 Urea Nitrogen excretion
301 Unidentified ?
270/271 Malonate ?
126 Unidentified ?
222 Valine Proteogenic amino acid
478 Pyroglutamate Amino acid

Metabolites contributing to the metabolic signature
discriminating transgenic mice expressing a ‘mini-HD’ gene (see
Methods) in PC-DFA models are shown. Metabolite
identifications are carried out by matching mass spectra to a
database (see Methods), and the best match is reported. Weaker
matches (s < 600) are indicated by a question mark. Some species
(such as glycerol and malonate) may have two independent
peaks in the profile resulting from the different chemical
derivatization products of the sample.

Table 2 Metabolites associated with the presence of HD

Metabolite Identification

240 Glycerol Product of triglyceride
breakdown

555/563 Monosaccharides Carbohydrate metabolism
136/137 Lactate ? Anaerobic metabolism
126 Unidentified ?
152 Alanine Proteogenic amino acid
228 Leucine Proteogenic amino acids
224 Unidentified ?
278 2-amino-n-butyrate Intermediate in pyrimidine

metabolism
49 Ethylene glycol Glycerol metabolite ?
1175 Alpha-hydroxybutyric acid ?
222/226 Valine Proteogenic amino acid
364 Unidentified ?
562 Monosaccharide Carbohydrate metabolism
270 Malonate ?
299 Urea Nitrogen excretion
197 Unidentified ?
64 Unidentified ?

Metabolites contributing to the metabolic signature
discriminating HD in PC-DFA models (and also in PLS-DA) are
shown. Metabolite identifications are carried out by matching
mass spectra to a database (see Methods), and the best match is
reported. Weaker matches (s < 600) are indicated by a question
mark. Some species (such as valine) may have two independent
peaks in the profile resulting from the different chemical
derivatization products of the sample. Note that the
monosaccharide peaks 555/563 and 562 represent
distinct molecular monosaccharide structures.
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characterization of each individual. In addition this allowed

us to study a relatively homogeneous population of patients,

which greatly helped us in the interpretation of the data.

This reflects a trade-off between sample size and the amount

of data collected on each individual for a given resource

commitment. Additionally, the discriminatory power of

multivariate statistical modelling increases only slowly with

increasing sample size once the size of each class reaches

20–40 individuals (D.J.G., unpublished observations). There-

fore a study of this size should identify most biochemical

markers likely to be of clinical relevance.

We also carried out an independent analysis of the

metabolic profile of a murine model of HD, in which the

first 171 residues of huntingtin with 82 CAG repeats are

expressed under the control of the mouse prion protein

promoter. Serum from 29 mice (19 transgenic and 10 wild-

type littermate controls) was prepared as for the human

studies.

A metabolic profile for each individual or mouse was then

constructed by GC-TOF-MS (see Methods) yielding a matrix

consisting of the relative concentration of 1275 uniquely

detected metabolite peaks for each of 50 subjects and 29 mice

(Fig. 1). For many, but not for all, of the metabolite peaks,

the chemical identity of the metabolite can be assigned by

comparison of the mass spectrum with a database of more

than 80 000 mass spectra (a process similar to identifying

genes by sequence homology searches) or more definitively

by comparison of mass spectrum and retention time with

pure metabolites analysed under the same analytical condi-

tions (Schauer et al., 2005).

Multivariate pattern recognition approaches were then

used to search for systematic differences in metabolite pro-

files between the HD gene-positive carriers and the controls.

First, unsupervised PCA was used to survey the data for

outliers. This method tests whether there is an obvious

clustering of subjects by genetic or symptom status, using

the entire metabolic profile. In the mouse dataset no outliers

were identified, and the samples formed a single homoge-

neous distribution with no evidence of clustering. In contrast,

in the human dataset one individual (an asymptomatic female

gene-positive subject, aged 30 years) lay far away from the

remaining subjects in both the first two principal components

(Fig. 2A) and was therefore removed from all subsequent

analyses. The remaining individuals now formed a single

homogeneous distribution (Fig. 2B). However, PCA revealed

no obvious clustering of the subjects by gene status or

symptoms.

Supervised techniques (where the class membership of the

subjects is used to build a maximally discriminating mathe-

matical model of the data) are much more powerful at iden-

tifying class markers in large multivariate datasets (whether

genetic, proteomic or metabolic in origin), providing that

adequate model validation is performed to prevent over-

fitting (Hastie et al., 2001). PC-DFA was therefore applied

to build a model on approximately two-thirds of the indivi-

duals, which was used to predict the class membership of the

remaining one-third (the validation set), whose status was

blind to the analyst. In essence, we grouped individuals

into their respective genetic and symptom categories and

used the metabolite data to try to define a signature for

each group. Here we used two-thirds of each group to define

a signature, and the reproducibility of this signature was then

tested using the remaining one-third of each group. Such a

PC-DFA model of the mouse dataset is shown in Fig. 3, dis-

criminating symptomatic (15-week-old) transgenic mice (TS)

from both non-transgenic littermates (CS and CP) and pre-

symptomatic transgenic mice (8-week-old animals; TP). This

model correctly predicted the gene status of the blind valida-

tion set (x2; P = 0.03), and likely provides a robust description

of the metabolic consequences of transgene expression and

symptom progression.

In this multivariate statistical model, a metabolic signa-

ture comprising altered levels of malonate, valine, methionine,

glycerol, various monosaccharides as well as an unidentified

metabolite (peak no. 301) is indicative of the presence of

HD-like symptoms. Consistent with these findings, these

mice do develop glycosuria (however, much milder than

that seen with the R6/1 HD mouse line).

A PLS-DA model was also constructed on the same dataset

(not shown), which yielded similar discrimination between

the symptomatic (15-week-old) transgenic animals and the

littermate controls. In essence, PLS-DA and PC-DFA are dif-

ferent mathematical approaches used to pick signatures out

of the very large metabolic dataset. Valine, glycerol and

monosaccharides also possessed significant loadings in this

model, confirming the likely importance of these molecules

as biomarkers of HD-like symptom development in mice.

The same pattern recognition methods were applied to the

human dataset. PC-DFA models tentatively discriminate HD

mutation carriers (whether asymptomatic or symptomatic)

from the gene-negative controls (Fig. 4A). Unlike the PC-DFA

model of the mouse dataset, however, the external predictive

power of this model did not reach statistical significance

(x2;P= 0.54), probably reflecting the greater variation in meta-

bolic profiles between individual humans compared with the

mice, which share a common genetic background and more

controlled lifestyle and diet. The metabolites which together

compose the metabolic signature discriminating the gene-

positive individuals from the controls are listed in Table 2.

Importantly, valine, glycerol and monosaccharides are all sig-

nificant loadings in both the human PC-DFA model and the

mouse PC-DFA model confirming that these model loadings

are unlikely to be due to overfitting. Similar loadings domi-

nated the PLS-DA model of the same dataset (not shown).

Interestingly, the metabolites dominantly responsible for

the discrimination in these statistical models of both murine

and human HD are indicative of a change to a pro-catabolic

phenotype early in the disease progression, with markers of

increased nucleic acid breakdown (elevated 2-amino-n-

butyrate, an intermediate in pyrimidine metabolism) and

fatty acid b-oxidation (elevated glycerol and ethylene glycol).

This same pattern is seen in both asymptomatic and early
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symptomatic patients, suggesting, therefore, that a catabolic

physiology precedes any detectable clinical symptoms.

These models also provide the first indications of a meta-

bolic signature of symptom progression. While gene-positive

subjects have lower serum valine levels than do gene-negative

controls irrespective of symptom status, we see alterations

in alanine, leucine/isoleucine and possibly also proline, as

well as ethylene glycol and ethylamine, specifically associated

Fig. 1 Metabolic profiling by GC-TOF-MS. (A) A schematic representation of the GC-TOF-MS methodology employed in the present study
to obtain a metabolome estimate. (B) A typical GC-TOF-MS chromatogram of a human serum sample in this study, plotting total ion
current on the mass spectrometer against retention time. After this step, the data are further deconvoluted on the basis of mass to
obtain a table of >1300 uniquely identified metabolites. (C) A typical GC-MS profile of a mouse serum sample in this study.
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with symptom progression. We conclude that there is likely to

be a subtle but complex misregulation of amino acid meta-

bolism in HD gene-positive individuals, which correlates with

symptom status in our cross-sectional study design, suggest-

ing a progression with time.

Discussion
Our study has revealed three interesting findings. First, we

observed metabolic differences between HD patients and

controls. Some of these changes (such as the complex dysre-

gulation of amino acid metabolism and the accumulation of

ethylene glycol and its oxidation product oxalate) may be

specific for the disease. Other changes may be more general

markers of neurodegeneration, since they have also been

identified in analogous studies of Parkinson’s disease and

Alzheimer’s disease (D.J.G., R.A.B. et al., unpublished

data). For example, malonate and 2-amino-n-butyrate (as

well as the unidentified metabolites nos 126 and 301) are

also associated with Parkinson’s disease. The elevation of

malonate in both the HD patients and mice is potentially

interesting, as intrastriatal infusion of malonate, a reversible

inhibitor of the mitochondrial enzyme succinate dehydrogen-

ase, results in striatal pathology that has similarities to that

seen in HD (Beal et al., 1993). Succinate dehydrogenase is a

component of the tricarboxylic acid cycle and complex II of

the mitochondrial electron transport chain, and decreased

complex II activity has been reported in HD brains

(Browne et al., 1997; Gu et al., 1996). However, before one

can speculate that the malonate elevation may be partly con-

tributing to pathology, further work will be required to test

whether it is elevated in the CNS, to what extent it is altered

and at which stages of disease. Nevertheless, the malonate data

and the changes in lactate levels are consistent with the

hypothesis that misregulation of energy expenditure (evi-

denced by altered mitochondrial electron transport activity,

Gu et al., 1996, and reduced GAPDH activity, Mazzola et al.,

2001) plays a central role in the phenotype resulting from

mutant huntingtin expression.

Secondly, we see a change in biomarker profile between

asymptomatic gene carriers and patients with early disease,

consistent with progression. The transition of phenotypes

between asymptomatic and symptomatic cases is associated

with differing patterns of amino acid accumulation.

Asymptomatic cases have elevated levels of alanine and leu-

cine, while symptomatic disease is associated instead with

ethylene glycol accumulation, and possibly also alpha-

hydroxybutyric acid. However, all gene-positive individuals

(irrespective of the symptom status) have significant

reductions in valine. Thus, the complex dysregulation of

amino acid metabolism changes between asymptomatic

and early symptomatic cases, if validated in further studies,

may be a useful independent state marker. Interestingly, as

early as 1969 alterations in amino acid metabolism in HD

were reported (Perry et al., 1969; Philipson and Bird, 1977;

Reilmann et al., 1995), but these have never been established

as important state markers until now. While some of

these changes may reflect a pro-catabolic phenotype, it is

unclear whether this accounts for the overall signature.

However, it is encouraging when broad non-hypothesis

driven experimental approaches yield a subset of candidate

biomarkers which had previously been tentatively identified.

On the basis of the current findings, we are encouraged to

embark upon a series of prospective studies that will allow

us to investigate longitudinal changes in different

patients, and investigate the minimum time between observa-

tions that allow meaningful changes in metabolites to be

observed.
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Fig. 2 Principal component analysis to identify outliers. (A) PCA
of the human dataset (k = 1275, n = 50; r2x = 0.862, A = 3; first two
principal components shown). Observations coded according to
class membership: red and cyan = controls; black = asymptomatic
HD patients; blue = symptomatic HD patients; green = blind
validation set. ND130 is clearly identified as a major outlier.
(B) PCA of the human dataset with ND130 excluded. There
were no outliers in the PCA plot of the mouse dataset
(k = 1275, n = 29; r2x = 0.919; A = 3; not shown)
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Thirdly, and possibly most remarkable, we observed similar

metabolite profile abnormalities in a mouse model of HD and

in humans and parallel changes when comparing asympto-

matic and (early) symptomatic humans and mice. It should

be noted that the mouse study was analysed independently

to the human data yet many of the same metabolites showed

dominant changes. As far as we are aware, this is one of the

first systems biology validations of a mouse model of any

human disease. The convergence between the patterns seen

in man and mouse also suggests the human model has some

validity, despite the lack of statistically significant external

validation, and reduces the likelihood that the patterns we

see are due to changes in behaviour or changes in drug treat-

ment patterns.

HD in adults appears to be associated with a catabolic

phenotype, irrespective of the symptom status. It appears

that polynucleotide, fatty acid and protein metabolisms are

all stimulated in the presence of a phenotype similar to that

of Type I diabetes. While monosaccharide levels are raised,

these are about an order of magnitude less than one would
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Fig. 3 PC-DFA model of the mouse serum metabolic profiles. (A) PC-DFA model of the mouse serum metabolic profiles, showing
the discriminant functions. Each mouse is represented by a single point in model space, coded according to class membership:
CP = non-transgenic littermate control at 8 weeks of age; CS = non-transgenic littermate control at 15 weeks of age; TP = transgenic
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the plot) represents a complex linear function of the entire metabolic dataset. (B) Loadings of the PC-DFA model in (A). Loadings should
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see with diabetic patients—most cases would not be picked

up as frank diabetes with conventional diagnostic criteria.

Nevertheless, our data are entirely compatible with previous

suggestions that HD is associated with Type I diabetes (Farrer,

1985).

The pro-catabolic state suggested by the metabolites in HD

patients may account for the cachexia-like phenotypes seen

late in the disease and may also account for the lower than

expected weight of patients early in the disease (Djouse et al.,

2002) and the reported difficulties that patients have in

gaining weight (Djouse et al., 2002). This metabolic pheno-

type is also seen in the mouse model that we have

studied—even though the transgene is driven by the mouse

prion protein promoter, there is some pancreatic expression

in this model (R. Fincham and D. Rubinsztein, unpublished

data). Since the pro-catabolic phenotype is seen even in pre-

symptomatic cases, it is not likely to be due to symptoms,

signs or overt behavioural consequences of the disease. Our

data (e.g. changes in lactate levels) therefore provide support

for the hypothesis that misregulation of energy expenditure

(evidenced by altered mitochondrial electron transport activ-

ity, Gu et al., 1996, and reduced GAPDH activity, Mazzola

et al., 2001) plays a central role in the phenotype resulting

from mutant huntingtin expression.

A variety of approaches can be used to sample metabolites

for metabolomics studies. Gas chromatography preferentially

assays volatile metabolites. Liquid chromatography will pre-

ferentially assay more compounds which are soluble in aqu-

eous media. It generally separates compounds by their degree

of hydrophobicity. While NMR is unselective by molecular

structure, it is relatively insensitive. Importantly, we have

coupled gas chromatography with mass spectrometry. This

allows us to give a candidate molecular identity to metabolites

we have identified. Furthermore, the mass spectrometry

serves to deconvolute individual metabolites that may

appear to almost coelute from the gas chromatography

column (see Fig. 1).

In conclusion, our data raise the prospect of a robust

molecular definition of progression of HD through the pre-

symptomatic phase and into early symptomatic disease. This

is an ideal window for therapeutic intervention. If validated

in a genuinely prospective fashion in larger samples, the

biomarker trajectories described here will go a long way to

facilitate the development of useful therapies.
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