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Optimizing experimental conditions for the effective analy-
sis of intact proteins by mass spectrometry is challenging,
as many analytical factors influence the spectral quality,
often in very different ways for different proteins and
especially with complex protein mixtures. We show that
genetic search methods are highly effective in this kind
of optimization and that it was possible in 6 generations
with a total of <500 experiments out of some 1014 to find
good combinations of experimental variables (electrospray
ionization mass spectral settings) that would not have
been detected by optimizing each variable alone (i.e., the
search space is epistatic). Moreover, by inspecting the
evolution of the variables to be optimized using genetic
programming, we discovered an important relationship
between two of the mass spectrometer settings that
accounts for much of this success. Specifically, the
conditions that were evolved included very low values of
skimmer 1 voltage (the sample cone) and a skimmer 2
voltage (extraction cone) above a threshold that would
nevertheless minimize the potential difference between
the sample and extraction skimmers. The discovery of this
relationship demonstrates the hypothesis-generating abil-
ity of genetic search in optimization processes where the
size of the search space means that little or no a priori
knowledge of the optimal conditions is available.

There is much current interest in the exploitation of soft
ionization mass spectrometries in proteomic studies.1,2 In particu-
lar, mass spectral analysis of“intact” proteins in complex mixtures
using electrospray ionization mass spectrometry (ESI-MS) is
gaining momentum,3-6 thanks to improvements in mass spectral

resolution and sensitivity7 and the relevance of “top-down” strate-
gies for mass spectral characterization of proteomes.8,9 High-
throughput proteomics increasingly demands the capability to
identify and characterize as many proteins as possible from
complex mixtures with minimal recourse to cleanup or separation
stages prior to MS. Thus, any strategy that maximizes the
coverage of proteins with minimal operational stages within an
analysis is highly desirable. In this context, the direct analysis of
intact proteins from mixtures by mass spectrometry is attractive.

It is known that factors such as pH,10 ionic strength,11 the
solvent used to dissolve the protein,12,13 and instrumental settings14-16

influence the effective ionization and detection of proteins, even
when individual proteins are analyzed in isolation. Successful
strategies for the analysis of intact proteins in complex mixtures
therefore impose more strenuous requirements on optimizing the
experimental conditions for their analysis. In particular, mass
spectrometer conditions that are effective in ionizing a particular
peptide or protein may be very poor for other proteins. However,
this does not mean that more “universal” and effective mass
spectrometric conditions might not be found. The problem is that
the number of possible conditions we might try is absolutely
enormous, since for n mass spectrometer parameters that may
be varied, each of which may take m values, the number of
combinations (known as the “search space”) is mn. Such problems
are called combinatorial optimization problems.17 These are
typically NP-complete problems (problems not currently solvable
in a deterministic polynomial time),18 which scale very poorly
(exponentially) with n, such that trying every combination
(“exhaustive search”), even for modest values of both m and n, is
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simply impossible. For instance, with 10 variables, each of which
can take just 5 values, the search space (510) is ∼9.8 million
possible experiments. Although knowledge of ion physics can help
in minimizing possible combinations of parameters that would be
relevant, the resultant optimization would result in biased observa-
tions on the variable search space, and there is always the
possibility of losing valuable information. Therefore, a systematic
approach to the optimization exercise is called for.

In consequence, so-called heuristic methods,19,20 which seek
solutions that approach an optimum but cannot be guaranteed to
find it, are used to navigate these huge search spaces to find
regions that are optimal for some desired property. Among
heuristic methods, evolutionary computing techniques are pop-
ular.19-22 Evolutionary or genetic search methods encode candi-
date solutions to a problem in the form of a population of “indi-
viduals” or “chromosomes”, whose “fitness” may be evaluated
against some desired property. According to a generalized algo-
rithm based in part on the fitness of the individuals, some are
selected to produce “offspring” via mutation (one parent only) or
recombination (using two or more parents), whose fitness may
be further evaluated, and the cycle is continued until a desired
stopping criterion is met. Such techniques have enjoyed many
successes in the effective exploration of combinatorial search
spaces.19-22 In addition, it has been argued that the purely data-
driven, evolutionary exploration of large and complex search
spaces can itself generate new scientific and technical know-
ledge,22-26 and it was of interest to explore this view in the present
problem domain.

We note that combinatorial optimization methods such as those
based on evolutionary algorithms (EAs) are especially well suited
to problems in which the variables depend on each other
(otherwise one could merely use linear programming methods
or classical experimental design). We here show that genetic
search methods are highly effective in improving the quality of
the mass spectra in complex mixtures of proteins and thereby
discover an important relationship between two of the mass
spectrometer variables which accounts for much of this success.

MATERIALS AND METHODS
Chemicals. Acetonitrile (HPLC grade) and water (HPLC

grade) were obtained from Fisher Scientific (Loughborough,
U.K.). Formic acid (FA) and five proteins, viz. insulin (bovine
pancreas), ubiquitin (bovine erythrocytes), cytochrome c (equine
heart), lysozyme (hen egg white), and myoglobin (equine skeletal

muscle) were purchased from Sigma (Dorset, U.K.). Stock
solutions (30 µM) of the individual proteins were prepared in 0.1%
FA. An equimolar mixture of the five proteins, diluted 1:1 with
acetonitrile (final concentration of each protein, 1 µM), was used
for the analysis.

Mass Spectrometry. ESI-MS was performed in the flow
injection mode27-29 using a Q-TOF 1.5 mass spectrometer (equipped
with a Z-spray), supplied by Micromass Ltd. (Manchester, U.K.).
The TOF analyzer in the mass spectrometer is arranged in an
orthogonal configuration. Spectra were acquired in the positive
(ES+) ion mode, between m/z 300 and 2000, with relevant
instrumental parameters set in the ranges given in Table 1. Spectra
were acquired every 3 s, and acquisitions over the duration of
the injected volume (ranging from 2 to 10 min) were combined
to give the mass spectrum. Myoglobin (Mr ) 16 950 Da) was used
to tune the instrument. The protein mixture was introduced into
the mass spectrometer using the autosampler of a Waters 2790
liquid chromatography separation unit (without the column). A
mobile liquid phase of 50% aqueous acetonitrile containing 10 mM
FA was injected into the mass spectrometer at a flow rate ranging
from 20 to 500 µL min-1, and an aliquot (30 µL) of the sample
was loaded from a 300-µL 96-well microtiter plate, maintained at
8 °C, directly into the flow stream and on into the ionization source
of the mass spectrometer. To ensure that any substantive
instrumental drift could be taken into account, the experiments
were carried out over a 6-month period, although the acquisition
of data for each generation was typically carried out over 2 days.
The parameter settings were set by the user using the manufac-
turer’s software.

Data Processing. The spectral data were normalized to total
ion counts and exported from MassLynx (Micromass) to Matlab
(Maths Works), at 0.1 amu resolution. The normalized spectra
were then analyzed using a routine written in Matlab to match
peak positions with respect to those ideally expected for a mixture
of the five proteins and give out various parameters that relate to
the matched peaks with respect to the number of peaks, the
percentage of expected peaks present for each protein, the signal-

(19) Corne, D., Dorigo, M., Glover, F., Eds. New ideas in optimization; McGraw-
Hill: London, 1999.

(20) Michalewicz, Z.; Fogel, D. B. How to solve it: modern heuristics; Springer-
Verlag: Heidelberg, 2000.
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Table 1. Variables and Their Range

code variables range

V1 sample flow rate (µL/min) 20-500
V2 desolvation gas flow rate (L/h) 150-500
V3 nebulizer gas flow rate (L/h) 10-20
V4 source tempearture (°C) 40-150
V5 desolvation temperature (°C) 100-400
V6 capillary voltage (V) 1500-3500
V7 skimmer 1 (sample cone) voltage (V) 10-150
V8 skimmer 2 (extraction cone) voltage (V) 0-10
V9 transport hexapole voltage (V) 0-20
V10 differential pumping aperture voltage (V) 0-20
V11 acceleration lens voltage (V) 0-200
V12 focus voltage (V) 0-200
V13 prefilter voltage (V) 5-15
V14 MCP detector voltage (V) 2300-2700
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to-noise ratio, and the relative intensity contributions for the
individual proteins. These parameters were then used to calculate
a fitness function for evaluating the evolutionary algorithm (genetic
search).

We set up the first generation of 180 experiments by taking
random values for each of the parameters, within the specified
ranges (Table 1). The position (m/z) of the charge state peaks
for each protein under the ionization conditions. The protein
charge-state peaks that were observed for each protein, when
analyzed in isolation and under a standard set of conditions, were
taken to form an “ideal” spectrum, with respect to the peak
positions (m/z values). An “ideal” spectrum within m/z 600-2000
thus comprised peaks for charge states 3+ to 9+ for insulin, 5+
to 14+ for ubiquitin, 7+ to 20+ for cytochrome c, 8+ to 14+ for
lysozyme, and 9+ to 27+ for myoglobin. Three separate properties
of the protein mass spectra were considered to contribute to the
fitness: (a) one that maximizes the coverage of the individual
protein (charge-state) peaks in the mixture (relative to the “ideal”
spectrum) - peak positions (Pkidx), (b) one that maximizes
evenness of signal contribution from the five proteins, or the
contribution of peak intensities of the different charge states of
each protein to the total spectral intensity - relative intensity
contribution (Iidx), and (c) one that maximizes signal (charge-state
peaks)-to-noise (nonprotein/protein fragment peaks) (s/n). Al-
though we could have treated this as a multiobjective problem,30-32

we combined these to make a combined fitness function, as
follows:

where Ny is the number of peaks that are observed for protein Y,
Xy is that ideally expected (those in the “ideal” spectrum), Iy is
the combined intensity of the observed charge states for protein
Y, and I is the total spectral intensity. The product of the individual
contributions was taken so as to penalize the fitness if any
individual component was absent (i.e., takes a value of zero).
Maximizing the fitness function would thus maximize both the
evenness of contribution of each protein to the total intensity and
the s/n. After each generation, we evaluated the fitness of each
individual encoding the mass spectral parameters and produced
a new generation, continuing for a total of six generations.

Evolutionary Algorithm. A set of experiments in which the
levels of the variables were set in a random order was chosen as
the first generation. The settings for the subsequent generation
were defined by feeding this information to the EA, which in turn
generated a set of candidates to be examined in the second

generation, the results of which were then fed back to the EA for
generating the next generation. This procedure was carried out
in an iterative manner until the sixth generation was reached. The
EA was written in-house, running under Microsoft Windows NT
on an IBM-compatible PC. A variation on the simple genetic
algorithm (GA) developed by Holland33 was used. In our study,
the GA used proportional selection, and two-point crossover with
mutation, operating on a population of binary-encoded chromo-
somes, each chromosome representing n parameter values. The
length of the chromosome is dependent on the resolution and
range of each of the n parameters. For example, a parameter with
the range 0-100 units and resolution of 5 units will be encoded
as a 5-bit string, and a parameter with the range 10-15 units and
a resolution of 1 unit will be encoded as a 3-bit string. Each
chromosome in the GA therefore consists of a single binary string
containing all the encoded parameter values (i.e., instrument
settings) in a set sequence.

After initialization and the first set of fitness evaluations have
been made, parents are selected to create the next generation
using “fitness-proportional selection”,33 where the probability of
selection is directly proportional to fitness. Child chromosomes
are created by recombining two parent chromosomes using the
two-point crossover strategy.34 The crossover points are chosen
randomly from anywhere along the whole chromosome length;
i.e., they are not restricted to parameter boundaries. The prob-
ability of mutating a given chromosome after recombination was
set to 0.2, and the probability of changing a bit from a 0 to 1 (or
vice versa) once a chromosome is selected for mutation was set
to 0.01. The process of selection, recombination, and mutation is
repeated until a new population is produced. No two identical
candidates are allowed in a given generation, and the top 10% of
each generation are automatically transferred unchanged to the
next generation. This is known as an elitist strategy and is
guaranteed to converge to an optimal solution.35 If a chromosome
is created that is identical to one “evaluated” previously in the
GA run and therefore already has a known fitness value (this
includes the top 10% from the previous generation), this chromo-
some is ignored and the selection is repeated.

In addition, to assess the contribution of different experimental
variables to the fitness, we performed genetic programming
analysis (see refs 36-38) of the data set using the program Gmax-
bio (Aber Genomic Computing, Aberystwyth, Wales), with default
settings proposed by the manufacturer.

RESULTS
Electrospray ionization of a protein produces a “comb”-like

spectrum of peaks with different mass/charge (m/z) ratios,39

resulting from a distribution of charge states. Figure 1A-E shows
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the mass spectra of the five proteins, electrosprayed individually,
using one set of standard conditions. The mass spectrum of an
equimolar mixture of the proteins obtained under the same
conditions is shown in Figure 1F, while Figure 1G is an “ideal”
mixture spectrum that is constructed by summing the spectra of
the individual proteins. As expected, both the nature (shape of
the comb) and the effectiveness of ionization (relative ion counts)
differ for the individual proteins. It can also be seen that the
mixture spectrum is quite different from the combined spectrum
of the mixture components. The most obvious difference is seen
with the lysozyme peaks. The relative signal from this protein
seems to be influenced by the presence of the other proteins in
the sample matrix. Such observations have been noted by other
investigators and have been argued to depend on the excess
charge available.40 To be an effective tool in high-throughput

proteomics, it is necessary both that the mass spectral signals of
the individual proteins are high enough for detection and that
the signal intensities for different protein types are as close as
possible to each other for a given concentration.

Such a desired result may depend on many factors, such as
solvent composition, instrumental parameters, and concentration
effects, as it is known that these factors influence the sensitivity
of detection and the charge-state distribution of a protein, even
when analyzed in isolation.10-13,15,16 We considered the optimization
of relevant instrumental parameters that influence ionization and
ion transmission to the analyzer, to see whether the signal
intensities can be improved to provide an even signal output for
the five proteins in a mixture. Table 1 indicates the 14 instrumental
parameters that we chose to study and thus varied (such that we
shall often refer to them as “variables” rather than parameters)
and that may thus bear on this. Some of these adopt fixed
(categorical) values, and some are continuous. A schematic of the
mass spectrometer, showing the “locations” of the chosen
variables is shown in Figure 2. If on average it is taken that they
could each adopt 10 values, the search space is then 1014

experiments (and the lifetime of the Universe is ∼1017 s41).
We chose to effect this optimization by performing a genetic

search. Figure 3A shows a plot of the response (fitness) distribu-
tions for the 14 variables, obtained from the experiment. It
indicates the apparent multimodality of the fitness for some
variables and the sharpness of the peaks in the fitness for others.
We note in particular that the desolvation gas flow rate (V2), the
source temperature (V4), and the transport hexapole voltage (V9)
appear to have a multimodal distribution (although we recognize
that the search space is sampled very sparsely), while that of the
differential pumping aperture voltage (V10) optimizes to a unique
value and that of the detector voltage (V14) optimizes to the
maximum value available. Even in cases where a unique value
for a variable is optimized, the distribution of the response ranges
from the low to a high value, indicating the multivariate nature of
the problem (i.e., the effect of a given variable depends signifi-
cantly on the values of the other variables). To understand the
nature or “ruggedness” of the search space, often referred to as

(40) Pan, P.; McLuckey, S. A. Anal. Chem. 2003, 75, 1491-1499.
(41) Barrow, J. D.; Silk, J. The left hand of creation: the origin and evolution of

the expanding universe; Penguin: London, 1995.

Figure 1. Positive-ion ESI-TOF mass spectra of five proteins: (A)
insulin (5.7 kDa), (B) ubiquitin (8.6 kDa), (C) cytochrome c (12.3 kDa),
(D) lysozyme (14.3 kDa), and (E) myoglobin (16.9 kDa), (F) a
spectrum of an equimolar mixture of the five proteins, and (G) their
combined theoretical mixture spectrum, all obtained under one set
of instrumental conditions. The spectra were acquired with a flow rate
of 120 µL/min. The MS was operated at a capillary voltage of 3200
V, the extraction cone voltage was 5 V, and the sample cone voltage
was 35 V. The source and desolvation temperatures were 80 and
250 °C, respectively, while the desolvation and nebulizer gas flow
rates were 350 and 20 L/h, respectively.

Figure 2. Schematic of the ESI-QTOF mass spectrometer used in
this study, showing the Z-spray arrangement and the areas associated
with the 14 variables (V1-V14, see Table 1 for details) optimized in
the study.
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the “fitness landscape”,42-45 and to assess the progress of the GA
with respect to this search space, we performed principal
component analysis46 on the range-scaled variables (all variables
scaled to a range of 0-1), throughout the six generations. The
first three principal components (explaining 52% of the variance)
are plotted in Figure 3B, where the generation is encoded by color
and the fitness by the size of the individual. Although we have
populated the search space only very sparsely indeed (439
individuals in a nominal search space of 1014), the implication is
that there are a small number of very restricted areas in the search
space that encode a good fitness and that the genetic search
method is finding them.

Figure 4 shows how the fitness progressively improved both
for the overall fitness per se (Figure 4A) and in terms of the
contribution of the individual proteins to it (Figure 4B). Thus,
the fitness increases significantly by generation 6, by which time
the fitness of just 439 individuals had been evaluated. In particular,
the median fitness per generation improved 400-fold, from 0.07%
in generation 1 to 28% in generation 6, while the best individual
improved some 5-fold (Figure 4A). Ideally, a “perfectly fit”
individual should have a contribution of one-fifth from each
protein, and it can be seen from Figure 4B that the fitter
individuals are indeed approaching this. It can also be seen that

the number of relevant peaks (those corresponding to the protein
charge states) increases significantly as the fitness increases
(Figure 4C).

We also used a genetic programming approach to evolve a
function tree that best described the fitness. A tree that regularly
evolved used the ratio or differences of the skimmer 1 (sample
cone) (V7) and the skimmer 2 (extraction cone) (V8) voltages,
and the effect of the latter on fitness is shown in Figure 4D. We
can now understand that a substantial contribution to the fitness
comes from holding the skimmer 1 voltage at a very low value,
while maintaining the skimmer 2 voltage close to but not equal
to this value. The optimal difference between V7 and V8 is typically
just 2 V.

Figure 5 shows a comparison of the mass spectra of the protein
mixture and the corresponding variable setting (normalized
values) for the median individuals (i.e., the spectrum obtained
by taking the median of all individual spectra for the given
generation) in the first (Figure 5A) and sixth (Figure 5B)
generations, and the best individual finally obtained (Figure 5C).
Improvements in the spectral pattern with respect to the evenness
of peak distribution can be clearly seen, by comparing the
percentage of signal contributed by each of the five proteins, in
the three spectra, shown as insets. The difference in the settings
can also be noted. It must also be noted that although only the
best individual is shown, there are more than one combination of
settings that gave rise to a close to 100% fitness (i.e., cases where
the proteins were more evenly detected). Finally, Figure 6 shows
a distribution of the population (individuals from all six genera-
tions, normalized to the total and expressed as a percentage), with
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160.

(46) Jolliffe, I. T. Principal Component Analysis; Springer-Verlag: New York, 1986.

Figure 3. (A) Distribution of the relative fitness (%) for the 14 variables (V1-V14) (data obtained from the experimental results) and (B)
principal component analysis clustering of the overall population with respect to generation and fitness function plotted as a pseudo 3D plot of
the first three PCs extracted. The generation number is coded by color (1, red; 2, blue; 3, yellow; 4, black; 5, green; 6, cyan), and the fitness
is encoded by the size of the individual points. Refer to Table 1 for the ranges of the variables.
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Figure 4. (A) Distribution of the relative fitness for each generation. Flow rate is coded by the color (20-60 µL/min, red; 60-200 µL/min, blue;
200-500 µL/min, yellow) and cone voltage (variable V7) coded by the size of the individual points, with increase in size indicating increase in
cone voltage. (B) Distribution of the fitness with respect to the relative intensity contribution (Iy/I) for the individual proteins (insulin, magenta;
ubiquitin, black; cytochrome c, green; lysozyme, red; myoglobin, blue). (C) Total peak numbers for the individuals of the population from the six
generations with respect to the relative fitness. (D) Difference between the skimmer voltages (V7 - V8) for the individuals of the population from
the six generations with respect to the relative fitness.

Figure 5. Positive ion ESI mass spectra of protein mixtures and the corresponding instrumental settings (variables) from individuals with a
median fitness (i.e., spectrum obtained by taking the median of all individual spectra for the given generation) for the first (A) and the sixth (B)
generations, and for the overall best individual (C), corresponding to a relative fitness of 0.07, 28, and 100%, respectively. The percentage of
signal contributed by each of the five proteins (I , insulin; U, ubiquitin; C, cytochrome c; L, lysozyme; M, myoglobin) in the three spectra is shown
as inset. The levels of the variables are normalized to the maximum value for each variable, for ease of visualization.
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respect to the proportion of charge-state peaks detected (as a
percentage of those expected in relation to the “ideal” spectrum)
in generations 1 (white) and 6 (black). The proportion of charge-
state peaks detected has improved significantly in generation 6,
as a greater proportion of the individuals in this generation
approach the desired 100% mark.

DISCUSSION AND CONCLUSIONS
Although they are not commonly posed as such, many

experimental problems are in fact, or can best be cast as,
combinatorial optimization problems. In these problems, there is
a large search space where we may hope to find a good solution
among what is often an astronomically large number of possible
solutions. In the present work, we treated the optimization of
instrumental conditions for the analysis of protein mixtures using
ESI-MS as a combinatorial optimization problem and studied the
application of a genetic search method in finding (an) optimal
solution(s).

In the postgenomic era, there is great emphasis on studying
cellular processes on a “global” scale to gain a systems-level
understanding. As a consequence, analysis of intact protein
mixtures using ESI-MS for high-throughput operations is driven
by the need to obtain as complete a representation of proteomes
as possible, with minimal recourse to cleanup and separation
stages. In ESI-MS, the spectral signal(s) of a given protein depend-
(s) on the solvent the protein is dissolved in12 and the ionization
conditions employed and will differ for different instrumental
conditions.15,16 For proteins present in mixtures, matrix effects
(due to the presence of other proteins or other ionizable species)
might also influence the signal intensity.40 Although not exten-
sively (and certainly not systematically) investigated or under-
stood, the instrumental conditions play an important role in
influencing the ionization pattern and detectability of proteins in
mixtures. Accordingly, we observed that a mixture of five proteins
yielded a mass spectrum that was significantly different from the
combined spectrum of the individual components (Figure 1) and
that the ion intensity of the mixture spectrum was lower than that
of the combined (theoretical mixture) spectrum under a given
set of conditions. This can be attributed to the nature of the
proteins and their gas-phase partitioning and ionization while being
electrosprayed under the given set of conditions. Consequently,
our investigation concentrated on the application of a genetic
search algorithm toward finding optimal condition(s) in order to

maximize the response from all the proteins and thus enhance
detection of multiple protein species within a spectral acquisition.
We chose five standard proteins in the mass range of 5-20 kDa.
A major proportion of proteomes, at least for prokaryotes recorded
in databases,47 is composed of proteins in this mass range and
has been shown to be amenable to MS analysis.48 The proteins
were dissolved in a solvent commonly employed for positive ion
ESI-MS detection.39

The instrumental parameters we chose to optimize (Figure 2,
Table 1) are those that would influence ionization (V1-V6), ion
selection and transmission (V7-V13), and detection (V14). Some
of these (and other) variables have been reported to influence
the analysis of proteins by ESI-MS. For instance, raising the cone
potential (V7 and V8) has been associated with shifts in the charge-
state distributions of proteins.14,15 In fact, collision-induced dis-
sociation, achieved by varying the skimmer voltages, is a mode
for generating controlled fragmentation of intact proteins to
peptides in the “top-down” strategy for proteome characteriza-
tions.8 It is also known that increasing metal capillary temperature
improves the desolvation process, resulting in sharpened peaks.13

Oberacher et al.16 indicated that parameters at the ion source,
such as the capillary voltage (V6), capillary temperature (V4), or
sheath gas flow rates (V2,V3), influenced the protein mass spectral
signals less than did settings for the ion-transfer optics (equivalent
to V7-V13 here). Robinson and co-workers were able to observe
intact ribosomes by employing a carefully balanced regime of
pressure gradients throughout the mass spectrometer.4 For the
analysis of proteins in mixtures, such observations on individual
variables may not always be generally applicable; since each
protein may be differentially influenced by the different variables,
the optimization should be addressed as a multivariate problem.
This is evident from the way the fitness in our study varies with
respect to each variable alone (Figure 3A) and together (Figure
3B).

The genetic search method adopted evolved parameters
according to the chosen fitness function within six generations
(Figure 4A), corresponding to an even detection of protein signal
with respect to intensities (Figure 4B) and to peak numbers
(Figure 4C), resulting in an improved detection of the different
protein charge states (Figure 5A-C). It is also clear from Figure
6 that the proportion of the population showing a better detection
of the charge-state peaks increases as we move from generation
1 (where a significant proportion (>30%) of the population had a
low percent (0-15%) of charge-state peaks detected) to generation
6 (where a majority (>60%) of the population had a high percent
(51-100%) of charge-state peaks detected). It must be noted that
the variable levels of the individuals shown in Figure 5 are only
representative. There were more than one individual close to the
100% fitness criterion, and these had some variable levels not very
identical to the one shown for the best individual. Since the
settings are dependent on each other, it is difficult to generalize
on the optimized values.

However, following the optimization process, it was possible
to comment on the variable values generally preferred when (non)-
linear mapping between input and output variables was considered

(47) Demirev, P. A.; Ho, Y. P.; Ryzhov, V.; Fenselau, C. Anal. Chem. 1999, 71,
2732-2738.

(48) Johnson, J. R.; Meng, F. Y.; Forbes, A. J.; Cargile, B. J.; Kelleher, N. L.
Electrophoresis 2002, 23, 3217-3223.

Figure 6. Distribution of the proportion of individuals for the first
(white) and the sixth (black) generations, showing the number of
charge-state peaks detected (as a percent of those expected relative
to those seen in the “ideal” spectrum).
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by genetic programming, as well as direct observation of the data.
For instance, although lower cone voltages minimize fragmenta-
tion and maximize intact protein signal intensities, too low a
voltage would influence the differential pumping of ions and hence
the sensitivity of detection. However, in the present work, the
genetic algorithm search was optimizing toward very low values
of skimmer 1 (sample cone) voltage, values at which the individual
proteins would be detected with relatively poor sensitivity, but
above a threshold (10 V) preferred a high enough skimmer 2
(extraction cone) voltage that would minimize the potential
difference between these two skimmers. It is possible that under
these conditions ion transmission is less selective with respect to
its influence on the individual proteins, allowing a majority of the
five proteins to fly through and be detected. To our knowledge,
this kind of a relationship between the skimmer voltages and the
even detection of proteins has not been reported before. Although
it might be argued that this relationship may be specific to the
particular set of proteins investigated, it demonstrates nicely the
hypothesis, or knowledge-generating ability of genetic search in

this optimization process, under conditions where no a priori
knowledge of the experimental conditions was used.

In summary, we noted that quite small changes in the settings
on a mass spectrometer can have substantial effects on the
effectiveness, and in particular the differential effectiveness, of the
mass spectral response of proteins in mixtures. We treated the
search for a good set of mass spectrometer settings as a
combinatorial optimization problem and showed that a genetic
search algorithm was extremely effective in finding instrumental
conditions that resulted in significant improvements in the
response over the starting set. Although the search space was a
nominal 1014 experiments, the genetic search was found to
converge rapidly toward optimal solutions even when only 439 of
them had been evaluated. Such inductive, evolutionary, machine
learning approaches to experimental design, and optimization
might in the future beneficially be automated in a closed loop form,
as has been done in fields such as laser spectroscopy 49-51 and
functional genomics.52
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